
HAL Id: hal-04356562
https://ut3-toulouseinp.hal.science/hal-04356562v1

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An extended Knowledge Compilation Map for
Conditional Preference Statements-based and

Generalized Additive Utilities-based Languages
Hélène Fargier, Stefan Mengel, Jérôme Mengin

To cite this version:
Hélène Fargier, Stefan Mengel, Jérôme Mengin. An extended Knowledge Compilation Map for Con-
ditional Preference Statements-based and Generalized Additive Utilities-based Languages. RR–2023–
03–FR, Institut de recherche en informatique de Toulouse (IRIT). 2023. �hal-04356562�

https://ut3-toulouseinp.hal.science/hal-04356562v1
https://hal.archives-ouvertes.fr

An extended Knowledge Compilation Map for Conditional

Preference Statements-based and Generalized Additive

Utilities-based Languages

Research Report IRIT/RR–2023–03–FR

Hélène Fargier,

Helene.Fargier@irit.fr,

IRIT, Université Paul Sabatier, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

Stefan Mengel,

mengel@cril-lab.fr,

Université d’Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), Lens, France

Jérôme Mengin,

Jerome.Mengin@irit.fr,

IRIT, Université Paul Sabatier, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

December 1st, 2023

Helene.Fargier@irit.fr
mengel@cril-lab.fr
Jerome.Mengin@irit.fr

Abstract

Conditional preference statements have been used to compactly represent preferences over combinatorial domains. They

are at the core of CP-nets and their generalizations, and lexicographic preference trees. Several works have addressed

the complexity of some queries (optimization, dominance in particular). We extend in this paper some of these results,

and study other queries which have not been addressed so far, like equivalence, and transformations, like conditioning

and variable elimination, thereby contributing to a knowledge compilation map for languages based on conditional

preference statements. We also study the expressiveness and complexity of queries and transformations for generalized

additive utilities, and introduce a new parameterized family of languages, which enables to balance expressiveness

against the complexity of some queries. This paper is an extended version of [29] – in addition to the results of [29], it

contains a study of several transformations (Section 7). We have also added the GAI language to the map.

1 Introduction
Preference handling is a key component in several areas of Artificial Intelligence, notably for decision-aid systems.

Research in Artificial Intelligence has led to the development of several languages that enable compact representation

of preferences over complex, combinatorial domains. Some preference models rank alternatives according to their values

given by some multivariate function; this is the case for instance with valued constraints [45], additive utilities and their

generalizations [37, 15]. Ordinal models like CP nets and their generalizations [10, 49, 14], or lexicographic preferences

and their generalizations [34, 46, 50, 9, 17, 30] use sets of conditional preference statements to represent a pre-order over

the set of alternatives.

Many problems of interest, like comparing alternatives or finding optimal alternatives, are NP-hard for many of these

models, and in fact even PSPACE-hard for some of them, which makes these representations difficult to use in some

decision-aid systems like configurators, where real-time interaction with a decision maker is needed. One approach

to tackling this problem is Knowledge Compilation, which is a general approach in which a model, or a part of it, is

compiled, off-line, into another representation which enables fast query answering, even if the compiled representation

has a much bigger size. This approach has first been studied in propositional logic: [23, 24] compare how various subsets

of propositional logic can succinctly, or not, express propositional knowledge bases, and the complexity of queries of

interest. [21] follow a similar approach to compare extensions of propositional logic which associate real values to

models of a knowledge base; [31] consider value function-based models.

The aim of this paper is to initiate a compilation map for representations on preferences. To this end, we system-

atically study and compare different languages of conditional preference statements and models based on Generalized

Additive Utilities (called GAIs). In particular, we analyze the expressiveness and succinctness of various languages based

on these conditional preference statements and on GAIs, and the complexity of several queries and transformations of

interest.

Section 2 recalls some basic definitions about combinatorial domains and pre-orders, and introduces notation that

we will use throughout. Section 3 gives an overview of various languages based on conditional preference statements

that have been studied in the literature. It introduces first a general language of conditional preference statements, and

recalls the language of Generalized Additive Utilities. The remainder of this section then presents various language

restrictions that have been studied in the literature and offer interesting compromises between expressiveness and

querying complexity.

Section 4 and 5 respectively study expressiveness and succinctness for the languages we study. Sections 6 and 7

study the complexity of, respectively, queries and transformations for these languages.

