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A B S T R A C T   

This work presents the development and validation of an algorithm capable of predicting the equivalence ratio 
and the ammonia fraction of premixed ammonia-methane-air flames using only measured OH*, NH*, CN*, and 
CH* chemiluminescence intensities as input. This machine learning algorithm relies on Gaussian process 
regression (GPR). It was trained and validated with data previously recorded in laminar flames, and it was then 
tested with new data recorded in more practical, turbulent swirl flames. The algorithm performs well for laminar 
and turbulent flames for wide ranges of equivalence ratio (0.80 ≤ ϕ ≤ 1.20) and ammonia fraction (0 ≤ XNH3 ≤

0.60). For turbulent swirl flames, the prediction errors in the equivalence ratio and on the ammonia fraction are 
smaller than 0.05, except for a very small subset of operating conditions where the error is up to 0.10. Additional 
tests were performed by adding NO* and CO2* to the list of inputs, but this did not improve the predictions. The 
GPR algorithm was then benchmarked against linear and polynomial regressions and a more conventional way of 
inferring flame properties from chemiluminescence measurements, namely the ratio-based method. This method 
relies only on CN*/NO* and NH*/CH* ratios to predict the equivalence ratio and the ammonia fraction. Its 
prediction errors were often larger than 0.15, which is significantly worse than that of the GPR algorithm. 
Consequently, this work constitutes a solid basis for the future development of non-intrusive sensors to monitor 
practical ammonia-methane-air flames.   

1. Introduction 

Research on ammonia flames is accumulating a lot of momentum 
(see for example review articles [1–6]) and there is little doubt that the 
deployment of practical devices fueled with ammonia for power and 
mobility applications is forthcoming [7–9]. As a first step towards total 
decarbonization, or to offset ammonia’s weak reactivity [1], blends of 
ammonia and conventional hydrocarbons such as methane are likely to 
be used in some applications (see for example [10–16]). Previous 
research established that the low flame speed and the propensity to emit 
nitrogen oxides (NOx) are two potential issues that need to be addressed 
in combustors fueled with ammonia-methane blends [1,4,8,13,17-22]. 
For premixed flames, data from these studies and many others show that 
the equivalence ratio and the ammonia fraction are first-order 

parameters for flame speed and NOx emissions. Consequently, sensors 
capable of monitoring the equivalence ratio and the ammonia fraction in 
premixed ammonia-methane-air flames are desirable. 

To avoid intrusiveness and to allow implementation in practical 
systems with limited optical access, chemiluminescence-based optical 
sensors may be used. Previous research showed that chemiluminescence 
can be recorded and analyzed to infer important flame properties. For 
example, the ratio of OH* to CH* chemiluminescence intensities is a 
suitable surrogate for the equivalence ratio in methane-air flames (e.g., 
[23–28]). In biogas-air flames [29,30], the OH*/CO2* ratio informs on 
the CO2 concentration and the formation of nitrogen oxide can be 
detected in flames that burn nitrogen compounds such as ammonia by 
monitoring the chemiluminescence intensities of NH* or CN* [31]. 
There are many more examples of applications of chemiluminescence in 
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lab-scale or practical flames, but they cannot be all listed here. Studies 
published before 2010 are reviewed in [28]. 

For premixed ammonia-methane-air flames, Zhu et al. [32] 
measured the chemiluminescence spectrum between 200 and 450 nm 
for wide ranges of equivalence ratio and ammonia fraction and high
lighted the potential of chemiluminescence to monitor such flames (for 
simplicity, the light spontaneously emitted by the flame is here called 
chemiluminescence, even though a fraction of the excited radicals can be 
formed via thermal excitation). This potential comes from the large 
number of excited radicals that are active in this spectral range, namely 
NO*, OH*, NH*, CN*, CO2*, and CH*. The chemiluminescence of flames 
featuring ammonia in the fuel blend was also explored in [19,33-44] 
among others. Fig. 1, adapted from [32], shows the chemiluminescence 
intensity measured for these six excited radicals as a function of the 
equivalence ratio (ϕ) for different ammonia fractions (XNH3). Measure
ments were made in laminar twin flames stabilized with a counterflow 
burner (strain rate of a = 150 /s), and the chemiluminescence signal was 
spatially integrated across the flame. The chemiluminescence intensity 

depends on the equivalence ratio and the ammonia fraction for all six 
excited radicals, and the trends are quantitatively different. The curves 
of the chemiluminescence intensity vs. equivalence ratio are all 
bell-shaped, but the equivalence ratio at the peak varies with the excited 
radical and ammonia fraction. The trend of chemiluminescence intensity 
vs. ammonia fraction is monotonic for OH*, CO2* and CH*, but it is 
non-monotonic for NO*, NH*, and CN*. 

After testing all possible ratios of two excited radicals, Zhu et al. [32] 
found that CN*/OH* and CN*/NO* ratios are possible surrogates for the 
equivalence ratio and that the NH*/CH* ratio can be used to infer the 
ammonia fraction. However, these ratios are only useful in specific 
ranges of equivalence ratio and ammonia fraction, and they provide a 
level of accuracy that may be insufficient in some applications. In [32], 
the analysis was only made with ratios of two excited radicals, which is a 
small subset of possible surrogates. 

More complex approaches that combine multiple spectral contribu
tions to predict relevant flame properties have been tested in methane- 
air and methane-hydrogen-air flames [45–48]. The earliest effort that 

Fig. 1. Measured chemiluminescence intensities as a function of the equivalence ratio for different ammonia fractions in premixed laminar twin flames. Adapted 
from [32]. 
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the authors are aware of is that of Ballester et al. [45] who successfully 
inferred the hydrogen fraction, the equivalence ratio, and NOx and CO 
emissions in premixed methane-hydrogen flames using chem
iluminescence and an artificial neural network (ANN). Later, Tripathi 
et al. [46] showed that it is also possible to accurately infer the equiv
alence ratio of premixed methane-air flames using chemiluminescence 
in the 250 to 650 nm range along with a partial least-square regression 
approach. Using proper orthogonal decomposition (POD) of chem
iluminescence spectra followed by a reduced-order model employing the 
kriging method, Yoon et al. [47] achieved yet a better prediction of 
equivalence ratio, as well as of pressure. The useful properties of this 
method are that the most important spectral features are automatically 
extracted, and that minimal calibration is required. 

