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Dear Editor,
Approximately 20% of patients with acute myeloid leukemia

(AML) present at diagnosis with hyperleukocytosis, which is
commonly defined as a white blood cell count > 50 ×109/L or >
100 ×109/L [1]. Hyperleukocytic AML is an oncological emergency
because the risk of early death is significant due to leukemic organ
infiltration, leukostasis syndrome, disseminated intravascular
coagulopathy and tumour lysis syndrome. Early management of
these symptoms as well as rapid leukoreduction are critical in the
therapeutic management [2].
In the era of next-generation sequencing (NGS), considerable

progress has been made in understanding the genetic diversity of
AML [3–5]. However, owing to the small proportion of hyperleu-
kocytic patients generally included in clinical trials, the genomic
landscape of hyperleukocytic AML and the prognostic impact of
genetic lesions in this specific clinical context have not been
described in detail except in a recent study from Taiwan which
reported the frequency of mutations in a panel of 20 myeloid
genes [6].
We recently reported the impact of dexamethasone in a series

of 160 hyperleukocytic patients [7]. Here, we used this patient
series to provide a molecular description of hyperleukocytic AML
and to assess the prognostic impact of genetic classifications in
patients treated with or without dexamethasone.
DEXAML-00 was a retrospective, single centre study comparing

hyperleukocytic AML patients (18–75 years) who received
intensive chemotherapy with (n= 60) or without (n= 100)
dexamethasone between 2004 and 2015 [7]. Diagnostic samples
for NGS analyses were available for 154 patients (96.3%), 59
patients who received dexamethasone, and 95 patients who did
not. Extended DNA resequencing was performed using an Illumina
NextSeq500 and Sureselect (Agilent, Santa Clara, CA) targeted on
the complete coding regions of 79 genes commonly mutated in
myeloid malignancies (Supplementary data). Data were processed
using two GATK algorithms, HaplotypeCaller (scaling accurate
genetic variant discovery to tens of thousands of samples) and
Mutect2, and via Agilent Surecall software, with a sensitivity of 1%
[8, 9]. All variants called by two variant callers, were checked using
IGV software. Statistical analyses were performed using STATA
software 14.2 (STATA Corp., College Station, TX).
Patient characteristics, results and outcome were unchanged

compared to the first study (Table S1) [7]. Gene mutation
frequency is shown in Fig. 1 and Table S2. The cytogenetic risk
was favorable, intermediate or adverse in 15 (9.7%), 121 (78.6%)
and 18 (11.7%) patients, respectively. Genetic classifications,
including the 2018 genomic classification, ELN 2017 risk classifier,
NPM1/FLT3-ITD/DNMT3A mutational status and the functional
gene categories, are shown in Table 1[3–5]. A total of 616
mutations were identified with an average of 4 mutations per

patient (0–10 mutations/patient). Only one patient with inv(16)
had no mutation. FLT3 (62.3%), NPM1 (52.6%), DNMT3A (34.4%),
TET2 (23.4%), NRAS (20.8%) were the most frequently mutated
genes. Of the 71 patients (46%) with FLT3-ITD mutations, 32
(45.1%) had an allelic ratio > 0.5. Mutations in the RAS pathway
were detected in 67 patients (43.5%), including NRAS (20.8%),
PTPN11 (9.7%), KRAS (9.1%), and NF1 (3.9%). Overall, a large
majority of patients had mutations in signaling genes (n= 131,
85.1%). Drug-actionable mutations such as FLT3 (n= 96), IDH2
(n= 17), IDH1 (n= 14), KIT (n= 5), TP53 (n= 4), or JAK2 (n= 1)
were detected in 113 patients (73.4%). In patients with FLT3
mutations, 12 had co-mutations in IDH1, and 12 patients had co-
mutations in IDH2. Clinical characteristics and the distribution of
actionable mutations according to main molecular subsets of the
genomic classification and ELN 2017 are shown in Table S3 and S4.
We evaluated the prognostic impact of the genetic classifica-