This paper is an extended version of [29] – in addition to the results of [29], it contains a study of several trans-

formations (Section 7). We have also added the GAI language to the map. (Unpublished) proofs are provided in the

appendix.

2 Preliminaries

2.1 Combinatorial Domains
We consider languages that can be used to represent the preferences of a decision maker over a combinatorial space

X : here X is a set of attributes that characterize the possible alternatives, each attribute X ∈ X having a finite set

of possible values X ; we assume |X | ≥ 2 for every X ∈ X ; then X denotes the Cartesian product of the domains of

the attributes in X , its elements are called alternatives. For a binary attribute X , we will often denote by x, x̄ its two

possible values. In the sequel, n is the number of attributes in X .

For a subset U of X , we will denote by U the Cartesian product of the domains of the attributes in U . The elements

of U are called called instantiations of U , or partial instantiations (of X). If v is an instantiation of some V ⊆ X ,

v[U] denotes the restriction of v to the attributes in V ∩ U ; we say that instantiation u ∈ U and v are compatible if

v[U ∩ V] = u[U ∩ V]; if U ⊆ V and v[U] = u, we say that v extends u.

Sets of partial instantiations can often be conveniently, and compactly, specified with propositional formulas: the

atoms are X = x for every X ∈ X and x ∈ X , and we use the standard connectives ∧ (conjunction), ∨ (disjunction),

→ (implication), ↔ (equivalence) and ¬ (negation); we denote by ⊤ (resp. ⊥) the formula always true (resp. false).

Implicitly, this propositional logic is equipped with a theory that enforces that every attribute has precisely one value

from its domain; so, for two distinct values x, x′ of attributeX , the formulaX = x∧X = x′ is a contradiction; also, the

interpretations are thus in one-to-one correspondence with X . If α is such a propositional formula over X and o ∈ X ,

we will write o |= α when o satisfies α, that is when, assigning to every literal X = x that appears in α the value true
if o[X] = x, and the value false otherwise, makes α true.

Given a formula α, or a partial instantiation u, Var(α) and Var(u) denote the set of attributes, the values of which

appear in α and u respectively.

When it is not ambiguous, we will use x as a shorthand for the literal X = x; also, for a conjunction of such literals,

we will omit the ∧ symbol, thus X = x ∧ Y = ȳ for instance will be denoted xȳ.

1

2.2 Preference Relations
Depending on the knowledge that we have about a decision maker’s preferences, given any pair of distinct alternatives

o, o′ ∈ X , one of the following situations must hold: one may be strictly preferred over the other, or o and o′ may be

equally preferred, or o and o′ may be incomparable.

Assuming that preferences are transitive, such a state of knowledge about the decision maker’s preferences can be

characterized by a preorder ⪰ over X , that is ⪰ is a binary, reflexive and transitive relation. For alternatives o, o′, we

write o ⪰ o′ when (o, o′) ∈ ⪰; o ≻ o′ when (o, o′) ∈ ⪰ and (o′, o) /∈ ⪰; o ∼ o′ when (o, o′) ∈ ⪰ and (o′, o) ∈ ⪰;

o ▷◁ o′ when (o, o′) /∈ ⪰ and (o′, o) /∈ ⪰. Note that for any pair of alternatives o, o′ ∈ X either o ≻ o′, or o′ ≻ o, or

o ∼ o′ or o ▷◁ o′ holds.

The relation ∼ defined in this way is called the symmetric part of ⪰; it is symmetric, reflexive and transitive. The

relation ▷◁ is symmetric and irreflexive. The relation ≻ is called the asymmetric part of ⪰, and is what is usually called

a strict partial order, i.e., it is irreflexive, transitive and asymmetric.

When the preorder ⪰ is complete, that is, when it is the case that o ⪰ o′ or o′ ⪰ o for every pair of alternatives

(o, o′), it is called a weak order. A strict partial order that is complete is called a linear order.

When the preorder ⪰ is antisymmetric, that is when o ∼ o′ only when o = o′, then it is called a partial order.

Terminology and notation We say that an alternative o dominates an alternative o′ (w.r.t. ⪰) if and only if o ⪰ o′.
If o ≻ o′, then we say that o strictly dominates o′. We use standard notation for the complements of ≻ and ⪰: we write

o ̸⪰ o′ when it is not the case that o ⪰ o′, and o ̸≻ o′ when it is not the case that o ≻ o′. Given two preorders ⪰ and

⪰′
, we say that ⪰ extends ⪰′

when o ⪰′ o implies o ⪰ o′, for every pair of alternatives o, o′.

