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The effect of electrostatic forces on the dispersion of small like-charged inertial particles
transported by a homogeneous isotropic turbulent flow is analysed by means of direct
numerical simulations coupled with the Lagrangian tracking of charged particles. The
results show that particle dispersion decreases for increasing charge. Since turbulent
particle dispersion is related to the intensity of particle agitation and to the Lagrangian
particle integral time scale, we analyse the effects of electrostatic forces on these two
quantities. Particle agitation decreases for increasing particle charge. In fact, particle
kinetic energy is not directly modified by electrostatic forces, which are conservative, it is
rather the particle entrainment by fluid turbulence that is modified. To support this claim,
one shows that the fluid–particle velocity covariance is destructed by electrostatic forces,
a destruction can be predicted by drawing an analogy between inter-particle collisions
and Coulomb collisions. As expected, electrostatic forces decorrelate particle velocities
leading to a decrease of the Lagrangian particle integral time scale. Finally, one shows
that the analogy with inter-particle collisions allows us to predict the reduction of particle
dispersion.

Key words: particle/fluid flow

1. Introduction

Particle-laden turbulent flows are encountered in many practical applications as in
geophysical flows with the dispersion of volcanic ashes, sediment transport or the
formation of dunes; in engineering processes with a pulverized coal furnace, pneumatic
powder conveying; or in health/medicine with drugs dispersion in the respiratory tract,
or the dispersion of a virus by coughing. In all of these examples the physics controlling
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the particle dispersion is complex because of the multi-physics nature of particle-laden
flows. As a non-exhaustive list, one can mention particle-turbulence interaction, turbulence
modulation, inter-particle collisions, particle bouncing on smooth or rough walls and
inter-particle electrostatic forces. Although it has been neglected over a long time, the
effect of the particle charges on the flow dynamics may be very important. As, for example,
in electrostatic precipitators, where the granular phase is diluted, particles are charged and
an electric field is used to remove the particles from the gas (Parker 1997). Also, as denoted
by Pruppacher & Klett (2010), the charges may also have an effect on the coalescence
kernel of rain droplets.

This paper focuses on the dispersion of charged solid particles transported by a turbulent
gas flow. More precisely, we investigate the self-particle turbulent dispersion (Monin &
Yaglom 2007) which is characterized by the mean square particle displacement. The
particulate flow is very diluted allowing us to neglect turbulence modulation by the
particles as well as inter-particle collisions. In such a framework, Li & Ahmadi (1993)
investigated the effect of electric charges on the deposition of particles on a flat vertical
charged wall. As expected, the authors showed that the electric field leads to an increase of
the deposition velocity and the smaller the particle response, the largest is this increase. It
is well known that inertial particles suspended in a turbulent fluid flow may concentrate in
preferential regions of the turbulence (Fessler, Kulick & Eaton 1994). This phenomenon,
called preferential concentration or clustering, results from the competition between the
drag and centrifugal forces. In 2010 Lu et al. (2010a) analysed experiments to understand
how the clustering of solid charged inertial particles is modified by the charges. They show
that when particles have the same charge, the Coulomb repulsion force leads to a decrease
of the clustering under a given length scale. Theoretical descriptions have also been made
to predict the effect of electric charges on the clustering of particles. Alipchenkov, Zaichik
& Petrov (2004) for non-settling, and Lu, Nordsiek & Shaw (2010b) for settling particles
in a homogeneous isotropic turbulence derived a theoretical expression for the radial
distribution function. Particularly, Lu et al. (2010b) validate their model by comparison
with experimental measurements obtained for particles having a small Stokes number. The
investigation on larger Stokes numbers is generally accomplished by means of numerical
simulation. However, as clearly shown by Yao & Capecelatro (2018) and Boutsikakis et al.
(2020), the way to compute accurately the electrostatic forces in an unbounded domain
can be tricky and/or inaccurate. Despite these difficulties, interesting information has been
obtained from numerical simulations. As, for example, Lu & Shaw (2015) show how the
charges modify the collision kernel and especially how they affect the inter-particle relative
velocity. In a more complex geometry, namely a turbulent duct, Grosshans et al. (2021)
showed that the charges also affect particle motion at a large scale.

All of these works mainly scrutinized how the electric charges modify the spatial
distribution of the particles. However, at first order one can wonder what such an effect
would be on particle dispersion. Karnik & Shrimpton (2012) slightly addressed this
question by showing that the mean variance of particle displacement decreases with
increasing particle charges. Boutsikakis et al. (2020) found similar results and showed that
particle agitation intensity decreases for increasing charges. In fact, particle dispersion
has two main ingredients: first the particle agitation and second the Lagrangian particle
integral time scale. In the present paper, these two contributions are analysed in terms of
an electrostatic Stokes number. We show how it is possible to predict the dispersion of
like-charged particles by making an analogy between the inter-particle collisions and the
Coulomb collisions (i.e. the effect of the electrostatic forces).

