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Abstract
A hybrid IBM-LES method is presented with the objective to simulate high-Reynolds number pipe flows
on coarse Cartesian meshes. The IBM method is first used to simulate a laminar pipe flow and results have
shown to converge with second order accuracy to the exact solution. A new forcing scheme inside the IBM
wall thickness improves significantly numerical accuracy and provides an interesting way to control the
fluid-solid interaction. Based on this new modeling of the IBM wall boundary condition, turbulent pipe
flows for Reynolds numbers in the range 50,000 to 500,000 are then considered. The IBM wall forcing
under these conditions is developed based on the classical turbulent wall laws, namely the log-law and the
power-law, able to reproduce the mean velocity profile. We show that adjusting the control parameters
of these two models makes possible to recover the correct bulk velocity and mean velocity profile. In
order to improve the fluctuations level and spatial distribution of turbulent structures inside the pipe, we
propose to extend the log-law modeling using local and unsteady value of the wall shear stress obtained
from a stochastic model. The latter preserves spatiotemporal correlations of the wall friction and enhances
the reliability of the simulations in terms of both mean bulk flow and fluctuations. The effects of both
the Reynolds number and the grid resolution are also discussed and empiric correlations for the model
parameters are proposed.

1 Introduction
Most flows present both in nature and in industrial applications are often characterized by a high Reynolds
number resulting in a turbulent regime. A precise description both in time and space of such flows requires
Direct Numerical Simulation (DNS) which consists in solving the whole range of temporal and spatial
scales. To do, realistic configurations are highly demanding in terms of computational resources which are
in most of the cases beyond the actual capacity of even the most powerful supercomputers. To overcome
this limitation, two common methods are used: Reynolds Averaged Navier-Stokes (RANS) equations
and Large Eddy Simulation (LES). While the former is based on a space and/or time averages yielding
drastic reduction of the accuracy, LES, on the other hand, resolves the large scales thanks to an appropriate
modeling of small scale (unresolved) dynamics and is able to provide results closer to DNS [1].
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The filtering procedure of the Navier-Stokes equations, leads to the occurrence of new unknowns (sub-
grid tensor) in the LES equations which need to be modeled. Different methods have been proposed
[2] such as constant Smagorinsky model, dynamic Smagorinsky model, Bardina model, Chollet-Lesieur
model, WALE ... The choice of the adequate method depends mainly on the flow conditions. One of the
most serious issues of the applicability of LES for wall bounded flows at large Reynolds numbers is that
the number of mesh points becomes prohibitively large if one intends to resolve the near-wall layer [3].
On the other hand, the use of wall models to circumvent this problem and use larger cells close to the walls
has been proposed for a long time. Nevertheless, even with such wall models, generating meshes that fit
the boundary is often complex and still requires a significant number of grid points.

In addition, turbulent flows in applications often occur in complex geometries. The Immersed Boundary
Method (IBM) has been proved to be an efficient and practical approach to simulate the presence of
solids on a simple regular mesh regardless of the complexity of the geometry. This method was first
introduced by Peskin [4] to study flow patterns around heart valves and has evolved over the years into
a general framework for fluid/structure interactions. Inspired by the work of Peskin, many approaches
were developed afterwards. Generally, we refer to two major types of IBM: sharp IBM, in which the
solid boundary is located within one cell and diffuse IBM, as used in this study, providing a smooth
transition between the fluid and the solid across three to four cells. When simulating a moving IB solid
using sharp IBM, it is possible to experience some spurious oscillations because of the sharp variation of
the nature of some cells going from being solid cells to fluid cells or vice versa. This change may produce
spatial discontinuity in the pressure across the IB boundary caused by the new fluid cells or a temporal
discontinuity in the velocity at the solid cells [5]. With diffusive IBM, the IBM thickness provides a
smooth evolution of the IBM force and thus is less sensitive to the numerical oscillations.

Simulating turbulent flows by coupling IBM for the complex geometry and LES for turbulence also
raises the question of adapting the wall boundary conditions for their coupling. The resolved LES can
capture the viscous boundary layer therefore requires an adapted mesh refinement close to the wall. Spe-
cific wall conditions for IBM walls to overcome that resolution constraint were proposed. Tessicini et al.
[6] solved the LES equations up to the second grid cell away from the wall, then switched to solving the
simplified turbulent boundary-layer equations on an embedded refined wall mesh. The eddy viscosity is
obtained from a simple blend of an eddy viscosity model with near wall damping function. Cristallo &
Verzicco [7] have upgraded the work of Tessini et al. [6] by using LES from the bulk flow to the nearest
grid point at the wall while the wall shear stress is deduced from a boundary layer approximation. Roman
et al. [8] used a prediction of the velocity at the first fluid grid point in contact with the IB solid boundary
assuming the classical log-law evolution and imposed a RANS-like eddy viscosity elsewhere. We note
that these methods have been developed in the context of sharp immersed boundaries when the wall is
well located on the Eulerian grid. Using a diffuse IBM with Lagrangian markers, Ma et al. [9] solved
the boundary layer equations on an embedded mesh and used the local wall shear stress calculated from
Eulerian points to correct the sub-grid scale viscosity.
In the present paper, we propose a combination of wall models for Large Eddy Simulation and diffuse
Immersed Boundary Method to address high Reynolds numbers pipe flow that has received little attention
for CFD investigation due to numerical method limitations. We propose the use a uniform mesh with a
particularly coarse resolution thanks to an IBM and LES coupling allowing nevertheless to obtain quite a
satisfactory resolution of the flow despite the very high Reynolds numbers considered. For the purpose of
model validation in such condition, we consider the configuration of turbulent pipe flow which has been
investigated in some experiments. For instance, Laufer [10] measured the flow statistics for Re = 50, 000
and Re = 500, 000. The Superpipe facility in Princeton served for many experimental studies over a wide
range of Reynolds numbers: Zagarola & Smit [11] provided the mean velocity profiles and Hultmark et
al. [12] reported on the RMS of streamwise velocity fluctuations and discussed the scaling of the velocity
as well as the location of the fluctuation peak. Meanwhile, numerical simulations were also carried out for
high Reynolds numbers. Chin [13] provided information on the mean flow velocity and RMS fluctuations
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for a pipe at Reynolds number Re up to 83, 000 using DNS and Vijiapurapu & Cui [14] compared the
mean velocity profile obtained from LES and RANS for Re = 100, 000.
Thus, the main objective of our work is to couple IBM and LES solvers to make possible the simulation
of large Reynolds number turbulent pipe flows on coarse Cartesian meshes. Section 2 introduces the nu-
merical methods for IBM, LES and their coupling. In section 3, a Poiseuille flow is simulated for different
meshes and serves as a proof of concept for the proposed approach to model the solid-fluid interaction.
In section 4, high Reynolds number turbulent pipe flows are considered and a new model coupling the
classical wall law and a stochastic approach is proposed and validated with previous existing data.