3 Languages

3.1 Conditional Preference Statements
A conditional preference statement (short CP statement) over X is an expression of the form α |V :w≥w′

, where α is a

propositional formula over U ⊆ X , w,w′ ∈W are such that w[X] ̸= w′[X] for everyX ∈W , and U, V,W are disjoint

subsets of X , not necessarily forming a partition of X . Informally, such a statement represents the piece of knowledge

that, when comparing alternatives o, o′ that both satisfy α, the one that has values w for W is preferred to the one that

has values w′
for W , irrespective of the values of the attributes in V , every attribute in X \ (V ∪W) being fixed. We

call α the conditioning part of the statement; we call W the swapped attributes, and V the free part.

Example 1 ((Example A in [51], slightly extended)). Consider planning a holiday, with three choices / attributes: wait

until next month (W = w) or leave now (W = w̄), going to city 1, 2 or 3 (C = c1, C = c2 or C = c3), travelling by

plane (P = p) or by car (P = p̄). I would rather go now, irrespective of the other attributes: ⊤ |{CP} : w̄≥w. All else

being equal, I prefer to go to city 3, city 1 being my second best choice: ⊤ | ∅ : c3 ≥ c1 ≥ c2. Also, if I go now, I prefer to fly:

w̄ | ∅ : p≥ p̄. Together, the last two statements imply that if I go now, I prefer to go to city 3 by plane than go to city 1 by car;

however these statements do not say what I prefer between flying to city 1 or driving to city 3. In fact, I prefer the former,

this tradeoff can be expressed with the statement w̄ | ∅ : c1p≥ c3p̄. Finally, if I go later, I prefer to drive, irrespective of the

city: w |{C} : p̄≥ p.

Conditional preference statements have been studied in many works, under various language restrictions. They

are the basis for CP-nets [12, 10] and their extensions, and have been studied in a more logic-based fashion by e.g.

[36, 49, 48, 51].
1

Closely related to them are the Conditional Importance statements studied in [13].

For the semantics of sets of CP statements, we use the definitions of [51]. Given a statement α |V :w≥w′
, let U =

Var(α) and W = Var(w) = Var(w′): a worsening swap is any pair of alternatives (o, o′) such that o[U] = o′[U] |= α,

o[W] = w and o′[W] = w′
, and such that for every attribute Y /∈ U ∪ V ∪W it holds that o[Y] = o′[Y]; we say

that α |V :w≥w′
sanctions (o, o′). For a set of CP-statements φ, let φ∗

be the set of all worsening swaps sanctioned

by statements of φ, and define ⪰φ to be the reflexive and transitive closure of φ∗
. [51] proves that o ⪰φ o′ holds if and

only if o = o′ holds or φ∗
contains a finite sequence of worsening swaps (oi, oi+1)0≤ i≤ k−1 with o0 = o and ok = o′.2

Example 2 (Example 1, continued). Let

φ =

{
⊤ |{CP} : w̄≥w , ⊤ | ∅ : c3 ≥ c1 ≥ c2,

w̄ | ∅ : p≥ p̄ , w̄ | ∅ : c1p≥ c3p̄ , w |{C} : p̄≥ p}

}
.

Then⊤ |{CP} : w̄≥w sanctions for instance (w̄c2p, wc3p̄), so w̄c2p ⪰φ wc3p̄. Also,⊤ | ∅ : c3 ≥ c1 ≥ c2 sanctions (w̄c1p, w̄c2p),
w̄ | ∅ : p≥ p̄ sanctions (w̄c2p, w̄c2p̄), so, by transitivity, w̄c1p ⪰φ w̄c2p̄. It is not difficult to check that w̄c2p ▷◁φ w̄c1p̄.

1
The formula u |V :x≥x′

is written u :x>x′[V] by [51].

2
Actually, [51] proves that (o, o′) is in the transitive closure of φ∗

if and only there is such a worsening sequence from o to o′, but adding the

reflexive closure to this transitive closure does not change the result, since we can add any pair (o, o) to, or remove it from, any sequence of worsening

swaps without changing the validity of the sequence.

2

Let us call CP the language where formulas are sets of statements of the general form α |V :w≥w′
. This language

is very expressive: it is possible to represent any preorder “in extension” with preference statements of the form o≥ o′

– they have W = {X | o[X] ̸= o′[X]} as set of swapped attributes, α = o[U] = o′[U] as condition where U =
{X | o[X] = o′[X]}, and no free attribute.