To the best of the authors’ knowledge, these types of chem
iluminescence- and machine learning-based methods were never tested 
in premixed ammonia-methane-air flames for which the chemilumi
nescent signature is much richer. This is the scope of the present study. 
The two main objectives are:  

1 Demonstrate that machine learning regression can uncover com
plex but useful relationships between the chemiluminescence in
tensities from the six excited radicals and the equivalence ratio 
and/or the ammonia fraction.  

2 Verify if these relationships can be generalized to turbulent swirl 
flames that are more representative of practical flames. 

2. Methods 

2.1. Machine learning regression 

In this study, a Gaussian Process Regression (GPR) algorithm [49] 
was used to predict the equivalence ratio and the ammonia fraction of 
ammonia-methane-air flames using chemiluminescence intensities of 
the NO*, OH*, NH*, CN*, CO2*, and CH* excited radicals. To train and 
validate this supervised machine learning algorithm, the data recorded 
by Zhu et al. [32] in laminar twin flames were used. The spatially in
tegrated chemiluminescence intensities measured in [32] were already 
normalized, which typically helps convergence and improves accuracy. 
Data were further pre-processed for the present study by taking the ratio 
X*/OH*, where X* refers to NO*, NH*, CN*, CO2*, or CH*. Ratios are 
needed to cancel effects of the flame surface area and, in turn, enable the 
application of the algorithm to other flame geometries (see Section 3.3). 
Excited radical OH* was chosen for normalization because it is the only 
measured excited radical that is present in significant quantities in all 
flames of interest, namely ammonia-methane-air, methane-air, or 
ammonia-air flames. Therefore, the GPR algorithm features up to five 
inputs (any combination of NO*/OH*, NH*/OH*, CN*/OH*, 
CO2*/OH*, and CH*/OH*) and two outputs (ϕ and XNH3). 

The dataset from [32] includes 214 data points, corresponding to 
wide ranges of equivalence ratio (0.60 ≤ ϕ ≤ 1.30), ammonia fraction (0 
≤ XNH3 ≤ 0.80), and strain rate (80 ≤ a ≤ 300 /s). GPR is well suited to 
datasets of this dimensionality and size. In addition, GPR is probabilistic 
by design, meaning that it supposes that the true value is normally 
distributed about the mean predicted value. Therefore, it provides an 
estimate of the corresponding standard deviation, which can be used to 
infer the confidence interval for its predictions. Note that other types of 
machine learning regression methods exist, but those tested by the au
thors (e.g., ordinary least squares and lasso linear regression or support 
vector machines regression) did not perform as well as GPR for this 
application. 

The GPR algorithm was implemented in scikit-learn [50], an 
open-source library of machine learning tools based on the Python 
programming language. Application of GPR requires specifying a 
covariance kernel function, and the scikit-learn library includes 
numerous options. After multiple tests, the rational quadratic kernel was 

found to be a suitable option for the present dataset. It is simply 
parameterized by a length-scale hyperparameter l and a scale mixture 
hyperparameter α that can be varied and optimized using functions built 
in scikit-learn to achieve the right balance between underfitting and 
overfitting. The rational quadratic kernel krq is given by: 

krq
(
xi, xj

)
=

(

1 +
d
(
xi, xj

)2

2αl2

)− α

(1)  

where xi and xj are datapoints and d(xi, xj) is the Euclidean distance 
between these datapoints. In GPR, multiple kernels can be combined by 
addition or by multiplication. Here, to improve numerical stability, a 
white kernel kw was simply added to the rational quadratic kernel to 
yield k = krq + kw. The white kernel is only parametrized by a noise level 
n as follows: 

kw
(
xi, xj

)
= n if xi = xj else 0 (2) 

Similar performance was found using a Matern kernel instead of a 
rational quadratic kernel, and both the rational quadratic and Matern 
kernels slightly overperformed a radial basis kernel. The reader is 
referred to [51] for more details about GPR. 

To train the GPR algorithm, 75% of the dataset was used, corre
sponding to 160 data points. The 160 data points were randomly 
assigned by the train_test_split function built in scikit-learn after a seed 
number was prescribed. Different seed numbers were used to assess the 
universality of the optimized hyperparameters (see Section 3.1). The 
GPR algorithm was extended to also include the possibility to introduce 
random error into the dataset, which was used to quantify the robustness 
of the method to the uncertainty of chemiluminescence intensity mea
surements (see Section 3.4). The quality of the regression for any given 
sets of hyperparameters and inputs was quantified by the coefficient of 
determination R2 of the regression, applied to the validation dataset, i.e., 
the remaining 54 (25%) data points from Zhu et al. [32]. 

Once the hyperparameters and inputs were optimized, the perfor
mance of the prediction of equivalence ratio and ammonia fraction by 
the GPR algorithm was quantified using a test dataset that was not used 
for training or validation. The test dataset was gathered via measure
ments of chemiluminescence in premixed turbulent swirl ammonia- 
methane-air flames, which were conducted specifically for this study. 
These measurements are detailed in Section 3.3. 

The GPR algorithm, including the data reading and pre-processing, 
regression, and plotting sections, is available as supplementary mate
rial. The training, validation, and test datasets are also available as 
supplementary material. 

2.2. Experimental setup 

To collect the test dataset, the chemiluminescence spectra of pre
mixed, turbulent swirl, ammonia-methane-air flames were recorded at 
atmospheric pressure. These flames were stabilized in a generic, lab- 
scale burner (cf. Fig. 2) similar to that used and described in detail in 
[52–54]. A perfectly premixed mixture of ammonia, methane, and air 
was supplied to the plenum of the burner and was then fed in a radial 
swirler through a converging nozzle. The swirl number was S = 0.4. The 
reactants then flowed into a cylindrical combustion chamber made of 
quartz (70 mm in diameter and 200 mm in length) through an 18-mm 
diameter nozzle. Different equivalence ratios (0.80 ≤ ϕ ≤ 1.20) and 
ammonia fractions (0 ≤ XNH3 ≤ 0.60) were tested, and the bulk velocity 
through the nozzle was set to 5 m/s. The 29 different conditions that 
were tested corresponded to slightly different bulk Reynolds numbers, 
but these were always in the order of Re ≈ 6000. The corresponding 
thermal powers varied between P = 2.5 and 4.8 kW. 