2 Numerical methods and set-up
As explained in the introduction, the main objective of this work is to couple IBM and LES methods
through a wall model to simulate high Reynolds number turbulent flows. The numerical development and
the CFD simulations are carried out using the IMFT in-house code JADIM, the latter is based on a 3D
unsteady incompressible Navier-Stokes equation solver for Newtonian fluids [15, 16]. In this section, we
rapidly introduce the IBM and LES solvers and present the numerical strategy proposed and validated in
the current work.

2.1 Governing equations
We consider the 3D unsteady incompressible Navier-Stokes system of equations for a Newtonian fluid in
Cartesian coordinates:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xi∂xj

+ fi (2)

where ui (i = 1, 2, 3) is the velocity field, p is the pressure field and fi stands for any volumetric combina-
tion of forces applied to the fluid. ρ, µ and ν = µ/ρ are the fluid density, dynamic viscosity and kinematic
viscosity, respectively. The discretization is achieved using the finite volume method. The time integration
is done using Runge-Kutta 3 (RK3) scheme and the diffusive viscous terms are solved by a semi-implicit
Crank-Nicolson (CN) scheme [15].

The IBM solver
The IBM approach developed for simulating the solid-fluid interaction is detailed in [17]. The method is
summarized here considering a fixed solid object. It is based on the definition of a "solid volume fraction"
αIBM , which is equal to 1 in cells filled with the solid phase, 0 in cells filled with the fluid phase, and
0 < αIBM < 1 in the region of the diffuse boundary. The solid fluid interaction is represented by a forcing
term added to Navier-Stokes equations as a contribution to the volumetric force f :

fIBM = αIBM
vs − û

∆t
(3)

where ∆t is the time step used for time advancement, vs is the local velocity imposed to the immersed
solid object and û is a predictor velocity without considering the immersed object.

The overall algorithm is as follows. Starting from the divergence-free velocity field uni at time n and the
pressure field pn−1/2 at time n − 1/2, a mixed RK3-CN loop (k = 1, 2, 3) is applied with û0i = uni . The
intermediate velocity field ûki is first computed without considering fluid-solid interaction:

ûki − ûk−1i

∆t
= SMk

i (4)
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with

SMk
i = γkN(ûk−1i ) + ξkN(ûk−2i ) + (αk + βk)L(ûk−1i ) (5)

+ (αk + βk)[fi −
1

ρn+1/2
∇pn−1/2]

where αk,βk, γk, ξk are the Runge-Kutta coefficients. N (resp. L) is a non-linear (resp. linear) operator
containing the advective and viscous terms.

The IBM fluid-coupling term fIBM defined by (3) is then computed as:

fkIBM,i = αIBM
vk−1s,i − ûki

∆t
(6)

In practice, the transition region 0 < αIBM < 1 has to fit within one-to-three grid cells [18]. Note that
when the solid is fixed, vk−1s,i is set to 0 inside the transition region and the IBM coupling term fkIBM is thus
simplified to:

fkIBM,i = −αIBM
ûki
∆t

(7)

The intermediate velocity field including the solid-fluid interaction is then computed as:

ûki − ûk−1i

∆t
= βkL(ûki − ûk−1i ) + SMk

i + fkIBM,i (8)

At the end of the RK3 loop, the velocity ũn+1
i = û3i is not divergence free and the projection method is

applied. The auxiliary potential Φn+1 is obtained by solving the Poisson equation:

∂2Φn+1

∂xi∂xi
=

ρ

∆t

∂ũn+1
i

∂xi
(9)

and the final pressure and divergence-free velocity are obtained:

pn+
1
2 = pn−

1
2 + Φn+1 (10)

un+1
i = ũn+1

i − ∆t

ρ

∂Φn+1

∂xi
(11)

The LES solver
The LES solver used in our study is detailed in [15]. It is based on the mixed dynamic Smagorinsky sub-
grid model. This dynamic model has shown to give satisfactory results for wall bounded flows, including
the pipe flow [19]. Mass and momentum equations result from a spatial filtering of the Navier-Stokes
equations (1-2). The JADIM code being based on a finite volume discretization, the natural filtering
operator G is the box-filter, G = 1 in the considered cell and G = 0 otherwise. We use a uniform
grid spacing ∆ yielding the filter length to be ∆ = ∆. Applying G, the velocity and pressure fields are
decomposed as ui = ui + u′i and p = p + p′ where ui (resp. u′i) and p (resp. p′) are the resolved (resp.
unresolved) contributions. The governing equations in the LES approach are then:

∂ui
∂xi

= 0 (12)

∂ui
∂t

+
∂uiuj
∂xi

= −1

ρ

∂pi
∂xi

+ ν
∂2ui
∂xi∂xj

−
∂τSGSij

∂xj
+ f IBM,i (13)

where f IBM,i is the filtered body force representing the solid/fluid interaction and τSGSij = uiuj − uiuj is
the sub-grid stress tensor (SGS) expressed as the sum of these three terms: Lij , Cij and Rij such as:

Lij = uiuj − uiuj (14)
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Cij = uiu′j + uju′i − uiu′j − uju′i (15)

Rij = u′iu′j − u′iu′j (16)

The Leonard term Lij is calculted explicitly.

τSGSij − 1

3
τSGSkk δij = −2νTSij + Lij −

1

3
Lkkδij (17)

where Sij is the strain rate tensor calculated from the resolved velocity field and the turbulent viscosity νT
is given by:

νT = C∆
2
(2SijSij)

1
2 (18)

with ∆ is the filter length. C is a local parameter calculated at each time step. By re-filtering eq (13) using
∆̃, we define: Tij = ũiuj − ũiũj . Similary as τSGSij , Tij is also expressed in function of C as:

Tij −
1

3
Tkkδij = −2C∆̃

2

|S̃|S̃ij + LTij −
1

3
LTkkδij (19)

with LTij = ũiuj − ũiũj . Both Tij and τ̃SGSij cannot be calculated explicitly however the difference

lij = Tij − τ̃SGSij = ũiuj − ũiũj can be and allows to find the local coefficient C:

lij −
1

3
lkkδij = −2C(∆̃

2

|S̃|S̃ij −∆
2|̃S|Sij)− ũiũj + ũiuj +

1

3
(ũkũk − ũkuk)δij (20)

C is then:

C = −(lij − hij)Mij

2MijMij

(21)

with Mij = ∆̃
2

|S̃|S̃ij −∆
2 |̃S|Sij and hij = ũiuj − ũiũj

Coupling IBM and LES solvers
The IBM-LES coupling consists in applying the numerical procedure described above for the IBM method
to the governing equations considered for LES simulations. The IBM coupling term is then expressed
using the filtered velocity field:

f
k

IBM,i = αIBM
vk−1s,i − uki

∆t
(22)

The JADIM LES solver has been implemented and validated in previous studies: channel flows [15] and
pipe flows [19]. However, the LES solver has been applied with a refined mesh having four to five cells
across the viscous sub-layer in order to switch to DNS close to the wall. The aim of the current work
is to couple this IBM-LES method with an appropriate wall modeling to make possible high-Reynolds
simulations on a coarse mesh.