This expressiveness has a cost: we will see that many queries about pre-orders represented by CP-statements are

PSPACE-hard for the language CP. Several restrictions / sublanguages have been studied in the literature, we review

them below.

(Strict) Consistency Although the original definition of CP-nets by [12] does not impose it, many works on CP-nets,

especially following [10], consider that they are intended to represent a strict partial order, that is, that ⪰φ should be

antisymmetric. We say that a set φ of CP-statements is consistent in this case. Note that in this case, for two different

alternatives o and o′, o ⪰φ o′ implies that o ≻φ o′.

Notation We write α :w≥w′
when V is empty, and w≥w′

when V is empty and α = ⊤. Note that we reserve the

symbol ≥ for conditional preference statements, whereas “curly” symbols ≻, ̸≻, ⪰, ̸⪰ are used to represent relations

over the set of alternatives.

In the remainder of this section, we present various sublanguages ofCP. Some are defined by imposing various simple

syntactical restrictions on the formulas, two are languages which have been well studied (CP-nets and lexicographic

preference trees).

3.2 Statement-wise Restrictions
Some restrictions are on the syntactical form of statements allowed; they bear on the size of the set of free attributes,

or on the size of the set of swapped attributes, or on the type of conditioning formulas allowed. Given some language

L ⊆ CP, we define the following restrictions:

L⋫ = only formulas with empty free parts (V = ∅) for every statement;
3

L∧ = only formulas where the condition α of every statement is a conjunction of literals;

k-L = only formulas where the set of swapped attributes contains no more than k attributes (|W | ≤ k) for every state-

ment; in particular, we call elements of 1-CP unary statements.

In particular, 1-CP∧ is the language studied by [51], and 1-CP⋫ is the language of generalized CP-nets as defined by

[36].

3.3 Graphical Restrictions
Given φ ∈ CP over set of attributes X , we defineDφ as the graph with sets of vertices X , and such that there is an edge

(X,Y) if there is α |V :w≥w′ ∈ φ such that X ∈ Var(α) and Y ∈ Var(w), or X ∈ Var(w) and Y ∈ V . We call Dφ

the dependency graph of φ. Note thatDφ can be computed in polynomial time. This definition, inspired by [51, Def. 15],

generalizes that of [10], which is restricted to the case where all CP statements are unary and have no free attributes,

and that of [14], who study statements with free attributes. Many tractability results on sets of CP statements have been

obtained when Dφ has good properties. Given some language L ⊆ CP, we define:

L̸⟳ = the restriction of L to acyclic formulas, which are those φ such that Dφ is acyclic;
4

L̸⟳poly = the restriction of L to formulas where the dependency graph is a polytree.

3.4 CP-nets
In their seminal work, [10] define a CP-net over a set of attributes X to be composed of two elements:

1. a directed graph over X , which should represent preferential dependencies between attributes;
5

2. a set of conditional preference tables, one for every attribute X : if U is the set of parents of X in the graph, the

conditional preference table for X contains exactly |U | rules u :≥, for every u ∈ U , where the ≥’s are linear orders

over X .

3
In the literature, the symbol ▷ is sometimes used to represent an importance relation between attributes; and, as explained by [51], statement

α |V :w≥w′
is a way to express that attributes in Var(w) are more important than those in V (when α is true).

4
This is full acyclicity in [51].

5
Given some pre-order ⪰ over X , attribute X is said to be preferentially dependent on attribute Y if there exist x, x′ ∈ X , y, y′ ∈ Y , z ∈

X \ ({X,Y }) such that xyz ⪰φ x′yz but xy′z ̸⪰φ x′y′z.

3

W w̄≥w

CP
c3p≥ c1p≥ c3p̄≥ c1p̄≥ c2p̄

c1p≥ c2p≥ c2p̄
P p̄≥ p

C c3 ≥ c1 ≥ c2

w̄ w

Figure 1: An LP-tree equivalent to the set of CP-statements of Example 2.

Therefore, as shown by [51], CP-nets can be seen as sets of unary CP statements in conjunctive form with no free

attribute. Specifically, given a CP-netN overX , defineφN to be the set of all CP statements u :x≥x′, for every attribute

X , every u ∈ U where U is the set of parents of X in the graph, every x, x′ ∈ X such that x, x′ are consecutive values

in the linear order ≥ specified by the rule u :≥ of N . Then the dependency graph of φN , as defined in Section 3.3,

coincides with the graph of N . We call

CPnet = the language that contains all φN , for every CP-net N .