The paper is organized as following. The next section gives an overview of the numerical
simulations in terms of a direct numerical simulation (DNS) solver and Lagrangian
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Dispersion of turbulent like-charged particle-laden flows

particle tracking. The definitions and the relevance of the characteristic time scales are
also discussed. Section 3 is dedicated to the modification of the dispersion coefficient by
inter-particle electrostatic forces in terms of dynamic and electrostatic Stokes numbers.
Then the analysis is split in two parts: first the modification of particle agitation (§ 4) and
then the effect of electrostatic forces on the particle velocity auto-correlation (§5). The
conclusions of this work are drawn in the last section.

2. Numerical simulation details

2.1. Direct numerical simulation
Direct numerical simulation of incompressible Navier–Stokes equations has been
performed on a cubic domain of length Lb with full three-dimensional periodic boundary
conditions. The numerical technique consists of a pseudo-spectral method where aliasing
control was ensured by spherical truncation. In order to get a statistically stationary
turbulence, the stochastic forcing proposed by Eswaran & Pope (1988) has been used. Such
a spectral forcing scheme consists in forcing a given range of wavenumbers by a stochastic
force based on a Wiener process. The range of the forced wavenumbers, that control the
Eulerian integral length scale of the turbulence, Lf , has been chosen in order to limit the
length of the largest eddies to 1/10 of the domain size. For the variance and the time scale
of the Wiener process, we followed the same methodology as Février, Simonin & Squires
(2005) and Fede & Simonin (2006), where they adjust the forcing parameters so that the
eddy lifetime turnover time scale Te = Lf /

√
2q2

f /3 is equal to the Eulerian integral time

scale of the turbulence τE = ∫ +∞
0 RE(τ ) dτ . The fluid velocity auto-correlation Eulerian

function, RE(τ ), is obtained on motionless particles with

RE(τ ) =
〈u′

f (t, xE)u′
f (t + τ, xE)〉p

2q2
f

, (2.1)

where u′
f is the fluctuating fluid velocity, q2

f = 1/2〈u′
f u′

f 〉p the fluid kinetic energy (per
unit mass) and 〈.〉p the average operator over the particles, here the motionless particles.
In (2.1), xE is the position of the motionless particles that have been randomly distributed
within the domain. Similarly, one can define the Lagrangian fluid velocity auto-correlation
function, Rf (τ ), as

Rf (τ ) =
〈u′

f (t, xf )u′
f (t + τ, xf )〉p

2q2
f

. (2.2)

Here, xf is the position vector of fluid elements tracked during the numerical simulation.
From the Lagrangian fluid velocity auto-correlation function, one obtains the Lagrangian
fluid integral time scale by τ t

f = ∫ +∞
0 Rf (τ ) dτ .

Table 1 gathers the relevant parameters and statistics of the turbulent fluid flow
(time-averaged statistics have been performed over ∼45Te). The Kolmogorov length scale
is given by ηK = (νf /ε)

1/4, with ε being the dissipation rate measured in DNS, and
the Kolmogorov time scale by τK = (νf /ε)

1/2. Direct numerical simulations have been
performed with 2563 grid points leading to a good resolution of the smallest turbulent
scales, as ηKκmax ≈ 3 (with κmax being the highest resolved wavenumber).
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Parameters Symbol Value Units

Computational domain length Lb 2π m
Fluid kinematic viscosity νf 10−3 m2 s−1

Fluid density ρf 1.0 kg m−3

Fluid kinetic energy q2
f 3.16 × 10−2 m2 s−2

Eddy turn-over lifetime Te 4.49 s
Fluid longitudinal integral length scale Lf /Lb 1.04 × 10−1 —
Fluid integral time scale τ t

f /Te 6.97 × 10−1 —
Turbulent Reynolds number ReLf 99.39 —
Kolmogorov length scale ηK/Lf 3.50 × 10−2 —
Kolmogorov time scale τK/Te 1.16 × 10−1 —
Resolution ηKκmax 2.92 —

Table 1. Properties of the fluid and of the examined HIT.

2.2. Discrete particle simulation
For the particulate phase, we consider a disperse phase composed of Np solid, spherical
and charged particles. The motion of particles suspended in turbulent flows received much
attention (Gatignol 1983; Maxey & Riley 1983). In the present case, on one hand, the
particle density, ρp, is large compared with that of the fluid, and on the other hand the
particle diameter, dp, is small compared with the Kolmogorov length scale. Therefore, one
can reasonably reduce the forces acting on the particle only to the drag force, F d, and the
electrostatic force, F e. In such a framework, the single particle motion governing equations
read as

dxp

dt
= up, (2.3)

dup

dt
= F d

mp
+ F e

mp
. (2.4)

Introducing τp, which is the particle response time, the drag force reads as

F d

mp
= − f

τp
(up − uf @p), (2.5)

with τp = ρpd2
p/(18μf ) and f = 1 + 0.15Re0.687

p (Schiller & Naumann 1935). The particle
Reynolds number reads as Rep = dp||up − uf @p||/νf and uf @p is the instantaneous fluid
velocity at the particle position undisturbed by the presence of the particle. Since the
particle mass fraction is very low, the modulation of the turbulence by the particles
(two-way coupling effect) is neglected. Consequently, the fluid velocity seen by the
particles is directly computed by a third-order Lagrange polynomial interpolation scheme.
For the analysis, one introduces the particle relaxation time scale, τF

fp, defined as τF
fp =

〈 f /τp〉−1
p .