The gas mass flow rates were prescribed with digital mass flow 
controllers (Bronkhorst EL-FLOW F-200 series) that were calibrated in- 
house with gas flow calibrators (MesaLabs FlexCal series). This led to 
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an accuracy better than 1% for each flow rate and, in turn, to maximum 
errors in prescribing equivalence ratio, ammonia fraction, and bulk 
velocity of 2, 2, and 1%, respectively. The gasses were mixed rapidly 
downstream of the mass flow controllers and were allowed to fully mix 
while flowing through a 3-m long, 9.5-mm diameter plastic tube before 
entering the burner’s plenum. 

The time-average spectrum of flame chemiluminescence was recor
ded for the 29 operating conditions with a UV-capable, bench spec
trometer (Avantes AvaSpec-ULS3648), also shown in Fig. 2. Light 
emitted by the flame was collected with a 50.8-mm diameter, 50.8-mm 
focal distance, UV-enhanced, off-axis parabolic mirror (Thorlabs 
MPD229-F01). This parabolic mirror was mounted 500-mm away from 
the flame, corresponding to roughly 10× its focal distance, which 
allowed to focus the light emitted by the flame into the 400-μm core of 
an optical fiber (Avantes FC-UVIR400–2). A mirror was chosen instead 
of a lens to collect and focus the light because of its achromatic nature. 
Although some of the flames were slightly taller than 50.8 mm, this 
strategy allowed to accumulate light from almost all regions of the 
flame. The spectrometer had a spectral resolution of 0.7 nm and its X- 
and Y-axes were calibrated with a mercury lamp (Teledyne Intellical) 
and a deuterium lamp (Hamamatsu L6565), respectively. The spec
trometer’s integration time was set to 9 s in all cases and each spectrum 
was the average of 10 replicates. 

Fig. 3 shows an example of the chemiluminescence spectrum be
tween 220 and 450 nm measured for ϕ = 1.0 and XNH3 = 0.50. Con
tributions from the six most active excited radicals, namely NO*, OH*, 
NH*, CN*, CO2*, and CH*, are clearly visible. Like in [32,42,43], the 
broadband background was determined using anchor points (orange 
circles in Fig. 3) and interpolations (orange dashed lines in Fig. 3) so that 
contributions attributed only to specific excited radicals could be 
quantified. To obtain the chemiluminescence intensity from each radical 
and for each operating condition, the background-removed spectrum 

was integrated over a specific range, as shown by the different colors in 
Fig. 3. For each radical, the spectral range for integration was chosen to 
avoid interference between species, and the reader is referred to [32] for 
more details. Ranges are similar but not strictly identical to those chosen 
to post-process spectra in [32] because the spectrometer used in this 
study is different and it features a slightly different spectral resolution. 
Using the chemiluminescence intensity for each excited radical X*, the 
ratio X*/OH* is then obtained. 

Fig. 2. Schematic of the experimental setup.  

Fig. 3. Chemiluminescence spectrum measured in a premixed swirl ammonia- 
methane-air flame with ϕ = 1.0 and XNH3 = 0.50. Color labels show features 
assignment to different excited radicals, electronic transitions, and vibrational 
bands. The orange dashed line show the broadband background interpolated 
between anchor points (orange circles). Colors show the spectral bands over 
which the contribution from each excited radical is integrated to obtain its 
chemiluminescence intensity. 
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3. Results and discussion 

3.1. Training and validation of the GPR algorithm with laminar flames 

Fig. 4 shows the equivalence ratio (a) and the ammonia fraction (b) 
predicted by the GPR algorithm as a function of their true values after 
the algorithm was trained with 75% of the laminar flame data from Zhu 
et al. [32]. All excited radicals were used, leading to 5 inputs. The blue 
squares correspond to the 160 training data points, and the red circles 
represent the 54 validation data points. For the equivalence ratio, the 
coefficient of determination for the regression on the validation data 
points is R2 = 0.990, suggesting that the prediction was successful. A 
similar level of performance was obtained for the ammonia fraction, 
with R2 = 0.993. To achieve this, the optimum GPR hyperparameters 
were l = 0.51, α = 0.15, and n = 2.3 × 10− 4 for the equivalence ratio and 
l = 0.29, α = 3.00, and n = 1.0 × 10− 4 for the ammonia fraction. Even 
though hyperparameters are the result of an automatic optimization by 
the GPR algorithm, it is useful to verify if their values are reasonable 
considering the data at hand. From Eq. (1), it is seen that the length scale 
l is used to normalize the Euclidian distance between datapoints d. 
Therefore, a value l = 0.51 is consistent with values of excited radical 
ratios that span between 0.002 and 0.656. Authors are not aware of any 
limitations or guidelines regarding the value of the mixture scale 
hyperparameters α. The white noise of level n acts as a numerical sta
bilizer and its optimal value is hard to relate to the input data using 
physical arguments. However, one may take comfort in noticing that a 
value n = 2.3 × 10− 4 is much smaller than potential measurements er
rors (on the order of 1 × 10− 2) on the output data with which it shares 
dimensions, namely equivalence ratio or ammonia fraction. This con
firms that injection of noise only serves its purpose of numerical stabi
lizer instead of also somewhat compensating for variability due to 
potential measurements errors. 

For Fig. 4, training and validation were achieved with a random 
assignment of the respective 160 and 54 data points and it is useful to 
examine how different the prediction’s performance would be for a 
different assignment. This was achieved by trying 100 other seed 
numbers in scikit-learn’s train_test_split function while keeping the same 
hyperparameters. The mean, coefficient of variation (COV), minimum, 
and maximum values of the regression coefficients are shown in Table 1. 
The coefficients of variation are below 0.5% for the equivalence ratio 
and for the ammonia fraction, which suggests that the regression’s 
performance is not very sensitive to the choice of the training dataset. 