Note that CPnet ⊆ 1-CP∧⋫. For a given φ ∈ 1-CP∧⋫, being a CP-net necessitates a very strong form of local

consistency and completeness: for every attribute X with parents U in Dφ, for every u ∈ U , for every x, x′ ∈ X , φ
must explicitly, and uniquely, order ux and ux′.

[14] define TCP-nets as an extension of CP-nets where it is possible to represent tradeoffs, by stating that, under

some conditions, some attributes are more important than other ones. [51] describes how TCP-nets can be transformed,

in polynomial time, into equivalent sets of 1-CP∧ statements.

3.5 Lexicographic Preference Trees
LP-trees generalize lexicographic orders, which have been widely studied in decision making – see e.g. [32]. As an

inference mechanism, they are equivalent to search trees used by [11], and formalized by [48, 51]. As a preference

representation, and elicitation, language, slightly different definitions for LP-trees have been proposed by [9, 17, 30].

We use here a definition which subsumes the others.

An LP-tree that is equivalent to the set of CP-statements of Example 2 is depicted on Figure 1. More generally, an

LP-tree over X is a rooted tree with labelled nodes and edges, and a set of preference tables; specifically

• every node N is labelled with a set of attributes, denoted Var(N);

• if N is not a leaf, it can have one child, or |Var(N) | children;

• in the latter case, the edges that connect N to its children are labelled with the instantiations in Var(N);

• if N has one child only, the edge that connects N to its child is not labelled: all instantiations in Var(N) lead to the

same subtree;

• we denote by Anc(N) the set of attributes that appear in the nodes between the root and N (excluding those at N),

and by Inst(N) (resp. NonInst(N)) the set of attributes that appear in the nodes above N that have more than one

child (resp. only one child);

• a conditional preference table CPT(N) is associated with N : it contains local preference rules of the form α :≥,

where ≥ is a partial order over Var(N), and α is a propositional formula over some attributes in NonInst(N).

We assume that the rules in CPT(N) define their preorder over Var(N) in extension. Additionally, two constraints

guarantee that an LP-tree φ defines a unique preorder over X :

• no attribute can appear at more than one node on any branch of φ; and,

• at every node N of φ, for every u ∈ NonInst(N), CPT(N) must contain exactly one rule α :≥ such that u |= α.

Given an LP-tree φ and an alternative o ∈ X , there is a unique way to traverse the tree, starting at the root, and along

edges that are either not labelled, or labelled with instantiations that agree with o, until a leaf is reached. Now, given

two distinct alternatives o, o′, it is possible to traverse the tree along the same edges as long as o and o′ agree, until

either a leaf node is reached, or a node N is reached which is labelled with some W such that o[W] ̸= o′[W]: in the

latter case, we say that N decides {o, o′}.

In order to define ⪰φ for some LP-tree φ, let φ∗
be the set of all pairs of distinct alternatives (o, o′) such that there

is a node N that decides {o, o′} and the only rule α :≥ ∈ CPT(N) with o[NonInst(N)] = o′[NonInst(N)] |= α is such

that o[W]≥ o′[W]. Then ⪰φ is the reflexive closure of φ∗
. Note that if there is no node that decides {o, o′}, or if the

node that decides that pair is labelled with some W and if the local preference table is such that o[W] and o′[W] are

incomparable, then o ▷◁φ o
′
.

4

Proposition 1. Let φ be an LP-tree over X , then ⪰φ as defined above is a partial order. Furthermore, ⪰φ is a linear order

if and only if 1) every attribute appears on every branch and 2) every preference rule specifies a linear order.

An LP-tree φ is said to be complete if the two conditions in Proposition 1 hold, that is, if ⪰φ is a linear order.

From a semantic point of view, an LP-treeφ is equivalent to the set that contains, for every nodeN ofφ labelled with

W = Var(N), and every ruleα :≥αN inCPT(N), all CP statements of the formα∧u∧w[W \W ̸=] |V :w[W ̸=]≥w′[W ̸=],
where

• u is the combination of values given to the attributes in Inst(N) along the edges between the root and N , and

• w,w′ ∈W such that w≥αN w′
, and W ̸=

is the set of attributes on which w and w′
have distinct values; and

• V = [X − (Anc(N) ∪W)].