For two charged particles p and q, the electrostatic force that acts on particle p due to
particle q is given by the Coulomb law

F e,q→p = λ QpQq

||rpq||3 rpq, (2.6)
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Dispersion of turbulent like-charged particle-laden flows

where λ = 1/(4πε0), with ε0 the vacuum permittivity, Qp and Qq the electric charge of
the p and q particle. In (2.6), rpq = xp − xq is the distance vector between the two particles
pointing to p. Hence, for a system of Np like-charged particles, each particle interacts with

the other Np − 1 particles, so that the total electrostatic force is F e = ∑Np
q=1,q /=p F e,q→p.

For details of the numerical method, we refer the reader to Boutsikakis et al. (2020).

2.3. Characteristic time scales and Stokes numbers
In order to compare the effect of electrostatic forces to the entrainment by turbulence, it is
important to define a characteristic electrostatic time scale. To characterize the competition
between the entrainment by turbulence and the electrostatic force, Alipchenkov et al.
(2004) introduced the Coulomb number defined as Ct = Eel/Eturb. On one hand, as
explained by Lu et al. (2010a), Eel = λQ2

p/(mpηK) is the potential energy due to Coulomb
interaction at dissipation scales (namely the Kolmogorov length scale, ηK). On the other
hand, Eturb = v2

K is the ‘kinetic energy of involvement of particles into small-scale
turbulent motion’. Two main drawbacks arise when using such a Coulomb number. First,
by definition it concerns only particles interacting with turbulence at the dissipation
scale, hence having a small particle response time. Second and more important, such
a Coulomb number does not take into account the particle density number. Hence,
the analysis based on such a dimensionless number can not be extended to a case
with a different number of particles. This last limitation has been overcome by Karnik
& Shrimpton (2012) by introducing the electric settling velocity vel = τpErmsQp/mp.
Indeed, as Erms is the root-mean-square magnitude of the electric field, it is clearly a
function of the particle number density. However, the level of Erms results from the
interactions of particles with turbulence, which can not be known a priori. Karnik &
Shrimpton (2012) and later Yao & Capecelatro (2018) compare the electrostatic forces
to the entrainment by turbulence with the dimensionless number vel/

√
2q2

f /3. From the
particle motion equation, Lu et al. (2010a) and later Lu & Shaw (2015) define the electric
settling velocity as the terminal velocity of two particles separated by a distance of the
Kolmogorov length scale. The electric settling velocity is then fully written in terms of
particle parameters vel = 2τpQ2

p/(mpη
2
K) and the Coulomb turbulence number becomes

Ct = vel/vK (where vK is the Kolmogorov characteristic velocity). Thus, the electric
terminal velocity includes two effects, namely the interaction of the particle with the
turbulence and the electrostatic forces. Boutsikakis et al. (2020) proposed another time
scale characterizing the electrostatic forces independently of the turbulence itself,

τel = 1
Qp

√
3
2

mp

λnp
, (2.7)

with np = Np/L3 (where Np is the number of particles) the particle number density. To
derive this expression, the authors conducted firstly a dimensional analysis and secondly
they performed numerical simulations of like-charged particles in a vacuum. In that case,
the particle trajectories are only governed by electrostatic forces. The particle velocity
auto-correlation time scale, τ t

p, is hence only dependent to the electrostatic forces and as
such, an excellent candidate for being the characteristic time scale of these forces. Such a
time scale is defined as the Lagrangian particle integral time scale, τ t

p = ∫ +∞
0 Rp(τ ) dτ ,
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Figure 1. Comparison of particle velocity auto-correlation time scale measured in homogeneous isotropic
dry granular flow of charged particles with the characteristic time scale of electrostatic forces proposed by
Boutsikakis et al. (2020) and given by (2.7).

with the particle velocity auto-correlation function that reads as

Rp(τ ) = 〈u′
p(t, xp)u′

p(t + τ, xp)〉p

2q2
p

, (2.8)

where q2
p = 1/2〈u′

p,iu
′
p,i〉p is the so-called particle turbulent (or fluctuating) kinetic

energy (per unit mass) which is also called the particle agitation in the paper. In
figure 1 every marker corresponds to the measurement of τ t

p coming from a different
simulation with a different set of particle properties. All simulations concern like-charged
particles of diameter dp = 5 × 10−3 m in a tri-periodic computational domain of size
Lb (see table 1). In order to perform the dimensional analysis, the following particle
properties have been considered: ρp = {1.5, 2.75, 5, 10, 20} × 103, Qp = {2, 3, 4, 5, 6} ×
Q0, Np = {1, 2.5, 5, 10, 25, 50, 100, 150} × 103, where the values in bold correspond to
the reference simulation and each other simulation entails only one parameter change.
This figure shows the excellent agreement of the measured electrostatic time scale
with the proposed characteristic time scale of electrostatic forces given by (2.7). One
emphasizes that (2.7) differs slightly from the original expression proposed by Boutsikakis
et al. (2020). The difference is only the coefficient