2.2 The numerical set-up
We consider a pipe of diameter D = 2R and axis Ox inside a box of size Lx × Ly × Lz along the ex, ey
and ez directions, respectively (Fig. 1). The domain is described using a regular mesh with cells of size ∆
along the three directions. The definition of the solid volume fraction requires an explicit definition of the
geometry (as for any boundary in CFD). If the geometry is simple enough to be described analytically, as
it is the case in the present paper, we have access to the analytical expression for the solid volume fraction.
For complex geometries, for which no analytic description can be used, we can use instead files describing
the position of the walls coming from CAD, but the definition of αIBM(x) is not an issue. Specifically,
we have proposed in [20, 21] a method which consists of using the function ’distance’ of the CFD free-
software BASILISK which builds a distance field from an STL file and converts it to determine the volume
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fraction αIBM . αIBM is saved as a function of the cells coordinates in a file and imported as an input for
our CFD JADIM code. For the pipe geometry considered here, the solid volume fraction αIBM is given
by [18]:

αIBM(x) =
1

2

[
1− tanh

(
r −R√
2λη∆

)]
(23)

where r is the distance to the pipe center, λ =| nx | + | ny | + | nz | is calculated using the coordinates
of n the normal outward unit vector at the cylinder surface and η = 0.065(1 − λ2) + 0.39 is a parameter
controlling the thickness of the transition region between the solid αIBM = 1 and the fluid αIBM = 0. This
relation for λ suppresses parasitic fluctuations of the forces applied to the object when the latter crosses
a numerical cell [17]. With expression (23), the cylinder wall corresponds to the value αIBM = 0.5 as
shown in Fig. 1 and the transition from the fluid to the solid corresponding to 0 < αIBM < 1 is spread
over three cells. In the following, this region (0 < αIBM < 1) will be called "IBM wall thickness".

Figure 1: Sketch of the geometry (left). Numerical domain and wall pipe shown using the iso-contour
αIBM = 0.5 (right).

Four different uniform regular Cartesian meshes m1,m2, m3 and m4 are considered corresponding to
the number of cells per pipe radius R/∆ = 8, R/∆ = 16, R/∆ = 32 and and R/∆ = 64, respectively.
Figure 2 represents the mesh on a cross section of the pipe. As shown, the solid wall thickness decreases
when the mesh is refined.

The flow is driven by a fixed pressure drop dp/dx along the x-direction. Periodic boundary conditions
at the inlet and outlet of the pipe are imposed. The flow is characterized by the Reynolds number Re =
D < U > /ν with < U > the bulk velocity. The domain length Lx is fixed to 5D allowing developing the
turbulence and Ly = Lz = 1.2D.

Figure 2: Pipe cross-section for the three meshes m1 (R/∆ = 8), m2 (R/∆ = 16), and m3 (R/∆ = 32)
from left to right. The corresponding IBM function field is shown from αIBM = 0 (white) to
αIBM = 1 (black).

6



The temporal accuracy of the Navier-Stokes solver has been discussed in a series of papers. In particular,
we refer to [15] where the LES approach has been first proposed. In this paper, the temporal accuracy of the
code, a crucial requirement when dealing with turbulent flows, is shown with a test devoted to the evolution
of two-dimensional small-amplitude disturbances in a plane channel flow, following a test proposed by [22]
and [23]. Concerning the time convergence of the IBM forcing, we refer to Bigot et al. [17] where the case
of an oscillating sphere in a fluid initially at rest is considered. Almost first order convergence in time was
observed. We have further verified for both the laminar and the turbulent pipe flow that the variation of the
time step has no effects on the reported results. For example, we have solved the Poiseuille flow with the
wall model on mesh m2 considering three different time steps 0.2tCFL, 0.4tCFL and 1tCFL, tCFL being
the Courant Friedrichs Lewy characteristic time equal to ∆/u with ∆ is the mesh size and u = νRe/D
is the bulk velocity. Regardless of the time step, we have observed that the relative errors for the velocity
and the shear stress are the same relative error proving that the simulation converges to the same solution
independently of the time step. We have not reported these tests to avoid lengthening the paper.
The spatial convergence is shown in the next section for the Poiseuille flow considering both the velocity
field and the shear stress. However, for the simulation of the turbulent pipe flow with the LES-IBM
simulation, the approach is different because we aim at providing a model to make possible simulation on
a coarse grid, with parameter dependent on the grid size. Thus, the parameters of the model are indeed
mesh-size dependent. It is actually a required feature, as the model should vanish in case the resolution is
fine enough.

3 Poiseuille flow
We first consider the case of laminar Poiseuille flow to evaluate the ability of IBM to predict the flow in
a circular pipe. The selected Reynolds number is Re=460 and the exact solution for the velocity U and
shear stress τ are:

U(r) = − 1

4µ

dp

dx

(
R2 − r2

)
, τ(r) = −1

2

dp

dx
r (24)

At first, numerical simulations are carried out using the standard IBM expression (7) to prescribe the
presence of the wall. Figure 3 compares the velocity profile U(r) and the shear stress τ(r) to the exact
solution for the three meshes m1, m2 and m3. U(r) and τ(r) are respectively made dimensionless by the
maximum central velocity Umax = − 1

4µ
dp/dxR2 and the wall shear stress τwall = −1

2
dp/dxR given by

the exact solution (24). We consider the error relative to the analytical solution. We evaluate both the error
for the velocity at the IB wall (r = R) as:

εU(R) =
|U(R)analytical − U(R)simulation|

U(0)analytical
, (25)

and the relative error of the shear stress at two positions, at the IB wall r = R and in the bulk of the fluid
r = R/2, as

ετ(r) =
|τ(r)analytical − τ(r)simulation|

τ(r)analytical
. (26)

The evolution of the errors with the grid size is presented in Fig. 4. We observe that the rate of convergence
of the velocity and the shear stress at the IB wall using the standard IBM expression (7) with no model is,
as expected, lower than second order.

7



0 0.2 0.4 0.6 0.8 1
r/R

0

0.2

0.4

0.6

0.8

1
U
/
U
m
a
x

analytical solution
mesh m1
mesh m2
mesh m3
mesh m4

0 0.2 0.4 0.6 0.8 1
r/R

0

0.2

0.4

0.6

0.8

1

/
w

analytical solution
mesh m1
mesh m2
mesh m3
mesh m4

Figure 3: Dimensionless radial profiles of the velocity (left) and the shear stress (right) for the four meshes
with the standard IBM approach, compared to the exact solution given by eq. (24). The vertical
dashed lines mark out the limit between the fluid and the IBM region (αIBM > 0) for each mesh.
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Figure 4: Grid convergence of the relative error on U(R) the velocity at the IB wall (left), and of the
shear stresses τIBM(R) and τFluid(R/2) at the IB wall (r = R) and in the fluid at r = R/2,
respectively.

The significant loss of accuracy close to the wall is the direct consequence of the IBM solid-fluid in-
teraction description used for the simulation. In the standard method first applied here, a zero velocity is
considered across the entire IBM wall thickness zone i.e. for 0 < αIBM ≤ 1. We clearly observe in Fig. 3
that the resulting viscous shear stress departs from the linear evolution in this region and this impacts the
shear stress in the fluid close to the wall.