3.2. Optimization of the inputs 

Initially, all six excited radicals were used as inputs for the GPR al
gorithm. This means that, to use this algorithm for equivalence ratio and 
ammonia fraction predictions, all six exited radicals must be measured, 
which could be impractical or too expensive in some applications. 
Therefore, the GPR algorithm was also trained and challenged with a 
reduced number of inputs/excited radicals. Fig. 5 shows the equivalence 
ratio (a) and the ammonia fraction (b) predicted by the GPR algorithm as 
a function of their true values if the NO* excited radical is excluded, i.e., 
if the NO*/OH* ratio is no longer used as an input, leading to 4 inputs. 
The NO* excited radical was excluded first because its contribution to 
the chemiluminescence spectrum is the deepest in the UV, meaning that 
it is the hardest to measure. Figs. 4 and 5 are very similar, and only the 
coefficient of determination of the regression on equivalence ratio is 
marginally degraded if NO* is excluded. The optimal hyperparameters 
are different if NO* is excluded: l = 0.40, α = 0.29, and n = 2.9 × 10− 4 

for the equivalence ratio and l = 0.24, α = 0.74, and n = 1.0 × 10− 4 for 
the ammonia fraction. Table 2 shows the corresponding R2 statistics for 
the 100 different seed numbers of the training dataset. 

Based on Figs. 4 and 5 and Tables 1 and 2, it is concluded that 
removing NO* from the inputs does not lead to significant degradation 
of the GPR algorithm’s performance, yet it reduces the complexity and 
cost of the associated measurements. 

Fig. 6 shows the prediction by the GPR algorithm if the NO* and 
CO2* excited radicals are both excluded, leading to 3 inputs. Indeed, 
Fig. 1 shows that trends of CO2* with equivalence ratio and ammonia 
fraction are similar to those of OH*, suggesting that CO2* information 
could be redundant. Again, Fig. 6 is hardly distinguishable from Figs. 4 
and 5, meaning that removing both NO* and CO2* from the inputs does 
not significantly degrade the GPR algorithm’s prediction performance. 
The optimal hyperparameters if NO* and CO2* are excluded are l = 0.39, 
α = 0.30, and n = 3.0 × 10− 4 for the equivalence ratio and l = 0.27, α =
0.55, and n = 1.3 × 10− 4 for the ammonia fraction. Table 3 shows the 
corresponding R2 statistics for the 100 different training dataset seed 

Fig. 4. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the training (blue squares) and validation (red circles) 
data points and for the optimum hyperparameters l = 0.51, α = 0.15, and n =
2.3 × 10− 4 (equivalence ratio) and l = 0.29, α = 3.00, and n = 1.0 × 10− 4 

(ammonia fraction). All excited radicals were used as inputs (i.e., inputs are 
NO*/OH*, NH*/OH*, CN*/OH*, CO2*/OH*, and CH*/OH*). Coefficients of 
determination in red correspond to the regressions on the validation 
data points. 

Table 1 
Mean, coefficient of variation (COV), minimum, and maximum values of the 
coefficient of regression R2 for hyperparameters l = 0.51, α = 0.15, and n = 2.3 
× 10− 4 (equivalence ratio) and l = 0.29, α = 3.00, and n = 1.0 × 10− 4 (ammonia 
fraction) if all excited radicals are used as inputs (i.e., inputs are NO*/OH*, 
NH*/OH*, CN*/OH*, CO2*/OH*, and CH*/OH*).   

Mean R2 COV R2 Min R2 Max R2 

ϕ 0.992 0.4% 0.980 0.998 
XNH3 0.996 0.2% 0.991 0.999  

Fig. 5. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the training (blue squares) and validation (red circles) 
data points and for the optimum hyperparameters l = 0.40, α = 0.29, and n =
2.9 × 10− 4 (equivalence ratio) and l = 0.24, α = 0.74, and n = 1.0 × 10− 4 

(ammonia fraction). The NO* excited radical was excluded from the inputs (i.e., 
inputs are NH*/OH*, CN*/OH*, CO2*/OH*, and CH*/OH*). Coefficients of 
determination in red correspond to the regressions on the validation 
data points. 
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numbers. 
A similar excercise was performed by further excluding the 

remaining excited radicals, one by one. It was found that excluding any 

of the OH*, NH*, CN*, or CH* radicals leads to significant degradation of 
the GPR algorithm’s prediction performance. This is shown in Fig. 7 that 
plots the coefficients of regression obtained with optimal hyper
parameters as a function of the number of species used as inputs. When 
three species are considered, i.e., two ratios are used as inputs, the co
efficients of regression are noticeably smaller than those obtained if only 
NO* and CO2* are excluded from the inputs. Perhaps the only exception 
is the combination of excited radicals OH*, NH*, and CN* that exhibits a 
good prediction of the ammonia fraction. However, this combination 
predicts equivalence ratio poorly. No combination of two excited radi
cals yields satisfying predictions. Therefore, the preferred algorithm for 
this application was found to be the one trained with three inputs, i.e., 
four excited radicals, specifically NH*/OH*, CN*/OH*, and CH*/OH* 
with the following hyperparameters: l = 0.39, α = 0.30, and n = 3.0 ×
10− 4 for the equivalence ratio and l = 0.27, α = 0.55, and n = 1.3 × 10− 4 

for the ammonia fraction. 
To further assess the robustness of the GPR algorithm, the optimal 

hyperparameters were identified for 100 different training dataset seed 
numbers. Statistics are shown in Table 4. It is challenging to qualify if 
the COVs reported in Table 4 are small or large. However, given the 
sensitivity of the GPR algorithm to its hyperparameters for the data at 
hand, these variations were found to be small enough that it can be 
concluded that the regression performance is not very sensitive to the 
choice of the training dataset. To illustrate, training with the reference 
dataset (the one used for Fig. 6 and Table 3) using the hyperparameters 
that are the furthest away from those optimized for this dataset leads to 
coefficients of regression that remain large, namely R2 = 0.977 for the 
equivalence ratio and R2 = 0.985 for the ammonia fraction. This con
firms that the GPR algorithm is robust because its performance is not 
very sensitive to the choice of the training dataset and hyperparameters. 