√
3/2 that we have introduced from

correlation analysis on dry granular charged flows.
To better understand the competition between inter-particle electrostatic forces and

particle-turbulence interaction, we defined several dimensionless numbers (i.e. several
Stokes numbers) based on previous time scales. Firstly, for the dynamics of the particles,
one can introduce the standard (dynamic) Stokes number defined as the ratio between
the particle relaxation time scale τF

fp to the Lagrangian fluid integral time scale seen
by inertial particles, τ t

f @p (Deutsch & Simonin 1991). This last time scale is defined by

τ t
f @p = ∫ +∞

0 Rf @p(τ ) dτ with the auto-correlation function of the fluid velocity seen by
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the particles that reads as

Rf @p(τ ) =
〈u′

f @p(t, xp)u′
f @p(t + τ, xp)〉p

2q2
f @p

. (2.9)

In (2.9) the auto-correlation function is normalized by the fluid kinetic energy (per unit
mass) seen by the particles which is given by q2

f @p = 1/2〈u′
f @pu′

f @p〉p. To compare the
electrostatic forces to the particle-turbulence interaction, we introduce the electrostatic
Stokes number as τF

fp/τel. The asymptotic behaviour of the electrostatic Stokes number
is obvious. Indeed, for τF

fp/τel → 0, the inter-particle electrostatic forces are negligible,
and the particle dispersion is controlled by the turbulence. In contrast, for τF

fp/τel → +∞,
particle dynamics is controlled by electrostatic forces.

In the present numerical simulations, the particle diameter has been conserved constant,
dp/ηK = 0.2, and the particle density varies in order to obtain different values of dynamic
Stokes number. With ρp/ρf ∈ [200, 20 000], it leads to a range of dynamic Stokes number
from 0.073 to 6.39. Since particle diameter is smaller than the Kolmogorov scale, particles
are numerically treated under the point-particle approximation. As such, the particle
charge Qp is considered to be concentrated at one point (particle’s centre of mass) defined
as Qp = πd2

pρQ, where ρQ is the particle surface charge density. It should be noted here,
that according to Hamamoto, Nakajima & Sato (1992) there is a saturation limit of surface
charge density for small spheres, which can be translated (via dp) to a corresponding limit
for point-particle charges.

For the configuration presented in this work, this value can be estimated to be
approximately 4 nC. The various particle charges, that have been considered, are all given
in terms of a reference charge Q0 = 1 nC (Boutsikakis et al. 2020) which is of the same
order of magnitude as the aforementioned limit. To explore the effect of electrostatic forces
through the electrostatic Stokes number, particle charge varies from 0.1Q0 to 10Q0 which
leads to an electrostatic Stokes variation in the range of 3 × 10−3 to 2.8. Figure 2 shows
all dynamic and electrostatic Stokes numbers investigated in the present paper.

3. Effect of electrostatic forces on the dispersion of charged particles

In this section we first examine how the particle dispersion coefficient is affected by
electrostatic forces. The dispersion of solid particles transported by a turbulent flow has
been extensively investigated, for example, by Tchen (1947), Hinze (1972), Gouesbet,
Berlemont & Picart (1982, 1984), Deutsch & Simonin (1991), Simonin, Deutsch & Minier
(1993) and Pascal & Oesterlé (2000). Mathematically, the dispersion coefficient, Dt

p, is
related to the variance of particle displacement. Hence, it is defined as

Dt
p = lim

τ→+∞
1
6

d
dτ

〈(xp(t + τ) − xp(t))2〉p. (3.1)

Figure 3 shows the time evolution of the particle displacement variance measured in DNS.
After a transitory phase, the variance of displacement has a linear evolution. To compute
the dispersion coefficient over long times, a linear regression is performed for the last 45 %
of the temporal signal (after the vertical line on figure 3) and the slope corresponds to the
dispersion coefficient.

As a classic result, the time for reaching the established dispersion depends on the
particle relaxation time scale. The smaller the relaxation time scale, the shorter the
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Figure 2. Dynamic (τF
fp/τ

t
f @p) and electrostatic Stokes (τF

fp/τel) numbers of the numerical simulations used
in the study. Each point corresponds to a case differing by the dynamic Stokes number or by the electrostatic
Stokes number.
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p(

t +
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–
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2
〉 p 

/ 
L2 f

¹ ³

Figure 3. Time-evolution of the mean square displacement of particles for τF
fp/τ

t
f @p = 6.39 (a) and τF

fp/τ
t
f @p =

0.073 (b). Symbols represent the data from DNS, while solid lines the linear regression performed on the
data at long times, namely after the vertical lines. Plot (a) shows electrostatic Stokes numbers τF

fp/τel = 1.63
(Qp = 5.0Q0) and τF

fp/τel = 3.27 (Qp = 10.0Q0). Plot (b) shows electrostatic Stokes numbers τF
fp/τel = 0.18

(Qp = 5.0Q0) and τF
fp/τel = 0.35 (Qp = 10.0Q0).

transient period. Concerning the effect of the electric charge, one observes that particle
dispersion decreases with increasing the charge.