The control of the velocity profile cannot be made with the IBM function given by equation (23) since it
mainly controls the width of the IBM wall thickness. The proposed method consists in directly imposing
the correct velocity evolution inside the IBM wall thickness. In the case of the Poiseuille flow the exact
solution is given by equation (24) therefore, the corresponding velocity profile for the solid wall velocity
vs for the solid-fluid interaction description is then:

vs,x(r) = − 1

4µ

dp

dx
(R2 − r2) , vs,y = vs,z = 0 (27)

By the definition of fIBM , this forcing is effective for αIBM > 0. The velocity profile in the IBM wall
thickness cancels at the exact wall position r = R corresponding to αIBM = 0.5. Note that the velocity
for r > R is then negative in order to respect the correct value of the velocity gradient, and thus the wall
shear stress at r = R. Figure 5 presents the velocity and shear stress obtained with the new IBM condition
(27). All the profiles are now very close to the analytical solution regardless of the mesh size.
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The corresponding errors on both the velocity and the viscous shear stress are reported in Fig. 4 as a
function of the grid size. We also observe that with the proposed modification of the IBM forcing, the
magnitude of the error has been significantly reduced and convergence close to second order is observed
for both velocity and shear stress. Note that correcting the velocity in the region 0 < αIBM ≤ 0.5 only,
does not permit to recover the correct shear stress at the wall r = R.
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Figure 5: Dimensionless profiles of the velocity and the shear stress when using the IBM wall model (27)

From the DNS simulation of a Poiseuille pipe flow, we have demonstrated that the IBM method using
the standard solid-fluid interaction is grid convergent. However the error with the exact solution can be
significantly reduced with an appropriate condition applied inside the region of IBM wall thickness. The
objective of the next section is to consider turbulent pipe flow simulations thanks to our IBM-LES solver.

4 Turbulent pipe flow
In this section, we simulate turbulent pipe flows using the IBM-LES method and using the same numerical
domain. The flow is again driven by a constant pressure drop. We note < U > the bulk velocity, τ ∗ =
R|dp/dx|/2 the mean wall shear stress, u∗ =

√
τ ∗/ρ the mean friction velocity, `∗ = u∗/ν the wall unit

length, Re∗ = Ru∗/ν the friction Reynolds number and Re =< U > D/ν the pipe Reynolds number.
Three high Reynolds numbers are considered: Re = 50, 000, Re = 100, 000 and Re = 500, 000.

Discussion on the results will be first conducted for Re = 100, 000 because several reference results are
available at this specific Reynolds number for the mean axial velocity profile U and the root mean square
(RMS) velocities ux, ur, uθ along the x, r and θ directions, respectively. The corresponding references,
values of Re and Re∗ are reported in table 1.

Method References Re Re∗ Available radial distributions symbol in graphs
LES/RANS [14] 100,000 2350 U(r) ×
Experiments [11] 98,000 2315 U(r) ∧

DNS [13] 83,000 2000 U(r), ux(r), ur(r), uθ(r) �
Experiments [12] 81,000 1960 U(r), ux(r) +

Table 1: References used for comparison and corresponding symbols used in the figures.

The simulations are performed using the three meshes m1, m2 and m3. The ratio ∆/`∗ is reported in
Table 2 for the three considered Reynolds numbers. With regard to high turbulent pipe flows, these meshes
are coarse and none of them is adapted for an accurate resolution of the viscous sub-layer, justifying the
need of an appropriate wall modeling. This is clearly shown in Fig. 6 where the simulations performed
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using mesh m2 are compared to the data referenced in Table 2 for Re = 100, 000. As reported, all the data
from literature are collapsing on a similar evolution for the mean velocity U . The LES-IBM simulation
using the standard IBM solid-fluid interaction presented by circles is significantly underestimating the
mean velocity indicating that the wall friction is not correctly predicted. This response of the model is
very similar to what we observed for a laminar flow. Considering the velocity fluctuations, thanks to the
LES solver, their order of magnitude is correctly captured inside the pipe but not close to the wall. The
objective is now to propose a modified IBM solid-fluid interaction in order to improve the results and in
particular to recover the correct magnitude for the mean velocity. Two approaches will be proposed in the
following; the first one is based on the mean velocity profile while the second makes use of a stochastic
model for the velocity profile imposed across the IBM wall thickness.

R/∆ - Re 50,000 100,000 500,000
8 (m1) 160 292 1260
16 (m2) 80 146 630
32 (m3) 40 73 315

Table 2: Value of ratio ∆/`∗ for the meshes and Reynolds numbers considered
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Figure 6: Profiles of the mean velocity and RMS velocity for simulations at Re=100,000 for different IBM
approaches. Top left: mean velocity; top right: axial velocity RMS; bottom left: radial velocity
RMS; bottom right: azimuthal velocity RMS. Simulation using the standard IBM solid-fluid
interaction without a wall model (o), with the power laws mean velocity model (�) and with the
logarithmic mean velocity model (∗). For the mean velocity models, results with the classical
coefficients (in blue): k = 0.41− B = 5 and A = 8.3− C = 1/7 for the "log-law" and "power
law" laws, respectively. Results with the adjusted coefficients (in purple): k = 0.41−B = 0 and
A = 5.3 − C = 1/7 for the "log-law" and "power law" laws, respectively. Red symbols stand
for the reference studies: ×[14], ∧, [11], �[13], +[12] (see Table 1)
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4.1 IBM mean velocity model
In the case of turbulent pipe flow, no exact solution for the velocity profile is available to control the
unsteady and local velocity field inside the IBM wall thickness as done in the previous section for the
laminar Poiseuille flow. However the mean velocity profile close to a turbulent wall in a pipe has been
characterized for a large range of Reynolds numbers. In particular the mean velocity can be described by
the classical log-law evolution or can be fitted by a power law. Both laws have been considered at high
Reynolds number regimes in experimental and numerical studies. See for example [24] where both laws
compare well with LES simulations over a large range of Reynolds numbers varying from 104 to 1011.