tions as well as that of each individual gene according to the
treatment group. In all multivariate survival analyses, no significant
interaction between dexamethasone treatment and classifications
or gene mutations was found, indicating that the effect of
dexamethasone did not differ significantly between the various
genetic subsets.
When the genomic classification was tested in multivariate

analysis, AML with inv(16)/CBFB–MYH11 was the only subgroup
with a significant impact on overall survival (OS) (HR, 0.16; 95%CI:
0.03–0.75; P= 0.020).
The co-occurrence of NPM1/FLT3-ITD/DNMT3A triple mutations

has been shown to be associated with very poor OS.[5] This
mutational status was observed in 25 patients (16%), 23 of whom
died. Compared to this triple mutated subset, lower HRs were
found in double mutant NPM1mut/FLT3-ITD (HR, 0.43; 95% CI:
0.19–0.97; P= 0.041) or NPM1mut/DNMT3Amut (HR, 0.47; 95% CI:
0.21–1.07; P= 0.074).
Regarding functional gene categories, 2 subsets (NPM1mut: HR,

0.56; 95% CI: 0.33-0.97; P= 0.039 and myeloid transcription factor
gene fusions or mutations: HR, 0.34; 95% CI: 0.19–0.60; P < 0.001)
were significantly and independently associated with better OS
whereas the chromatin-modifying gene subset was associated
with poorer OS (HR, 1.88; 95% CI: 1.04–3.41; P= 0.037).
The ELN 2017 adverse group was independently associated

with poor OS (HR, 2.53; 95% CI: 1.46–4.41; P= 0.001). However,
there was no significant difference between intermediate and
favorable prognostic groups (HR, 1.47; 95% CI: 0.87–2.48; P=
0.148).
Finally, we assessed the prognostic impact of each individual

gene using the least absolute shrinkage and selection operator
(LASSO) statistical method (Table S5). DNMT3A mutations were
independently predictive of poor OS (HR, 1.76; 95% CI: 1.02–3.03;
P= 0.043). On the contrary, CBFB-MYH11 (HR, 0.10; 95% CI:
0.02–0.43; P= 0.002), CEBPA (HR, 0.22; 95% CI: 0.09–0.53; P=
0.001), NPM1 (HR, 0.33; 95% CI: 0.19–0.58; P < 0.001) and
surprisingly, RUNX1 mutations (HR, 0.40; 95% CI: 0.18–0.92; P=
0.030) were significantly and independently associated with better
OS. The different types of RUNX1 mutations, co-mutations,
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response to treatment with or without dexamethasone and
outcome are shown in Table S6. Of the 15 patients with RUNX1mut

AML, 13 (86.7%) achieved a complete response.
Multivariate analyses for event-free survival, relapse-free survi-

val and cumulative incidence of relapse yielded similar results
(data not shown). Of note, clinical or treatment parameters
including infection at diagnosis, secondary AML, hydroxyurea,
albumin, LDH, fibrinogen, CD56 expression, admission to intensive
care unit (ICU) or allogeneic stem-cell transplantation retained an
independent prognostic value in most multivariate analyses (Table
S5).
This study shows that the genomics of hyperleukocytic AML

differs substantially from nonhyperleukocytic AML. Signalling
mutations in either FLT3 or RAS pathways, mutations in DNA
methylation genes and NPM1 were over-represented whereas
other subgroups, such as RUNX1-RUNX1T1 or TP53 mutations had
a very low frequency. Compared to the Taiwanese study, we found
far fewer CEBPA biallelic mutations (2.6% vs. 16%) and more NPM1
(53.2% vs. 30%) or FLT3 mutations (62.3% vs. 44.5%). Apart from
the difference in median age between the two cohorts (60 vs.
50 y), we have no clear explanation for this difference [6].
A large proportion of hyperleukocytic AML patients present

at diagnosis with therapeutically targetable mutations (>70%).