3.3. Test of the GPR algorithm with turbulent swirl flames 

So far, the GPR algorithm was only trained and validated with 
laminar flame data and it is important to test if it generalizes to new 
data, not included in the database from Zhu et al. [32]. This is also an 
opportunity to challenge predictions of equivalence ratio and ammonia 
fraction for more practical flames; in this case the premixed, turbulent 
swirl, ammonia-methane-air flames described in Section 2. Measure
ments in the laminar flames [32] and in the turbulent swirl flames were 
made with different spectrometers, featuring different spectral resolu
tions and sensitivities. Therefore, a 1-point calibration procedure was 
required to ensure that the turbulent swirl flame data were compatible 
with the GPR algorithm trained with laminar flame data. This was 
achieved by multiplying each X*/OH* ratio by a constant to ensure that 
this ratio was strictly the same for laminar flames and for turbulent swirl 
flames for one arbitrary operating condition, namely ϕ = 1.0 and XNH3 
= 0.50. These constants were 1.89, 1.17, and 1.17 for NH*/OH*, 
CN*/OH*, and CH*/OH* ratios, respectively. Note that this 1-point 
calibration procedure would not have been needed if laminar flames 
and turbulent swirl flames measurements had been conducted with the 
same optical setup. 

Fig. 8 shows the prediction by the GPR algorithm for the 29 data 

Table 2 
Mean, coefficient of variation (COV), minimum, and maximum values of the 
coefficient of regression R2 for hyperparameters l = 0.40, α = 0.29, and n = 2.9 
× 10− 4 (equivalence ratio) and l = 0.24, α = 0.74, and n = 1.0 × 10− 4 (ammonia 
fraction) if NO* is excluded from the inputs (i.e., inputs are NH*/OH*, CN*/ 
OH*, CO2*/OH*, and CH*/OH*).   

Mean R2 COV R2 Min R2 Max R2 

ϕ 0.989 0.4% 0.976 0.996 
XNH3 0.996 0.2% 0.988 0.999  

Fig. 6. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the training (blue squares) and validation (red circles) 
data points and for the optimum hyperparameters l = 0.39, α = 0.30, and n =
3.0 × 10− 4 (equivalence ratio) and l = 0.27, α = 0.55, and n = 1.3 × 10− 4 

(ammonia fraction). The NO* and CO2* excited radicals were excluded from the 
inputs (i.e., inputs are NH*/OH*, CN*/OH*, and CH*/OH*). Coefficients of 
determination in red correspond to the regressions on the validation 
data points. 

Table 3 
Mean, coefficient of variation (COV), minimum, and maximum values of the 
coefficient of regression R2 for hyperparameters l = 0.39, α = 0.30, and n = 3.0 
× 10− 4 (equivalence ratio) and l = 0.27, α = 0.55, and n = 1.3 × 10− 4 (ammonia 
fraction) if NO* and CO2* are excluded from the inputs (i.e., inputs are NH*/ 
OH*, CN*/OH*, and CH*/OH*).   

Mean R2 COV R2 Min R2 Max R2 

ϕ 0.988 0.4% 0.976 0.995 
XNH3 0.995 0.2% 0.991 0.998  

Fig. 7. Coefficients of determination of the regression on the validation data 
points as a function of the number of excited radicals used as inputs. 

Table 4 
Mean, coefficient of variation (COV), minimum, and maximum values of the 
hyperparameters optimized for 100 different training datasets if NO* and CO2* 
are excluded from the inputs (i.e., inputs are NH*/OH*, CN*/OH*, and CH*/ 
OH*).   

Mean COV Min Max 

ϕ l 0.31 8% 0.26 0.39 
α 0.50 25% 0.25 0.98 
n 1.9 × 10− 4 21% 1.1 × 10− 4 4.1 × 10− 4 

XNH3 l 0.25 9% 0.21 0.33 
α 1.15 50% 0.28 4.16 
n 2.0 × 10− 4 22% 1.2 × 10− 4 3.6 × 10− 4  
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points measured in the swirl flames, known as the test data points. 
Excited radicals NO* and CO2* were excluded from the inputs and the 
hyperparameters were l = 0.39, α = 0.30, and n = 3.0 × 10− 4 for the 
equivalence ratio and l = 0.27, α = 0.55, and n = 1.3 × 10− 4 for the 
ammonia fraction, just as for Fig. 6 and Table 3. Fig. 8 also shows the 
training and validation data points corresponding to the laminar flames. 
The predictions of the equivalence ratio and ammonia fraction were 
successful for the test data points of the turbulent swirl flames, with 
regression coefficients R2 = 0.938 for the equivalence ratio and R2 =

0.968 for the ammonia fraction. Given the different spans of equivalence 
ratio and ammonia fraction considered in the laminar flames and in the 
turbulent swirl flames datasets, it is risky to compare the coefficients of 
regression directly. However, Fig. 8 also includes ±0.05 (dashed) and 
±0.10 (dotted) lines that help quantify prediction errors. Both for the 
equivalence ratio and for the ammonia fraction, prediction errors are 
well below ±0.05 for the vast majority of data points, and errors are 
always below ±0.10. In addition, the true equivalence ratios and 
ammonia fractions are always located within the confidence intervals of 
the GPR algorithm’s predictions (green vertical bars in Fig. 8) that could 
be estimated thanks to its probabilistic nature (cf. supplementary ma
terial for more details). Note that this arguably good performance was 
achieved for wide ranges of equivalence ratio (0.80 ≤ ϕ ≤ 1.20) and 
ammonia fraction (0 ≤ XNH3 ≤ 0.60). Adding NO*/OH* and CO2*/OH* 
ratios to the inputs worsened the predictions’ performance, which is 
attributed to the rather high level of noise observed in the NO* spectral 
range, where the bench spectrometer is least sensitive. 