In this section, both the "log-law" and "power law" modeling are selected to control the velocity de-
scription inside the IBM wall thickness. Since the model has to be implemented across the entire IBM
thickness, a velocity condition has to be imposed for 0.5 < αIBM < 1, i.e. for negative values of the wall
unit distance r+ = (R − r)/`∗. In order to respect the condition vs(r+ = 0) = 0 and the continuity of
the velocity for discretization purpose in the viscous shear calculation, the velocity field is extended for
r+ < 0 (i.e. r > R). Under these considerations, the "log law" modeling consists in imposing in the IBM
fluid-coupling term fIBM defined by (3) the velocity field vs following:

vs,x =

{
r+ < u∗ > if | r+ | ≤ 11
sign(r+) ( 1

k
log(| r+ |) +B) < u∗ > if | r+ | > 11

, vs,r = vs,θ = 0 (28)

with k = 0.41 and B = 5 [25], while the "power law" modeling considers

vs,x =

{
r+ < u∗ > if | r+ | ≤ 11
sign(r+)A | r+ |C < u∗ > if | r+ | > 11

, vs,r = vs,θ = 0 (29)

with A = 8.3 and C = 1/7 [26].
To analyze the effect of such control of the velocity in the IBM wall thickness, numerical simulations

are first performed for Re = 100, 000 using mesh m2. Figure 6 illustrates the mean and RMS profiles
normalized by u∗ as a function of the radial position normalized by the wall unit length `∗. The two
models ("log law" and "power law") provide very similar results for both the mean and the RMS velocities.
The mean velocity profile is now overestimated in comparison with the previous data from literature.
The impact on the RMS velocity differs depending on each component. The velocity fluctuation in the
streamwise direction increases close to the wall and is improved far from it in the two other directions. The
peak of the streamwise fluctuations generally located around 15`∗, considered as a feature of turbulent pipe
flow, cannot be detected with such a mesh resolution (see Table 2). However we see a peak in our profiles
which is shifted away from the near wall with a higher intensity. Similar behavior of the peak location is
reported by Ma [9] using a dynamic wall model for LES/IBM simulations. Besides, the simulations on
other meshes reveal that the peak gets closer to the wall as we refine the mesh. The results obtained with
the model follow the expectations but still need to be adapted and one possible solution to do so is through
the modification of the wall law coefficients. An adjustment of the coefficients B for the log law and A
for the power law is performed aiming at minimizing the error on the bulk velocity. Figure 7 depicts the
relative error on the bulk velocity as a function of the wall law coefficients for the mesh m2. The reported
error EU is calculated as:

EU =
< U >expected − < U >simulation

< U >expected
(30)

where < U >expected is the expected value of the bulk velocity based on the pressure drop imposed to the
pipe flow and < U >simulation is the one given by the simulation. Positive values represent the case of an
underestimate of the bulk velocity as observed with no wall model giving EU = 55%. As shown in Fig.
6, using the two considered wall models induces an overcompensation of the mean velocity with a relative
error EU = −20%. Thus, by adjusting the values of the model coefficients, an optimal value of B ≈ 0
and A ≈ 5.8 for the log and power models, respectively, can be found with a relative error less than 1%.
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Our results show that changing the value of B from B = 5 to B = 0 improves the results. Let us note that
in fully developed turbulent flows the von Karman constant (the multiplicative constant in front of the log)
is observed to be nearly universal, whereas the additive constant B is found to vary for different flows or
types of boundary (e.g. roughness of the wall). This is consistent with the control of the flow inside the
IBM walls, which legitimates the choice for only changing the B constant.
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Figure 7: Relative error EU on the mean flow rate as a function of the wall law coefficients B and A for
the log and power models, respectively.

The flow statistics when using these coefficients are reported in Fig. 6 and discussed in section 4.3.
As shown, with the adapted wall law coefficient, it is possible to obtain accurate mean velocity profiles.
However, in terms of velocity fluctuations, the model does not improve remarkably the RMS in comparison
with the basic model. The reason is that the model is based on a constant and uniform friction velocity
without introducing any source of fluctuations. And this can justify two main features of this model:
- the need of adjusting the wall law coefficient. For instance, the simulation using the classical law yields
higher bulk velocity because it does not have enough fluctuations, the latter contributing to the mean shear
and can restore the correct mean velocity profile. In short, it is not just about controlling the bulk velocity
but also acting on the fluctuations.
- the RMS velocities remain unchanged for different values of the wall law coefficients which means that
tuning the wall law coefficient may not be the relevant approach if we are interested in reproducing the
fluctuations as well, keeping in mind that a precise agreement remains challenging if considering coarse
meshes.
Therefore, we can conclude that the model based on the mean friction velocity overestimates the bulk
velocity and needs to be corrected by an appropriate modeling for the fluctuations. Indeed, if we manage
to increase the fluctuations, the mean velocity will decrease and it will be automatically corrected with no
need of tuning the wall law coefficients. This is the objective of the stochastic wall model proposed in the
next section.

4.2 Stochastic velocity model
The previous model based on the mean friction velocity may be improved by taking into account some
fluctuations in the velocity imposed across the IBM wall thickness. Indeed, the wall region is known
to present significant fluctuations with characteristic spatial and temporal correlations resulting from the
regeneration cycle of turbulent structures as well as from the interaction with the outer flow [27, 28]. It has
been pointed out [29] that the complex flow structure is strongly correlated to the wall shear stress which
thus presents large-scale fluctuations [30, 29, 31].

To mimic the effect of the unresolved turbulent wall structures, we propose to use a stochastic field
which reproduces the fluctuations of the wall shear stress, for the definition of the solid velocity field vs
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used for IBM fluid-solid coupling term fIBM (3). Reflecting the view of the momentum cascade taking
place in the logarithmic layer as a self-similar hierarchy of wall-attached eddies [32, 33], we express the
local IBM velocity from the law of the wall, but substituting the average friction velocity by a random
friction velocity:

vs,x(r, θ, x, t) =

{
r+ u∗(θ, x, t) if | r+ | ≤ 11
sign(r+) ( 1

k
log(| r+ |) +B) u∗(θ, x, t) if | r+ | > 11

, vs,r = vs,θ = 0 (31)

while keeping the original values of k = 0.41 and B = 5.0.
Note that the length scale l∗ used to normalize r remains constant and is based on the average friction
velocity. This model is supported by the self-similarity of large scales leading the velocity profile to scale
with u∗ as reported in [30, 31].

In order to reproduce the very large deviations of the wall shear stress [29], we assume that the stochastic
field u∗(θ, x, t) presents a log-normal distribution [34, 35]. Then the variable f = ln(u∗/〈u∗〉) has a normal
distribution with average µ and variance σ2. From the expression of the moments of log-normal variables
〈(ef )q〉 = eqµ+q

2σ2/2, we impose for its average µ = −σ2/2 to have 〈ef〉 = 1 and balance the global
momentum budget. Considering that the variance of u∗ is commensurate with the square of its mean, we
introduce the ratio αh = 〈u′∗2〉/〈u∗〉2 which is related to σ as σ2 = ln(1 + αh). Indeed [36] showed that
the standard deviation of u∗ is between 15% and 40% of its mean value from experimental and DNS data
and is probably Reynolds number dependent. We also want to impose the spatial correlation lengths in
the streamwise and spanwise directions as well as the temporal correlation to account for both lifetime
of the turbulent structures and their advection by the mean flow. These spatiotemporal correlations of
the wall shear stress have been reported in [31, 30, 29]. It has been observed that the correlation lengths
in the streamwise and spanwise directions are around 1000 and 100 wall units respectively, similarly to
the near-wall flow structures [37, 38, 39, 40]. We expect the convection velocity of the wall friction to
be scale-dependent [41, 30, 42]. Indeed, the large scales of the wall friction, which are related to events
taking place in the logarithmic region have been reported to be convected at a velocity that is much faster
than the average speed in the near-wall region [30, 43], while the smaller scales which are due to the near-
wall cycle which append in the buffer layer are convected with the characteristic speed of the buffer layer
[41, 42]. Overall, the convection velocity, in wall unit, is estimated to stand in the range u+adv = 10 − 20
[30, 42].