Figure 4 shows the particle dispersion coefficient normalized by the value in the
charge-free case with respect to both the dynamic and electrostatic Stokes numbers. We
first observe that for a small electrostatic Stokes number (i.e. τF

fp/τel < 0.1), there is no
effect of the charges on the particle dispersion coefficient. In contrast, for τF

fp/τel > 0.1,
the dispersion coefficient decreases with increasing the electrostatic Stokes number. That
trend is observed for all dynamic Stokes numbers, and it can be noticed that for the smallest
Stokes number τF

fp/τ
t
f @p = 0.073, the modification by inter-particle electrostatic forces is
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Figure 4. Effect of the charge on the particle dispersion coefficient with respect to the dynamic Stokes
number and the electrostatic Stokes number.

smaller than for the particles with the highest Stokes number τF
fp/τ

t
f @p = 6.39. For the

latter, the decrease of particle dispersion is up to 60 %.
In homogeneous isotropic turbulent flows the dispersion coefficient may also by

computed with the expression (Hinze 1972)

Dt
p = 2

3 q2
pτ

t
p, (3.2)

where we remind that q2
p = 1/2〈u′

p,iu
′
p,i〉p is the particle kinetic energy (per unit mass)

and τ t
p = ∫ +∞

0 Rp(τ ) dτ is the Lagrangian particle integral time scale with the particle
velocity auto-correlation function, Rp, defined by (2.8).

Figure 5 shows that for all charges and all particle inertia, the deviation between the
measured particle dispersion coefficient and the Tchen–Hinze theoretical model (3.2) is
less than 5 %. It means that even if the particle dispersion coefficient is modified by the
inter-particle electrostatic forces, the relation between the dispersion coefficient to the
particle agitation and the Lagrangian particle integral time scale remains unchanged. From
this, in the following sections we scrutinize how the particle agitation and the particle
velocity auto-correlation time scale are both modified by the electrostatic forces.

4. Modification of particle kinetic energy and fluid–particle velocity covariance by
electrostatic forces

The modulation of particle kinetic energy by electrostatic forces is shown by Figure 6.
As expected, for small values of the electrostatic Stokes number, the particle agitation
is found unchanged by the electrostatic forces. For τF

fp/τel > 5 × 10−2, non-monotonic
modifications of the particle agitation are observed. As, for example, considering the case
of τF

fp/τ
t
f @p = 0.13 for an increasing electrostatic Stokes number, the particle agitation

increases first and then decreases for large values of the electrostatic Stokes number. The
same behaviour is also observed for larger values of the dynamic Stokes number.

Such evolution could be surprising because the inter-particle electrostatic forces are
conservative and should not modify the particle kinetic energy. However, as shown by
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Figure 5. Measured particle dispersion coefficient normalized by the model standard expression (3.2) with
respect to dynamic (a) and electrostatic Stokes numbers (b).
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Figure 6. Effect of the electrostatic charges on the particle kinetic energy with respect to the dynamic Stokes
number and to the electrostatic Stokes number.

Boutsikakis et al. (2020), the modulation of the particle kinetic energy by the electrostatic
forces is, in fact, an indirect effect due to the modification of the fluid–particle covariance
qfp = 〈u′

p,iu
′
f @p,i〉p by electrostatic forces. Indeed, following the Tchen–Hinze theory, the

particle kinetic energy is related to the fluid–particle velocity covariance by Tchen (1947)
(see also Hinze 1972 or Gouesbet et al. 1984) as

2q2
p = qfp. (4.1)

Figure 7 shows (4.1) with respect to the electrostatic Stokes number. One can observe
that, for the wide range of investigated electrostatic Stokes numbers, the relation (4.1) is
always satisfied. In the present case, figure 6 shows a maximum modification of the particle
kinetic energy on the order of 20 % that can not explain, just by itself, the modification of
the particle dispersion coefficient (see figure 4).

In the framework of the joint probability density function (PDF) approach (see Zaichik,
Simonin & Alipchenkov 2003, 2006; Reeks, Simonin & Fede 2016 for details), it
is possible to derive the following transport equation for the fluid–particle velocity
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Figure 7. Effect of the electrostatic charges on the Tchen–Hinze equilibrium defined by (4.1).

covariance (Deutsch & Simonin 1991; Simonin 1996):

dqfp

dt
=
〈

F d

mp
u′

f @p

〉
p
+ 〈a′

f @pu′
p〉p +

〈
F e

mp
u′

f @p

〉
p
. (4.2)

Here af @p = duf @p/dt is the acceleration of the fluid seen by the particles. In (4.2) the
first term on the right-hand-side is the effect of the entrainment by fluid turbulence due to
drag force on the fluid–particle covariance. With (2.5) this term reads as〈