3.4. Robustness of the GPR algorithm to measurement errors 

The start-of-the-art spectroscopic hardware and the well-behaved 
nature of the steady laminar flames considered by Zhu et al. [32] led 
to measurement uncertainties that are likely to be well below what 
would be achieved in the field for more practical flames. This is why a 
less costly and more robust bench spectrometer and turbulent swirl 
flames were also considered in the present study. To further quantify the 
robustness of the GPR algorithm to measurement errors, the training and 
validation procedures were repeated after a random input error was 
introduced into the laminar flame data. The corresponding coefficients 
of determination for the predictions of equivalence ratio and ammonia 
fraction with the turbulent swirl flames’ test dataset are shown in Fig. 9 
(green diamonds) as a function of the input error. An input error of X% 
means that the NH*/OH*, CN*/OH*, and CH*/OH* ratios of the 
training and validation datasets were each multiplied by a different 
random number between 1 and 1 ± X/100. Due to the random nature of 

this error, each case was repeated many times, until convergence of the 
mean and rms coefficient of determination was achieved, and the vari
ations are reflected with error bars. Hyperparameters were re-optimized 
for each test. 

Fig. 9 shows that equivalence ratio predictions are fairly robust to 
measurement errors because the mean coefficient of determination re
mains above 0.90 even for input errors of ±25%, which is arguably 
larger than typical chemiluminescence measurement errors. Interest
ingly, the mean coefficient of determination is slightly higher if an input 
error between ±1.25% and ±15% is added compared to no input error 
at all. This behavior was not thoroughly investigated but is consistent 
with previous findings showing that noise injection can lead machine 
learning algorithms to be more robust to generalization [55]. In an 
extension of this work, retraining on a more diverse dataset could 
therefore potentially modify this behavior. 

Fig. 9 shows that ammonia fraction predictions are also robust to 
measurement errors because the mean coefficient of determination only 
drops below 0.90 for ±25% of input errors or more. The mean coeffi
cient of determination is slightly larger if an input error between 
±1.25% and ±5% is added compared to no input error at all. 

To quantify the robustness of GPR to measurement errors that could 
also be present in the test dataset, the same exercise was repeated but 
with random error added to the turbulent swirl flame data in addition to 
the laminar flame data. The results are shown in Fig. 9 as purple stars. 
For both the equivalence ratio and ammonia fraction predictions, the 
mean coefficient of determination decreases when the input error is 
increased above some threshold. Also consistent with expectations, for 
any given input error, the mean coefficient of determination is smaller 
when an error is added to the test dataset than when no error is added to 
this dataset. For equivalence ratio and ammonia fraction predictions, the 
mean coefficient of determination drops below 0.90 for more than 
±15% of input error. Given the magnitude of measurement errors 
typically found in chemiluminescence measurements, the GPR can 
arguably be labeled as robust to errors in the turbulent swirl flame 
measurements. 

3.5. Benchmark of the GPR algorithm against conventional methods 

The machine learning-based GPR algorithm is only useful if its pre
dictions outperform those obtained with existing methods. In this sec
tion, the GPR algorithm is first benchmarked against the more 
conventional, ratio-based method to monitor metrics in flames using 
chemiluminescence. Zhu et al. [32] identified that the CN*/NO* ratio is 
a suitable surrogate for the equivalence ratio in ammonia-methane-air 
flames because it is very sensitive to the equivalence ratio, while 
being somewhat insensitive to the ammonia fraction. This is shown in 
Fig. 10a, which plots the measured CN*/NO* ratio as a function of the 

Fig. 8. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the training (blue squares), validation (red circles), and 
test (green diamonds, corresponding to the turbulent swirl flames) data points 
and for the optimum hyperparameters l = 0.39, α = 0.30, and n = 3.0 × 10− 4 

(equivalence ratio) and l = 0.27, α = 0.55, and n = 1.3 × 10− 4 (ammonia 
fraction). The NO* and CO2* excited radicals were excluded from the inputs (i. 
e., inputs are NH*/OH*, CN*/OH*, and CH*/OH*). Coefficients of determina
tion in green correspond to the regressions on the test data points. Green ver
tical bars give the predictions’ confidence intervals. 

Fig. 9. Coefficients of determination of the regression on the test data points 
(corresponding to the turbulent swirl flames) as a function of the input error 
introduced in the training and validation datasets. Green diamonds correspond 
to cases where input error was only introduced in the laminar flames data. 
Purple stars are for cases where input error was also added to the turbulent 
swirl flames data. 
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equivalence ratio for different ammonia fractions for the laminar flames 
of Zhu et al. [32]. While an overall trend is apparent, there is some 
scatter in the data and a fit must be performed to obtain a calibration 
curve that can then be used to infer the equivalence ratio using 
CN*/NO* ratio measurements. This fit (5th-order polynomial) is shown 
as a solid red line in Fig. 10a. 

Zhu et al. [32] also identified that the NH*/CH* ratio is a suitable 
surrogate for the ammonia fraction because it is very sensitive to it and 
much less to the equivalence ratio. Fig. 10b plots the measured NH*/ 
CH* ratio as a function of the ammonia fraction for different equivalence 
ratios for the same laminar flames. There is also some scatter in the data 
and a fit must be done to obtain the calibration curve needed to infer the 
ammonia fraction using NH*/CH* ratio measurements. 

Fig. 11 shows the equivalence ratios and ammonia fractions obtained 
using the calibration curves fitted in Fig. 10 and the CN*/NO* and NH*/ 
CH* ratios measured in the laminar flames (red circles). The scatter and 
regression coefficients are much worse than those obtained with GPR 
trained with NH*/OH*, CN*/OH*, and CH*/OH* ratios as inputs and 
shown in Fig. 8 (blue squares and red circles). Most predictions feature 
discrepancies below ±0.15 but discrepancies of up to ±0.25 are seen, 
which is much more than ±0.05 and ±0.10, respectively, in Fig. 8. In 
addition, equivalence ratios 0.60 ≤ ϕ < 0.75 cannot be measured with 
this ratio-based method because the calibration curve is not monotonic 
in this range. Fig. 11 also shows the equivalence ratios and ammonia 
fractions predicted for the turbulent swirl flames (green diamonds) by 
using the calibration curves fitted in Fig. 10. Discrepancies are up to 0.15 
for both the equivalence ratio and the ammonia fraction, which is again 
worse than the scatter found for the GPR algorithm in Fig. 8 (green di
amonds). To illustrate, the regression coefficient falls from R2 = 0.938 to 
0.555 for the equivalence ratio and from R2 = 0.968 to 0.839 for the 
ammonia fraction. 