To model the wall friction field, we generate initially a field without spatial correlations (delta-correlated
in space) but presenting a temporal correlation obtained by the resolution of a stochastic differential equa-
tion. Then, in a second step this field is convoluted with a spatial kernel to impose the adequate spatial
correlation prescribed by the shape of the convolution kernel. The last step consists in taking the exponen-
tial of the field to obtain a log-normal field.

According to this procedure, we have:

f(t, x) =

∫
G(x− x’)χ(t, x’)dx’ (32)

where the stochastic process with delta-correlation in space is noted χ and G is a convolution kernel with
x(xx, xθ) and x’(x′x, x′θ) position vectors. Note that the spatial autocorrelation of f is only set by G since
χ is delta-correlated ρf (x) = G ? G where ? denotes the convolution product.

To deem the advection, we decompose the convolution kernel into two parts: G = Gs ? δ(x − uadvt),
the second contribution representing the spatial translation due to the advection at a constant speed uadv.
We propose to model the spatial contribution Gs as:

Gs(x) = β exp

[
−
(
xx
Lcx

)2

−
(
xθ
Lcθ

)2
]

(33)
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and β is a pre-factor for normalization purpose. Lcx and Lcθ are the characteristic lengths in the streamwise
and the spanwise directions respectively and are first set to Lcx = 1000`∗ and Lcθ = 100`∗. In the current
study, we take the advection velocity in the streamwise direction with a magnitude set to uadv = 20〈u∗〉.

We consider that the field χ is the solution of a stochastic differential Langevin equation defined and
solved for each cell in the domain and at each time step:

dχ = −χ− µχ
Tc

dt+

√
2σ2

χ

Tc
dW (34)

where dW is an increment of the Wiener process, a normal variable generated for each cell at each time
step with < dW >= 0 and < dW (t, x)dW (s, x’) >= δ(t− s)δ(x-x’). In equation (34) the parameter µχ
and σ2

χ are respectively the mean and the variance of χ, while Tc corresponds to the correlation time of χ.
Here we have estimated the lifetime of the wall friction events as Tc = Lcx/uadv. From (32) the moments
of f and χ are related, therefore we impose for µχ and σ2

χ:

µχ =< f > (

∫
G(r)dr)−1 = −1

2
ln(1 + αh)(

∫
G(r)dr)−1 (35)

σ2
χ =< f ′2 > (

∫
G2(r)dr)−1 = ln(1 + αh)(

∫
G2(r)dr)−1 (36)

Taking advantage of the periodicity in the x and θ directions, we compute the convolution product in the
spectral space through the Fourier transform making the calculation much faster:

F(f) = F(Gs) exp(ik.uadvt)F(χ) (37)

with i2 = −1 and k the wave vector. The inverse Fourier transform allows us to obtain f and finally the
friction velocity field writes as follows:

u∗ =< u∗ > exp(f) (38)

We present in Fig. 8 a realization of the field obtained with this stochastic model (see also the movie
in supplementary material). We observe that the model reproduces elongated structures moving with the
prescribed velocity uadv as expected.

Figure 8: Realization of the stochastic process to predict the friction velocity field at the wall.

The main control parameter of the stochastic model is αh which imposes the magnitude of the fluc-
tuations. It is to note that αh being the variance of u∗/< u∗ >, setting αh = 0 restores the model with
constant friction velocity presented in the previous section. To study the effect of αh on the flow statistics,
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we carried out simulations of the pipe flow with an expected value of Re = 100, 000 with the mesh m2
with αh = 1, αh = 0.3 and αh = 0.07. Figure 9 shows the mean velocity and the velocity fluctuations as a
function of the distance from the wall normalized by 〈u∗〉 and `∗. As expected, the stochastic IBM velocity
is effectively acting on the velocity fluctuations. Increasing αh leads to a significant increase of the RMS
of the three components of the velocity all across the pipe section. In particular, we notice the presence of
a near-wall peak for both spanwise and wall normal components which were not present in the simulation
without model. For αh = 0.07 we observe that the profile of the RMS of the various velocity components
are in good agreement with the experimental data, expected for the first two points away from the wall.

Adding fluctuations in IBM region enhances the shear stress and consequently leads to a flattened mean
velocity profile and causes a reduction of the bulk velocity. For the largest values of αh it is clear that the
level of fluctuations is too high and gives an under-prediction of the bulk velocity, but for αh = 0.07, the
mean velocity appears to match the experimental data fairly well. This is confirmed in Fig. 10 that presents
the relative error on the mass flow rate EU defined by relation (30) as a function of αh. For αh = 0 one
recovers an overestimate of the flow rate with EU = −22%, as already obtained with the mean velocity
model (28) (see Fig. 7), while for αh = 0.07, which is consistent with the value reported in [36], the
relative error is less than 1%.
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Figure 9: Comparison of the mean and RMS velocity profiles for Re = 100, 000 obtained from the stan-
dard IBM without model (o) and with the stochastic wall model for 3 values of the αh parameter:
αh = 1 (∗), αh = 0.3 (�) and the optimal value αh = 0.07 (∗). Red symbols stand for the refer-
ence studies: ×[14], ∧, [11], �[13], +[12] (see Table 1). Top left: mean velocity; top right: axial
velocity RMS; bottom left: radial velocity RMS; bottom right: azimuthal velocity RMS.
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Figure 10: Relative error EU on the mean flow rate, as defined in (30), for the IBM with stochastic wall
model for Re = 100, 000 as a function of the model parameter αh.

4.3 Discussion
4.3.1 Model comparison

We now compare the different modeling approaches proposed in this work. The results are first presented
in Fig. 11 for the mean and RMS velocity in order to make a direct comparison between the basic IBM
wall model, the mean velocity model based on the log law and the stochastic model. Flow statistics are
reported for the value of B = 0 for the "log law" model (28) and αh = 0.07 for the " stochastic" model
(31) that reproduces for each model the correct bulk velocity for simulations on mesh m2. These models
provide the same mean velocity profile and in good agreement with previous data. The log law relation
(28) and the power law relation (29) are also plotted for comparison in blue and red lines, respectively. As
observed, the fluctuations can be adjusted thanks to the use of a stochastic approach. More specifically, the
intensity of the peaks in the near-wall region is improved: the peak is reduced in the streamwise direction
while its magnitude is increased in the radial and azimuthal directions.
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Figure 11: Comparison of the mean and RMS velocity profiles for Re = 100, 000 obtained from the
standard IBM without model (o) and with the mean velocity models (∗) and the stochastic
model (�). Top left: mean velocity; top right: axial velocity RMS; bottom left: radial velocity
RMS; bottom right: azimuthal velocity RMS. Red symbols stand for the reference studies:
×[14], ∧, [11], �[13], +[12] (see Table 1). Blue line: relation (28) for the "log law". Red line:
relation (29) "power law".