F d

mp
u′

f @p

〉
p

= −
qfp − 2q2

f @p

τF
fp

, (4.3)

where two contributions appear: first, a dissipative term by the viscous friction of the
particles with the fluid and, second, the transfer of kinetic energy from the turbulence
towards the particles. The second term in (4.2) represents the correlation between the
acceleration of the fluid seen by the particles and the particle fluctuating velocity. Figure 8
shows the evolution of this term with respect to the dynamic and electrostatic Stokes
numbers. From the left panel it can be observed that, even without electric charge, this
term depends on the dynamic Stokes number. The two asymptotic trends were expected
because, on one hand, when particle inertia is large, the particle velocity is uncorrelated
with the fluid velocity and acceleration, hence, 〈a′

f @pu′
p〉p → 0. On the other hand,

when the particle relaxation time scale is very small hence 〈a′
f @pu′

p〉p → 〈a′
f u′

f 〉f but
in stationary homogeneous isotropic turbulent flow 〈a′

f u′
f 〉f → 0. When the electrostatic

Stokes number increases, figure 8 shows that 〈a′
f @pu′

p〉p is decreasing. As a direct
conclusion, the electrostatic forces lead to a decrease of the correlation between the
particle velocity and the local fluid acceleration. Furthermore, such a destruction of the
fluid–particle velocity covariance is even larger for larger dynamic Stokes numbers.

Finally, the last term on the right-hand side of (4.2) is the effect of the electrostatic
forces on the fluid–particle covariance. Figure 9 shows this term measured in the DNS with
respect to the electrostatic Stokes number. Such a term is found negative, meaning that the
electrostatic force destructs the fluid–particle covariance. As expected, this term increases
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Figure 8. Fluid–particle interaction term with respect to the dynamic (a) and the electric (b) Stokes numbers.

when the electrostatic Stokes number increases. Figure 6 shows a non-monotonic evolution
of the particle kinetic energy as a function of the electrostatic Stokes number which
can be explained as follows. Indeed, considering the relevant case of τF

fp/τ
t
f @p = 0.13,

when τF
fp/τel is larger than 5 × 10−2, we observe an increase of q2

p. This is explained
by the fact that the electrostatic forces decrease the intensity of 〈a′

f @pu′
p〉p, which is

negative (see figure 8a). As a result, the fluid–particle velocity covariance increases and
consequently does the particle kinetic energy. At that time, the direct destruction of the
fluid–particle covariance by electrostatic forces also acts but its effect is weak. However,
for approximately τF

fp/τel > 2 × 10−1, this direct destruction term dominates, leading to
the decrease of the particle kinetic energy.

To model the effect of the electrostatic forces, it is possible to make an analogy
with elastic inter-particle collisions. Fundamentally, the main difference is the collision
distance, which is, for the latter, the particle diameter (i.e. two colliding particle have to
be in contact). For the electrostatic force, collisions occur at a given effective distance
larger than the particle diameter (note that in the literature dedicated to the plasma,
the terminology ‘Coulomb collisions’ is used to denote electrostatic interactions). This
analogy leads to two consequences. First, the inter-particle collision time scale τcol, which
is the time for one particle to have a collision with any other particle, may be substituted
by the characteristic time scale of electrostatic forces τel. Second, the electrostatic effect
in the PDF approach can be treated as a collision with a frequency 1/τel and occurring at
the effective distance del. This last parameter can be estimated from works done in plasma
where they estimate the Coulomb collision cross-section by

del = 1
2πε0

Q2
p

mp〈||wr||〉2
p
, (4.4)

where wr is the inter-particle relative velocity that is given by 〈||wr||〉p =
√

32q2
p/(3π).

The analogy between inter-particle collisions and Coulomb collisions allows us to explain
why the fluid–particle covariance decreases with the electrostatic forces, and also to model
this said destruction. First, in case of elastic inter-particle collisions, Laviéville et al. (1997)
and later Fede, Simonin & Villedieu (2015) explained that if particles are smaller than the
smallest turbulent scale (i.e. the Kolmogorov length scale), two colliding particles see
nearly the same velocity. As a matter of fact, the fluid–particle covariance of the two
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colliding particles is conserved because of the conservation of momentum (reminder that
only elastic collisions are considered).

To explain a pathological non-physical destruction of the fluid–particle covariance,
observed in the Lagrangian stochastic approach, Laviéville et al. (1997) (see also
Sommerfeld 2001; Fede et al. 2015; Fede & Simonin 2018) derived analytically the
fluid–particle destruction term at a given distance. Replacing the collision time scale with
the electric one, it is written as〈

F e

mp
uf @p

〉
p

= −2
3

[1 − f (del)]
qfp

τel
, (4.5)

where f (r) is the fluid velocity spatial auto-correlation function, with the asymptotic
behaviours f (r = 0) = 1 (more precisely it is for r < ηK) and for large distances
limr→+∞ f (r) = 0. In first approximation, such a function can be approximated using an
exponential function

f (r) = exp
[
− r

Lf

]
, (4.6)

but, for short distances, a two-exponential model can be used,

f (r) =
exp

[
−χ2r

L

]
− χ2 exp

[
− r

L

]
1 − χ2 , (4.7)

where χ and L are the solutions of L = Lf (1 + 1/χ2)−1 and χ = L/λg. A similar
two-scale model has also been proposed by Sawford (1991) for the fluid velocity
Lagrangian auto-correlation function. The choice of the model may lead to differences
in the predictions of the fluid–particle velocity covariance destruction by (4.5). Figure 10
shows the relative position of the Coulomb collision diameter del to the Eulerian integral
length scale, Lf , with respect to both models and also with regards to the dynamic Stokes
number.