This set of statements indicate that alternatives that agree on Anc(N) and satisfy u ∧ α, but have different values for

Var(N), should be ordered according to ≥αN , whatever their values for attributes in V .

LPT = the language of LP-trees as defined above; we consider that LPT is a subset of CP.
6

Note that, using the notation defined above, k-LPT = LPT ∩ k-CP is the restriction of LPT where every node has

at most k attributes, for every k ∈ N; in particular, 1-LPT is the language of LP-trees with one attribute at each node;

and LPT∧ = LPT ∩ CP∧ is the restriction of LPT where the condition α in every rule at every node is a conjunction of

literals. Search trees of [48, 51] and LP-trees as defined by [9, 40] are sublanguages of 1-LPT∧; LP-trees of [30] and [17]

are sublanguages of LPT∧.

We also introduce a very restrictive class of LP-trees, which will turn out to have interesting properties when we

look at transformations.

k-LPTlin = the language that contains all linear k-LP-trees, that is, LP-trees where every node has at most k variables,

at most one child, and where all conditional preference rules are unconditional.

Complete, linear 1-LP trees represent the usual lexicographic orderings.

3.6 GAI decompositions
We also consider GAI decompostions [4, 38]. This framework allows the representation of complete and transitive prefer-

ence relations by a utility function, additively decomposed as a sum of local utility functions bearing on smaller subsets

of attributes. Each local utility function can for instance represent a criterion, the global preference deriving from the

additive aggregation of the satisfaction degrees provided by the different criteria.

A GAI decomposition over a set X of finite attributes is defined by a set φ = {gZ1
, . . . , gZm

} of functions bearing

on subsets Zi of X and taking their values in R ∪ {−∞}; for any alternative o, let gφ(o) = Σmi=1gzi(o[Zi]). The set φ
represents the complete and transitive relation ⪰φ in which o⪰φo′ if and only if gφ(o)≥ gφ(o

′). Thus ⪰φ is a weak

order.

The questions related to the succinctness of GAI representations depend on the way the local functions are repre-

sented – and so do all the questions related to the complexity of the operations on such representations. It is generally

assumed that each gZi
is represented by a table that associates to each tuple of the domain of Zi a real valued utility

and the tuples not present in the table receive the utility 0.

The most common restriction on the language of GAIs consists in bounding by some integer k > 0 the maximum

number of attributes in a same subutility; we denote by GAIk the corresponding language. In particular, GAI1 is the

language of Additive Utilities.

4 Expressiveness
This section presents our results on the expressiveness of the various languages introduced above. To this end, let us

introduce the way in which we compare different languages.

Definition 1. Let L and L′
be two languages for representing preorders. We say that L is at least as expressive as L′

,

written L ⊒ L′
, if every preorder that can be represented with a formula of L′

can also be represented with a formula of L;

we write L = L′
if L ⊒ L′

but it is not the case that L′ ⊒ L, and say in this case that L is strictly more expressive than L′
.

We write L ⊑⊒ L′
when the two languages are equally expressive.

6
Strictly speaking, for LPT ⊆ CP to hold, we can add the possibility to augment every formula in CP with a tree structure.

5

CP

CP∧

CP⋫

CP∧⋫

GAI

k-CP k-CP∧

LPT LPT∧

k-LPT k-LPT∧k-CP⋫ k-CP∧⋫

k-GAI

k-LPTlin
(k-1)-CP (k-1)-CP∧

(k-1)-CP⋫ (k-1)-CP∧⋫ (k-1)-LPT (k-1)-LPT∧

(k-1)-GAI

(k-1)-LPTlin

CPnet CPnet ̸⟳

L L′
: L is strictly more expressive than L′

Boxes contain languages that are equally expressive.

For k > 2.

Figure 2: Relative expressiveness.

We reserve the usual “rounded” symbols ⊂ and ⊆ for (strict) set inclusion, and ⊃ and ⊇ for the reverse inclusions.

Note that ⊒ is a preorder, and obviously L ⊇ L′
implies L ⊒ L′

.

Figure 2 gives a summary of the expressiveness results we show in this section. Note that the fact that acyclicity

restricts the expressiveness of CP-nets has been shown in e.g. [10].