We present in Fig. 12 the same plot as shown in Fig. 11 but with semi-logarithmic scales. Clearly, the
semi-logarithmic plot outlines that both the mean velocity profile and the friction are improved with the
use of a wall model. Especially we see that the logarithmic law of the wall can be reproduced with both
the mean model and the stochastic model. Please note that because of our very coarse resolution there is
no grid point in the near-wall region, which is the reason why a wall model is required. In Fig. 12, the
vertical dashed line highlights the limit between the IBM region, αIBM > 0, and the plain fluid region,
αIBM = 0. We can notice that the points within the IBM region present a gap with the reference, whereas
the points lying outside the IBM region present a much better agreement. Overall, considering both Fig.
11 and 12 , the stochastic approach provides a better prediction of the fluctuating flow structures along the
three spatial directions.
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Figure 12: Comparison of the mean and RMS velocity, using a semi-logarithmic scale, profiles for Re =
100, 000 obtained from the standard IBM without model (o) and with he mean velocity models
(∗) and the stochastic model (�). Top left: mean velocity; top right: axial velocity RMS;
bottom left: radial velocity RMS; bottom right: azimuthal velocity RMS. Red symbols stand
for the reference studies: ×[14], ∧, [11], �[13], +[12] (see Table 1). Blue line: relation (28)
for the "log law". Red line: relation (29) "power law". The vertical dashed line marks out the
limit between the fluid and the IBM region (αIBM > 0).

This conclusion is confirmed when considering the total shear stress radial distribution. The contribu-
tions to the total shear are reported in Fig. 13 for simulations with no wall model (top-left), the mean
velocity model (top-right) and the stochastic model (bottom-left). The comparison of the total shear stress
obtained by these three approaches is also shown (bottom-right). The mean axial momentum equation can
be integrated over r and divided by the fluid density ρ to get the following decomposition:

r

R
= uxu

+
r − ν

∂U

∂r

+

− νt
∂U

∂r

+

+ L+
xr − ν ′t(

∂ux
∂r

+
∂ur
∂x

)+ (39)

where uxur is the Reynolds stress contribution, ν ∂U
∂r

is the mean viscous shear contribution, νt ∂U∂r is the
mean shear contribution resulting form the turbulent viscosity modeling, Lxr is the Leonard term and
ν ′t(

∂ux
∂r

+ ∂ur
∂x

) is the mean shear stress due to the turbulent viscosity fluctuation which is usually negligible.
We show in Fig. 13 the radial distribution of each of the above quantities normalized by u∗

2 and we
compare their sum (total normalized shear) to the expected linear function r/R according to equation 39.
As observed all the approaches are able to reproduce the expected linear radial evolution in the pipe center.
Close to the wall, the use of the stochastic model clearly improves the total shear stress balance. Note that
the improvement is mainly due to the turbulent viscosity term that is dominating for such coarse resolution.
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Figure 13: Comparison of the normalized shear between: no wall model (top-left), mean velocity model
(top-right) and the stochastic model (bottom-left) for Re = 100,000 and mesh m2. Comparison
between these three approaches (bottom-right). The red line represents the linear variation r/R
for the expected total shear (left side of the equation 39).

4.3.2 Sensitivity of model parameters to grid resolution and Reynolds number

The previous analysis has been conducted for a selected Reynolds number Re = 100, 000 and a given grid
resolution (mesh m2). Each model has been tuned to provide the correct bulk velocity and optimized pa-
rameters have been proposed: B = 0, A = 5.8 and αh = 0.07 for the log law model, the power law model
and the stochastic model, respectively. A similar investigation can be conducted for different Reynolds
numbers and grid resolutions. The objective is now to discuss the effects of both the grid resolution and
the pipe Reynolds number on the optimized values for B, A and αh. For that purpose, numerical simu-
lations are carried out for the three Reynolds numbers Re = 50, 000, 100, 000 and 500, 000 and the three
meshes m1,m2 and m3. For each case, each model is considered and the corresponding model parameter
(B, A or αh) is adjusted in order to obtain the correct bulk velocity (with a relative difference on EU less
than 1%), while imposing a constant value to the mean pressure drop as specified in section 4.
Figure 14 (left) reports the evolution of the optimized values ofA andB as a function of the grid resolution
for the three Reynolds numbers. Both A and B have to be increased when the mesh is getting coarser,
because an underestimate of the bulk velocity is enhanced resulting in a stronger forcing required inside
the IBM wall region. A linear evolution with the grid size is observed for both A and B. The starting point
of the linear evolution for A (power law) needs to be adjusted for each Reynolds number while the linear
fit of B (log law) is unchanged for the three different Reynolds numbers, outlining the relevance of using
the log law modeling based on the analytical solution close to the wall. As shown in Fig. 14, the evolution
of A can be simply described using the relation

A = 20.5
∆

R
+X(Re) (40)
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with the evolution of X(Re) versus Re reported in Fig. 14 (right). The evolution of B can be described
using the relation

B = 37.6
∆

R
− 2.23 (41)

Note that while the value of the coefficientB becomes negative for sufficiently fine mesh, the IBM velocity
vs,x for r+ > 11 remains positive. Indeed, for consistency the IBM velocity needs to tend to 0 as the mesh
is refined.
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Figure 14: Optimal values for A and B as a function of the mesh resolution R/∆ for different Reynolds
numbers Re (left). Lines stand for the linear fits 40 and 41. Evolution of X(Re) (see relation
40) (right).

The variation of αh (stochastic model) is reported in Fig. 15. αh is found to decrease with the grid
spacing. In fact, as the mesh gets coarser, the simulated bulk velocity is decreased and wall friction has to
be reduced. This can be directly controlled with a reduction of the magnitude of the fluctuations imposed
inside the IBM wall region. However, the same order of magnitude αh = O(0.1) is observed for the
different Reynolds numbers and grid resolutions considered. A first rough estimate of the evolution of αh
can be described with

αh = 2.5 10−4
(

∆

R

)−2
(42)

for the range of Reynolds number we considered.
The stochastic model is based on an instantaneous log law description (B = 5 being imposed) of the

velocity inside the IBM wall thickness (see relation (31)). As shown above changingB when using the log
model only and αh when using the stochastic forcing (B being set fixed) have both a clear impact on the
bulk velocity. A better optimization of the combination of B and αh in the stochastic model may certainly
provide a better description of the fluctuation level and peak location.
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4.3.3 Flow streaks

The turbulent flow fields obtained with the different approaches are now compared. The Reynolds number
is Re = 100, 000, the mesh is m2 and numerical simulations with the optimized parameters (B = 0,
A = 5.8 and αh = 0.07) are compared to the basic IBM wall forcing. Figure 16 represents an instantaneous
snapshot of the axial fluctuations u′x normalized by the bulk velocity < U > at a section along the pipe
axis. The fluctuations seem to have almost the same structures in the four cases. No noticeable difference
can be observed and a zoom close to the wall is proposed in Fig. 17 where u′x/ < U > is plotted at a
distance of 100 `∗ away from the wall.