Clearly, the performance of the ratio-based method is poorer than 
that of GPR trained with the best inputs, namely NH*/OH*, CN*/OH*, 

and CH*/OH* ratios (see Fig. 8). However, equivalence ratio predictions 
if only the CN*/NO* ratio is used as input of the GPR algorithm (not 
shown here) do not outperform the conventional ratio-based method 
highlighted in Fig. 11a. Similarly, the performance of ammonia fraction 
predictions is very close for the GPR trained only with the NH*/CH* and 
for the conventional ratio-based method highlighted in Fig. 11b. 
Consequently, the insufficient performance of the ratio-based method is 
due to the lack of chemical information coded into only one excited 
species ratio, and resorting to the more advanced GPR is not useful if no 
additional chemiluminescent inputs are provided. 

It is also relevant to compare the performance of GPR to that of linear 
regression using the same chemiluminescent inputs, namely OH*, NH*, 
CN*, and CH*. A least square linear regression approach applied to the 
laminar flame dataset yields the following equations to predict the 
equivalence ratio and the ammonia fraction: 

ϕ = 0.15
NH∗

OH∗
+ 0.41

CN∗

OH∗
+ 1.55

CH∗

OH∗
+ 0.66 (3)  

XNH3 = 2.63
NH∗

OH∗
− 2.35

CN∗

OH∗
+ 0.06

CH∗

OH∗
+ 0.11 (4) 

Fig. 12 shows the equivalence ratios and ammonia fractions pre
dicted using Eqs. (3) and (4). The scatter and regression coefficients are 
much worse than those obtained with the GPR algorithm in Fig. 8, for 
both the laminar flames and the turbulent swirl flames. For the latter, 
discrepancies are up to 0.15 for the equivalence ratio and the ammonia 
fraction. 

Examination of Fig. 1 indicates that the problem at hand is intrin
sically non-linear, implying that the poor prediction performance of a 
linear regression should not come as a surprise. Therefore, it is useful to 
assess the performance of higher order polynomial fits. With scikit- 
learn’s toolbox, a nth order polynomial fit is most conveniently achieved 
by taking the linear regression of inputs that were previously extended 
to include their exponents (from 1 to n) as well as their cross products 
featuring an order smaller than or equal to n. For example, with NH*/ 
OH*, CN*/OH*, and CH*/OH* as the three “original” inputs, a 2nd 
order polynomial fit would require 10 coefficients to fit the following 
inputs: [1, NH*/OH*, CN*/OH*, CH*/OH*, NH*/OH* × CN*/OH*, 
NH*/OH* × CH*/OH*, CN*/OH* × CH*/OH*, (NH*/OH*)2, (CN*/ 
OH*)2, (CH*/OH*)2]. 

For a fair comparison with GPR that features optimum hyper
parameters that are a priori unknown, the optimal order of the poly
nomial should be treated as a hyperparameter too, and it should be 
identified through the same train/validation exercise and datasets. For 
the herein data, a 4th order polynomial (35 coefficients) yielded the best 
regression coefficients on the validation datapoints, specifically R2 =

0.983 and 0.986 for the equivalence ratio and ammonia fraction, 
respectively. Fig. 13 shows the equivalence ratios and ammonia frac
tions predicted with 4th order polynomial fits for the laminar flames 

Fig. 10. CN*/NO* (a) and NH*/CH* (b) ratios as a function of the equivalence 
ratio and the ammonia fraction, respectively, measured in the laminar flames 
by Zhu et al. [32]. Solid red curves are 5th order polynomial fits. 

Fig. 11. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the laminar flames (red circles) and turbulent swirl 
flames (green diamonds) using the ratio-based method (i.e., inputs are CN*/ 
NO* or NH*/CH*) with the calibration curves fitted in Fig. 10. 

Fig. 12. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the laminar flames (red circles) and turbulent swirl 
flames (green diamonds) using linear regression (see Eqs. (3) and (4)) of the 
laminar flames data (inputs are NH*/OH*, CN*/OH*, and CH*/OH*). 
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(validation datapoints in red) and turbulent swirl flames (test datapoints 
in green). Fig. 13 should be compared to Fig. 8 which shows the per
formance of GPR trained with the exact same dataset. Overall, while the 
prediction performance of the 4th order polynomial fits is good (pre
diction errors are within 5% for most datapoints), regression coefficients 
are smaller for the 4th order polynomial fits (R2 = 0.873 and 0.946) than 
for the GPR (R2 = 0.938 and 0.968). More important, inherent in the 
method, predictions made using the 4th order polynomial fits cannot be 
provided with a confidence interval while such a confidence interval is 
an output of GPR. This confirms that resorting to the more advanced 
GPR is worth the effort for predictions of equivalence ratio and ammonia 
fraction in premixed ammonia-methane-air flames. 