This brings hope that the use of targeted therapies may improve
their prognosis, which is still poor compared to nonhyperleuko-
cytic AML. Midostaurin combined with intensive chemotherapy
has improved the outcome of AML patients with FTL3 mutations
(~60% of patients in our series) including ELN 2017 adverse risk
patients [10]. Our patients were treated before midostaurin
approval in Europe and therefore no patient received a FLT3
inhibitor. Thus, further studies are needed to assess the impact of
midostaurin in hyperleukocytic AML. Inhibition of the RAS
pathway could also be a valuable avenue in this setting [11].
AML with RUNX1 mutations (RUNX1mut AML) is a provisional

entity of the WHO 2016 classification that accounts for 10% of
newly diagnosed AML. In our series of hyperleukocytic patients,
the frequency of RUNX1 mutations was similar (n= 15, 9.7%).
RUNX1mut AML are classified in the ELN 2017 adverse risk group.
However, RUNX1 mutations were independently associated with
better OS in our cohort. A recent study using a chemogenomic
approach revealed that AML cells with inactivating RUNX1
mutations were particularly sensitive to very low concentrations
of glucocorticoids [12]. However, given the small patient cohort,
we were unable to link this improved outcome to dexamethasone
treatment—hence the clinical impact of glucocorticoids in
RUNX1mut AML has yet to be determined.

Fig. 1 Mutation pattern in hyperleukocytic AML. A Number of mutations (grey bars) and patients with mutations (blue bars) per gene. Of
the 79 sequenced genes, 44 presented at least one mutation. B Distribution of mutations according to the 2017 European Leukaemia Net
classification.
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Table 1. Genetic Classifications of Hyperleukocytic AML.

Dexamethasone P value Total
154 (100.0)

No
95 (%) (61.7)

Yes
59 (%) (38.3)

Genomic classification* - n (%) 0.176

AML with driver mutations but no detected class-defining lesions 8 (8.4) 8 (13.6) 16 (10.4)

AML with NPM1 mutation 48 (50.5) 32 (54.2) 80 (51.9)

AML with mutated chromatin, RNA-splicing genes, or both 22 (23.2) 7 (11.9) 29 (18.8)

AML with TP53 mutations, chromosomal aneuploidy, or both 4 (4.2) 0 (0.0) 4 (2.6)

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB–MYH11 6 (6.3) 7 (11.9) 13 (8.4)

AML with biallelic CEBPA mutations 1 (1.1) 2 (3.4) 3 (1.9)

AML with t(8;21)(q22;q22); RUNX1–RUNX1T1 2 (2.1) 0 (0.0) 2 (1.3)

AML with MLL fusion genes; t(x;11)(x;q23) 4 (4.2) 2 (3.4) 6 (3.9)

AML with IDH2R172 mutations and no other class-defining lesions 0 (0.0) 1 (1.7) 1 (0.6)

ELN 2017 - n (%) 0.231

Favorable 36 (37.9) 30 (50.8) 66 (42.9)

Intermediate 31 (32.6) 13 (22.0) 44 (28.6)

Adverse 28 (29.5) 16 (27.1) 44 (28.6)

NPM1/FLT3-ITD/DNMT3A - n (%) 0.308

NPM1= 1, FLT3-ITD= 1, DNMT3A= 1 18 (18.9) 7 (11.9) 25 (16.2)

NPM1= 1, FLT3-ITD= 1, DNMT3A= 0 10 (10.5) 14 (23.7) 24 (15.6)

NPM1= 1, FLT3-ITD= 0, DNMT3A= 1 12 (12.6) 6 (10.2) 18 (11.7)

NPM1= 1, FLT3-ITD= 0, DNMT3A= 0 9 (9.5) 6 (10.2) 15 (9.7)

NPM1= 0, FLT3-ITD= 1, DNMT3A= 1 5 (5.3) 1 (1.7) 6 (3.9)