Figure 16: Normalized instantaneous axial fluctuations u′x/ < U >. (a) basic IBM wall forcing, (b) mean
velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.

Figure 17 clearly points out a difference in the streaks organization close to the wall. As shown, basic
IBM forcing, log law and power law models provide similar fluctuation structures close to the wall. The
streaks in those cases are somehow damped yielding to a reduced turbulence intensity. On the opposite, the
stochastic model enhances the flow fluctuations and typical high-speed and low-speed streaks are observed
in Fig. 17 (d).
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Figure 17: Streaks observation. Normalized instantaneous axial fluctuations u′x/ < U > at the distance
100`∗ away from the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c)
mean velocity model: power law, (d) stochastic model.

We also compare the impact on the LES resolution of the different IBM wall models. For that purpose
the total viscosity νtotal = ν + νT is considered. Figure 18 reports an instantaneous field of νtotal made
dimensionless by the fluid cinematic viscosity ν in a pipe section. As shown, the intensity of νt is enhanced
when using the stochastic model. From a LES modeling point of view, this can be explained by the induced
effect of the fluctuations on the strain rate tensor and the local Smagorinsky coefficient C used to calculate
the sub-grid viscosity νT .

Figure 18: Normalized total viscosity νtotal/ν: (a) basic IBM wall forcing, (b) mean velocity model: log
law, (c) mean velocity model: power law, (d) stochastic model.

4.3.4 Effect of the models on the pressure field

We finally discuss the effect of the different models on the pressure. For that, we plot the mean and RMS
values of the pressure for Re = 50, 000 and compare them to a previous DNS performed at Re = 37, 700
[44]. Figure 19 represents the pressure normalized by ρu∗2/2 as a function of the distance from the wall.
The mean pressure profile is reported by considering the mean wall pressure as the reference pressure.
We can see in the figure that our IBM-LES simulations without and with the mean velocity model give
comparable evolution to the reference DNS for both the mean and RMS profiles of the pressure. However,
the stochastic model with the optimal αh as determined previously with the criteria to reproduce the cor-
rect bulk velocity introduces higher pressure fluctuations. Figure 20 shows the normalized instantaneous
pressure field for each case at the distance 100l∗ away from the wall. A different distribution and higher
extreme values for the pressure are observed with the stochastic model, this effect being enhanced when
increasing the value of αh. This behavior is attributed to the response of the Poisson solver because the
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imposed local velocity in the IBM forcing is not divergence free. Increasing αh, the stochastic forcing
both in time and in space leads the solver to produce large pressure fluctuations.
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Figure 19: Pressure statistics forRe = 50, 000 compared to the reference DNS [44] atRe = 37, 700. (left)
mean profile, (right) RMS profile.

Figure 20: Normalized instantaneous pressure field for Re = 50, 000 at 100l∗ away from the wall. (a)
Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power
law, (d) stochastic model. Note that the pressure range has been adjusted in (d).

Coming back to our stochastic model, two parameters are controlling the imposed characteristic length
and time of the model, namely, Tc and Lcx. Simulations (not reported here) considering a fixed αh have
revealed that acting only on Tc does not influence the pressure response, while using higher length correla-
tion Lcx, the instantaneous pressure field, the mean pressure and the RMS values are improved compared
to the reference case. This is illustrated via the pressure statistics in Fig. 19 and the pressure fields in Fig.
21 that compare the normalized instantaneous pressure field when taking Lcx = 2570l∗ and Lcx = 6630l∗

instead of Lcx = 1000l∗ used for the simulation reported in Fig. 20.d. However the bulk velocity is
then overestimated and the error on the bulk velocity surpasses 1%. Increasing the correlation length Lcx
decreases the pressure fluctuations while increasing the bulk velocity, and if we want to recover (i.e. de-
crease) the mean velocity, we have to increase αh which directly induces again the increase of the pressure
fluctuations level. Finding the couple (αh, Lcx) which can reproduce both the correct bulk velocity and
the pressure fluctuation level can be performed but it needs some iterations, reducing the interest of the
modeling compared to the use of a mean velocity. This is the reason why we consider that a future devel-
opment of this work consists of developing a stochastic divergence-free IBM forcing model while keeping
αh as the only adjustable model parameter.
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Figure 21: Normalized instantaneous pressure for Re = 50, 000 at 100l∗ away from the wall using the
stochastic model αh = 0.1. (a) Lcx = 2570l∗, (b) Lcx = 6630l∗, to be compared to Fig.20.d
where Lcx = 1000l∗.

5 Conclusion
A hybrid IBM-LES method has been presented addressing the challenge to simulate high-Reynolds num-
ber pipe flows on coarse Cartesian meshes. Firstly, the IBM method is used to simulate a laminar pipe
flow and numerical results demonstrate a second order convergence to the exact solution. By introducing
the correct solid velocity condition in the forcing term across the IBM wall thickness, the convergence
is remarkably improved and the method underlines its efficiency. Then, turbulent pipe flows of Reynolds
numbers in the range 50,000 to 500,000 are considered coupling the IBM method with the LES solver.
As expected, the use of a coarse grid resolution does not allow to reproduce both the mean bulk veloc-
ity and the fluctuations. Extending the IBM wall modeling introduced for the simulation of the laminar
pipe flow, an IBM wall forcing scheme is proposed based on the classical turbulent wall laws, namely the
log-law and the power-law, able to predict the mean velocity profile. We show that adjusting the control
parameters of these two models allows recovering the correct bulk velocity and mean velocity profiles.
With the aim of improving the fluctuations and spatial distribution of streaks inside the pipe, the log law
modeling is coupled to a stochastic wall model to generate an unsteady and non-uniform forcing within
the IBM wall thickness. The level of velocity fluctuations is then improved close to the wall approaching
the reference data. The effect of both the Reynolds number and grid resolution are then discussed and
empiric correlations for the model parameters are established. Discussing the response of the pressure to
the stochastic forcing, we conclude that further development of the stochastic modeling for the velocity in
the IBM wall region are required, in particular a divergence-free stochastic velocity forcing should make
the prediction of the velocity and pressure RMS in the near-wall region more accurate. The main interest
of the hybrid IBM-LES presented here is to demonstrate that simulations coupling LES and IBM can be
performed for highly turbulent pipe flows with a coarse Cartesian resolution through a wall model. This is
of great interest for the simulation of high Reynolds number flows not only in simple geometries but also
in complex geometries that can be described in the framework of IBM approach thanks to the use of an
appropriate IBM function to define the domain. Indeed, owing to the universality of turbulent near-wall
flows, we believe that this method is much more general. Specifically, the approach should be applicable
to all fully developed turbulent flows (e.g. plan channel flows, boundary layers) without significant mod-
ifications. Concerning flows in more complex geometries, it is likely that the model should be enriched
to account for non-equilibrium effects such as adverse pressure gradients, 3D effects, boundary layer de-
tachments . . . However the present work is a first step towards building a more general approach. Such
generalization to more complex flows is currently being investigated and we recently considered the flows
around an axial swirler [20, 21].
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