3.6. Future steps 

Data showed that knowledge of the chemiluminescence intensities of 
the OH*, NH*, CN*, and CH* excited radicals is sufficient to infer the 
equivalence ratio and the ammonia fraction of premixed ammonia- 
methane-air flames. This is useful to develop optical sensors for the 
monitoring of such flames because the important spectral features are 
now clearly identified. However, previous studies [47,48] have shown 
that a priori identification of these spectral features is not necessary, at 
least for methane-air and methane-hydrogen-air flames, because these 
can be extracted automatically using advanced methods, such as POD, if 
a sufficiently broadband chemiluminescence spectrum is available. 
Arguably, such advanced methods will be challenging to implement in 
future practical flames, which may not be perfectly premixed. Recent 
studies suggested that stratified ammonia-methane-air or 
ammonia-hydrogen-air flames, i.e., flames featuring a spatially-varying 
equivalence ratio [1,56,57] and/or ammonia fraction [56,57], could be 
used instead of premixed flames to promote flame stabilization, control 
NOx emissions, and mitigate thermoacoustic coupling. In such flames, 
simultaneous, local measurement of the broadband chemiluminescence 
spectrum at multiple flame locations would be required, which is not 
possible to achieve with a conventional spectrometer paired with a 
CCD/CMOS sensor. Alternatively, OH*, NH*, CN*, and CH* chem
iluminescence intensities may be recorded on four separate CCD/CMOS 
cameras, each equipped with the appropriate bandpass filter. Note that 
the line-of-sight nature of chemiluminescence implies that it should be 
recorded from multiple viewpoints so that a tomographic reconstruction 
[58] could be applied before using the GPR algorithm. To the best of the 
authors’ knowledge, simultaneous tomographic reconstruction of four 
excited radicals has never been achieved before but, in principle, 
combining the ingredients of tomographic reconstruction [58] with 
those of multi-species imaging recently demonstrated in [59] could 
work. This is the topic of a future study. 

The method described in this study, as well as future spatially 

resolved measurements based on tomographic reconstruction, rely 
strongly on the fact that chemiluminescence intensities are spatially 
integrated over the whole flame coordinate (also referred to as flame 
normal) for each of the excited radicals. This is an important charac
teristic of the method implying that the flame front itself cannot be 
spatially resolved along its normal. This is because the shape and loca
tion of concentration profiles across the flame are different for each 
excited radical. Indeed, chemical reactions responsible for the formation 
and consumption of each excited radical are different and are active at 
different locations across the flame. Consequently, chemiluminescence 
ratios are expected to vary across the flame front, which is not 
compatible with the herein method where each flame is defined by a 
single number for the chemiluminescence intensity of each excited 
radical. Therefore, for the method to succeed, the probe volume over 
which chemiluminescence intensities are measured must be substan
tially larger than the flame thickness, often in the order of a few milli
meters or less. The size of the probe volume would then dictate the 
actual spatial resolution of equivalence ratio and ammonia fraction 
measurements. Note that equivalence ratio and ammonia fraction are 
global properties of premixed flamelets, meaning that it is not physically 
meaningful to define them as a function of the flame coordinate/normal 
(i.e., each premixed flamelet can be defined by a unique equivalence 
ratio and a unique ammonia fraction). Consequently, the fact that the 
herein method must spatially integrate chemiluminescence intensities 
across the whole flame coordinate/normal is not a significant limitation. 
However, if chemiluminescence data from laminar flames are used to 
train the GPR algorithm, application of the method must be limited to 
turbulent flames belonging to the flamelet region of the premixed tur
bulent combustion regime diagram. Flamelets (either wrinkled or 
corrugated) are flame sheets that locally retain the structure of laminar 
flames. Such flames are largely represented in lab- or practical-scale 
flames. For turbulent flames belonging to the thin reaction zone or 
broken reaction zone regions of the regime diagram, i.e., those subjected 
to much more extreme levels of turbulence, the applicability of the 
herein method is not guaranteed and should be verified. 

4. Conclusion 

This study reported on the development and benchmarking of a 
chemiluminescence- and machine learning-based method to measure 
the equivalence ratio and the ammonia fraction in premixed ammonia- 
methane-air flames. To predict these key flame metrics, a Gaussian 
process regression (GPR) algorithm was trained using only chem
iluminescence data previously recorded in laminar flames. The algo
rithm was then challenged using input data from more practical, 
turbulent swirl flames. The key findings were as follows:  

• Using the ratios NH*/OH*, CN*/OH*, and CH*/OH* as inputs is 
sufficient to train the GPR algorithm to accurately predict the 
equivalence ratio and the ammonia fraction in both laminar and 
turbulent flames.  

• Prediction errors on the equivalence ratio and ammonia fraction are 
generally smaller than 0.05 and extend to a maximum of 0.10 for a 
very small subset of operating conditions. This performance was 
achieved for large ranges of equivalence ratio (0.60 ≤ ϕ ≤ 1.30 for 
the laminar flames and 0.80 ≤ ϕ ≤ 1.20 for the turbulent flames) and 
ammonia fraction (0 ≤ XNH3 ≤ 0.80 for the laminar flames and 0 ≤
XNH3 ≤ 0.60 for the turbulent flames).  

• The GPR algorithm was also trained after adding NO* and CO2* to 
the list of excited radicals, but this did not improve predictions.  

• The performance of the GPR algorithm was compared to that of 
linear regression and a more conventional, ratio-based method 
relying only on CN*/NO* and NH*/CH* ratios. The prediction errors 
on the equivalence ratio and the ammonia fraction were often larger 
than 0.15 with this ratio-based method, which is significantly worse 
than that of GPR when trained with the best combination of excited 

Fig. 13. Predicted equivalence ratio (a) and ammonia fraction (b) as a function 
of their true values for the training (blue squares), validation (red circles), and 
test (green diamonds, corresponding to the turbulent swirl flames) data points 
using a 4th order polynomial regression (inputs are NH*/OH*, CN*/OH*, and 
CH*/OH*). Coefficients of determination in green correspond to the regressions 
on the test data points. 
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radicals. However, GPR did not overperform the ratio-based method 
when its training was restricted to the same excited radicals (CN*/ 
NO* or NH*/CH*).  

• The GPR algorithm also significantly outperformed linear regression. 
However, 4th order polynomial fits achieved a prediction perfor
mance almost as good as GPR. Nevertheless, GPR provides a confi
dence interval for its prediction, which a 4th order polynomial fit 
cannot do. Given that GPR and 4th order polynomial fit are both 
equally straightforward to implement with scikit-learn, GPR should 
be favored. 

This work lays strong foundations for the development of non- 
intrusive sensors to monitor practical, premixed ammonia-methane-air 
flames. This could be extended in the future to stratified flames 
through additional advances in spatially resolved, multi-species 
imaging. 
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