NPM1= 0, FLT3-ITD= 1, DNMT3A= 0 8 (8.4) 8 (13.6) 16 (10.4)

NPM1= 0, FLT3-ITD= 0, DNMT3A= 1 2 (2.1) 2 (3.4) 4 (2.6)

NPM1= 0, FLT3-ITD= 0, DNMT3A= 0 31 (32.6) 15 (25.4) 46 (29.9)

Functional categories - n (%)

NPM1 mutation

No 46 (48.4) 26 (44.1) 72 (46.8)

Yes 49 (51.6) 33 (55.9) 0.598 82 (53.2)

Tumor-suppressor genes

No 82 (86.3) 47 (79.7) 129 (83.8)

Yes 13 (13.7) 12 (20.3) 0.276 25 (16.2)

DNA methylation-associated genes

No 36 (37.9) 28 (47.5) 64 (41.6)

Yes 59 (62.1) 31 (52.5) 0.241 90 (58.4)

Signaling genes

No 14 (14.7) 9 (15.3) 23 (14.9)

Yes 81 (85.3) 50 (84.7) 0.930 131 (85.1)

Myeloid TF gene fusions or mutations

No 64 (67.4) 37 (62.7) 101 (65.6)

Yes 31 (32.6) 22 (37.3) 0.554 53 (34.4)

Chromatin-modifying genes

No 77 (81.1) 50 (84.7) 127 (82.5)

Yes 18 (18.9) 9 (15.3) 0.557 27 (17.5)

Cohesin-complex genes

No 77 (81.1) 50 (84.7) 127 (82.5)

Yes 18 (18.9) 9 (15.3) 0.557 27 (17.5)

Spliceosome-complex genes

No 85 (89.5) 54 (91.5) 139 (90.3)

Yes 10 (10.5) 5 (8.5) 0.676 15 (9.7)

Others

No 88 (92.6) 57 (96.6) 145 (94.2)

Yes 7 (7.4) 2 (3.4) 0.483 9 (5.8)

*Compared to the genomic classification, AML with t(15;17)(q22;q12); PML–RARA were excluded, whereas some subsets including AML with inv(3)(q21q26.2)
or t(3;3)(q21;q26.2); GATA2, MECOM(EVI1), AML with t(6;9)(p23;q34); DEK–NUP214, AML with no detected driver mutations, AML meeting criteria for ≥2
genomic subgroups were not found in hyperleukocytic AML.
ELN, European Leukemia Net.
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Studies on the mechanisms of resistance to chemotherapy or
tyrosine kinase inhibitors together with high-throughput drug
screening have underpinned the potential role of glucocorticoids
in AML. Cytarabine resistance is associated with the acquisition of
sensitivity to glucocorticoids and mutated RUNX1, NPM1, or SRSF2
modulate gene expression in a manner that primes AML cells for
glucocorticoid sensitivity [13]. These recent data suggest that
some AML subgroups (not necessarily hyperleukocytic patients)
may specifically benefit from dexamethasone. However, we did
not find any significant interaction between dexamethasone
treatment and genomic alterations. This may be due to insufficient
numbers or dexamethasone may have broader effects on
biological phenomena such as inflammation, microenvironment
or leukemic stem-cell biology.
Hyperleukocytic AML remains a very challenging clinical

management issue. This is evidenced by the high number of
multivariate analysis parameters that reflect the patients’
general condition, inflammation, metabolism or therapeutic
management. Acting on these parameters could be key to
limiting early complications and induction deaths. Leukoreduc-
tion with hydroxyurea, anti-inflammatory treatments, such as
dexamethasone and early or direct admission to ICU have
recently been proposed to this end whereas the benefit of
leukapheresis has not been demonstrated [14]. New targeted
therapies that may cover the majority of hyperleukocytic
patients as shown in our study and a better understanding of
the mechanisms of leukostasis could help to improve patient
management and prognosis [15].
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