Figure 9 shows the comparison between 〈F euf @p〉p/mp measured in DNS and the
predictions given by (4.5). The dashed lines correspond to the original model proposed by
Laviéville et al. (1997) corresponding to del � Lf , hence, f (del) = 0. The solid lines are
the prediction with (4.7) and (4.4). Two main conclusions can be drawn from figure 9. First,
the electrostatic term is negative, hence, it is really a destruction term of the fluid–particle
velocity covariance. Second, the model predictions are in agreement with the DNS data.

5. Effect of electrostatic forces on the particle velocity auto-correlation

To investigate the effect of the electrostatic forces on the Lagrangian particle integral
time scale, one can start first by the particle velocity auto-correlation function. These
correlation functions are given by figure 11. As expected, when the electric charge
is increasing, the auto-correlation function decreases because the electrostatic forces
decorrelate the particle velocities. Such an effect is found to be more important for
a large dynamic Stokes number (left panel). As a direct consequence, the integral of
the auto-correlation functions decrease for increasing particle charge. The decrease of
the Lagrangian particle integral time scale with the dynamic Stokes number is shown
by figure 12. Such a figure also shows a standard result, which is the increase of the
Lagrangian particle integral time scale for increasing Stokes number (i.e. the larger the
particle inertia, the longer the particle velocity is correlated with itself).
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Figure 9. Electrostatic effect term in fluid–particle covariance with respect to the electrostatic Stokes number.
Symbols represent the terms measured in DNS, while lines the predictions given by (4.5) with f (r) = 0 (dashed
lines) and with f (del) given by (4.7) and (4.4) (solid lines).
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Figure 10. Spatial auto-correlation given by a single exponential function (4.6) (dashed line) and by a
double-exponential function (4.7) (solid line) for τF

fp/τ
t
f @p = 0.073 (a) and τF

fp/τ
t
f @p = 6.39 (b). The vertical

lines correspond to the value of del/Lf .

For the modelling of particle dispersion, a model is needed for the integral of the particle
velocity auto-correlation function, namely the Lagrangian particle integral time scale τ t

p,
but also for the shape of the auto-correlation function. To show how the electrostatic forces
modify the shape of the auto-correlation function, figure 13 shows these functions with
respect to the time normalized by the Lagrangian particle integral time scale. For a small
dynamic Stokes number, the electrostatic forces have no effect on the shape of Rp(τ ), and
for a larger Stokes number, we observe that the particle velocity auto-correlation function
tends to an exponential function. These differences occur essentially for a short time
τ → 0.
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Figure 11. Effect of the electrostatic charges on the particle velocity auto-correlation function for
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f @p = 6.39 (a), τF
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f @p = 0.97 (b) and τF
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t
f @p = 0.073 (c).
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with respect to the dynamic Stokes number.

Qp = 0.5Q0
Qp = 1.0Q0
Qp = 5.0Q0
Qp = 10.0Q0

NO CHARGE

τ/τp
tτ/τp

tτ/τp
t

Rp

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
(a) (b) (c)

0 0.25 0 0.25 0 0.25
0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

2 4 6 8 2 4 6 8 2 4 6 8

Figure 13. Effect of the electrostatic charges on the shape of the particle velocity Lagrangian auto-correlation
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Laviéville, Deutsch & Simonin (1995) analysed the effect of inter-particle collisions
on the dispersion of particles transported by homogeneous isotropic turbulence. The
authors derived theoretically the expressions of the particle velocity auto-correlation
function, Lagrangian particle integral time scale and particle dispersion coefficient taking
into account the effect of the collisions. Making an analogy between particle collisions
and Coulomb collisions, the particle velocity auto-correlation function proposed by
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Figure 14. Lagrangian particle integral time scale with respect to the electrostatic Stokes number. Symbols
represent the statistics from DNS, while lines the prediction of (5.2). (a) The model is computed with the DNS
data (a priori test). (b) The model is computed with the data of the charge-free case.

Laviéville et al. (1995) can be rewritten as

Rp(τ ) = exp
(

− τ

τb

)
+

τ t
f @pτb

τF
fp

exp
(

− τ

τb

)
− exp

(
− τ

τ t
f @p

)

τb − τ t
f @p

, (5.1)

where τb = τF
fp[1 + 2

3 (τF
fp/τel)]−1. This model is based on two time scales, which is strictly

equivalent to saying it is a two-exponential model. As shown by Deutsch & Simonin
(1991), in case of no collisions (τF

fp/τel → 0), the question of the one- or two-exponential
model depends on the dynamic Stokes number. For a small Stokes number and/or fluid
elements, the slope at the origin depends on the Reynolds number. A one-exponential
model is more suitable for a high Reynolds number, and a two-exponential one is more
adapted to a low Reynolds number (Sawford 1991). For moderate and large Stokes
numbers, particle inertia leads the particle velocity to be correlated over a short time giving
a non-zero slope of the auto-correlation function. Such an effect can be taken into account
by the original model proposed by Laviéville et al. (1995). If the characteristic time scale
of these mechanisms is smaller than the particle relaxation time scale, they asymptotically
tend towards the single-exponential function.

The Lagrangian particle integral time scale with respect to the electrostatic Stokes
number is shown by figure 14. As expected, the decorrelating effect of the electrostatic
forces leads to the decreasing of the Lagrangian particle integral time scale. The magnitude
of such a decrease explains why the particle dispersion coefficient decreases so strongly
when the electrostatic Stokes number increases (see figure 4). From the auto-correlation
function (5.1), Laviéville et al. (1995) derived theoretically the evolution of the Lagrangian
particle integral time scale as a function of the inter-particle collision time scale. Replacing
such a time scale by the characteristic one of the electrostatic forces leads to the following
expression:

τ t
p

τ t
f @p

=
[

1 +
τF

fp

τ t
f @p

]
×
[

1 + 2
3

τF
fp

τel

]−1

. (5.2)

Figure 14 compares the prediction of (5.2) with our DNS data. The left panel is an a priori
test, in the sense that the model predictions are computed with our DNS data. It has to be
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Figure 15. Particle dispersion coefficient with respect to the electrostatic Stokes number. Symbols represent
the statistics from DNS, while lines the prediction of (5.3). (a) The model is computed using the data from
DNS (a priori test). (b) The model is computed with the data of the charge-free case.

contrasted with the right panel where τ t
f @p and τF

fp of the charge-free cases have been used
for computing the model predictions. Figure 14 shows a good agreement between the DNS
and the model predictions.

The last step of this study consists of the prediction of the particle dispersion coefficient
modulation by electrostatic forces. As previously stated, we propose drawing an analogy
between the inter-particle and Coulomb collisions. Following the model proposed by
Laviéville et al. (1995), the particle dispersion coefficient can be predicted by

Dt
p = 2

3
q2

pτ
F
fp

[
1 +

τ t
f @p

τF
fp

]
×
[

1 + 2
3

τF
fp

τel

]−1

. (5.3)

Figure 15 shows the comparison between DNS data and predictions given by (5.3). As
for figure 14, the left panel shows model predictions that have been computed with the
DNS data and the right panel with the data from the charge-free cases. A very good
agreement is observed between the model and the DNS data.

6. Conclusions

The paper analyses the effects of electrostatic forces on the dispersion of like-charged
inertial particles transported by homogeneous isotropic turbulent flows. Direct numerical
simulation coupled with Lagrangian tracking of charged particles have been performed,
where the particle motion is controlled only by the drag and electrostatic forces. According
to the very low solid volume fraction considered, both two-way coupling and inter-particle
collisions are neglected.

The numerical simulations show that the particle dispersion coefficient decreases when
the electrostatic Stokes number is increasing. Since the dispersion of particles by turbulent
flow is related to the particle agitation intensity and also to the Lagrangian integral time
scale of the particle velocities, these two quantities have been analysed with respect to the
dynamic and electrostatic Stokes numbers.

As already shown by Boutsikakis et al. (2020), particle agitation decreases with
increasing electrostatic Stokes number. However, the local equilibrium between the
particle agitation and the fluid–particle covariance is still satisfied, namely 2q2

p =
qfp. Hence, the destruction of particle agitation by electrostatic forces is an indirect
effect, because it comes from the destruction of the fluid–particle covariance qfp.
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When analysing the transport equation of the latter, we show that the electrostatic forces
have two effects. First, they decrease the correlation between the fluid acceleration and the
particle velocity (indirect effect). Second, the electrostatic forces act as a destruction term
of the fluid–particle covariance (direct effect). The non-monotonic evolution of the particle
kinetic energy results from the competition of these two effects. Treating electrostatic
interactions as Coulomb collisions, the model proposed by Laviéville et al. (1995), for
predicting the fluid–particle covariance destruction by inter-particle collisions, has been
compared with the DNS results. We show that if the collision time scale is replaced by
the electrostatic time scale, it is possible to predict the destruction of the fluid–particle
covariance. As expected, the Lagrangian particle integral time scale is found decreasing
when increasing the electrostatic Stokes number because of the decorrelating nature of the
(repulsive) electrostatic forces. Again, we show that the predictions of the model proposed
by Laviéville et al. (1995) are in agreement with the DNS.

From a modelling point of view, we show that the models proposed for inter-particle
collisions can be used for predicting the like-charged particle dispersion in turbulent flows.
However, these models assume that the spatial distribution of the particles is uniform,
i.e. no preferential concentration. Moreover, it has been shown by Lu et al. (2010a) that
electrostatic forces may modify the spatial particle distribution through the modification
of the radial distribution function.
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