Let us start exploring the relative expressiveness of different languages. Clearly, CP⋫ ⊂ CP and CP∧ ⊂ CP;

however, these three languages have the same expressiveness, because of the following:

Property 2. Given some preorder ⪰, define

φ = {o[X −∆(o, o′)] : o[∆(o, o′)]≥ o′[∆(o, o′)] | o ⪰ o′, o ̸= o′},

where ∆(o, o′) is the set of attributes that have different values in o and o′, then φ ∈ CP⋫∧, and ⪰φ = ⪰.

A large body of works on CP-statements since the seminal paper by [11] concentrate on various subsets of 1-CP.

With this strong restriction on the number of swapped attributes, CP-statements have a reduced expressiveness.

Example 3. Consider two binary attributes A and B, with respective domains {a, ā} and {b, b̄}. Define preorder ⪰ such

that ab ≻ āb̄ ≻ ab̄ ≻ āb. This can be represented in CP with φ = {ab≥ āb̄, b̄ : ā≥ a, ab̄≥ āb}. But it cannot be represented

in 1-CP: {b : a≥ ā, b̄ : ā≥ a, a : b≥ b̄, ā : b̄≥ b}∗ ⊆ φ∗
, but this is not sufficient to compare ab̄ with āb. The four remaining

formulas of 1-CP over these two attributes are B : a≥ ā, B : ā≥ a, A : b≥ b̄, A : b̄≥ b, adding any of them to φ yields a

preorder which would not be antisymmetric.

Forbidding free parts incurs an additional loss in expressiveness:

Example 4. Consider two binary attributes A and B, with respective domains {a, ā} and {b, b̄}. Define preorder ⪰ such

that ab ≻ ab̄ ≻ āb ≻ āb̄. This can be represented in 1-CP with φ = {B : a≥ ā, b≥ b̄}. But the “tradeoff” ab̄ ≻ āb cannot

be represented in 1-CP⋫, any formula of 1-CP⋫ that implies it will put some intermediate alternative between ab̄ and āb

However, restricting to conjunctive statements does not incur a loss in expressiveness.

Proposition 3. CP =
⋃
k∈N k-CP and, for every k ∈ N, k≥ 2:

CP∧ ⊑⊒ CP⋫ ⊑⊒ CP∧⋫ ⊑⊒ CP = k-CP ⊑⊒ k-CP∧ = k-CP⋫ ⊑⊒ k-CP∧⋫
k-CP = (k-1)-CP and k-CP∧⋫ = (k-1)-CP∧⋫ = CPnet.

Because an LP-tree can be a single node labelled with X , and a single preference rule ⊤ :≥ where ≥ can be any

partial order, LPT can represent any partial order. Limiting to conjunctive conditions in the rules is not restrictive.

However, restricting to 1-LPT reduces expressiveness, even if one considers formulas of 1-CP that represent total, linear

orders:

6

Example 5. Let φ = {a≥ ā, c̄ |A : b̄≥ b, āc : b̄≥ b, ac : b≥ b̄, a : c≥ c̄, ā |B : c̄≥ c}. This yields the following linear order:

abc ⪰φ ab̄c ⪰φ ab̄c̄ ⪰φ āb̄c̄ ⪰φ abc̄ ⪰φ ābc̄ ⪰φ āb̄c ⪰φ ābc. No ψ ∈ 1-LPT can represent it: A could not be at the root

of such a tree because for instance ab̄c̄ ⪰φ āb̄c̄ and āb̄c̄ ⪰φ abc̄; neither could C , since ab̄c ⪰φ ab̄c̄ and ābc̄ ⪰φ āb̄c; and

finally B could not be at the root either, because abc ⪰φ ab̄c and āb̄c̄ ⪰φ abc̄.

Proposition 4. LPT =
⋃
k∈N k-LPT and, for every k ∈ N:

CP = LPT ⊑⊒ LPT∧ = k-LPT ⊑⊒ k-LPT∧ = (k-1)-LPT

k-CP = k-LPT = k-LPTlin = (k-1)-LPTlin.

Finally, because GAI decompositions are restricted to the representation of complete preference relations, their

expressiveness is lower than the one of the general CP language; the latter can represent any transitive relation, so CP

is strictly more expressive than GAI. Subclasses of the CP language may be incomparable with GAI. The same line of

reasoning applies when comparing GAI and complete lexicographic trees: both target the representation of complete

orders, but the former language allows the representation of any complete preorder, while the latter can represent

linear orders only (antisymmetry is required). It follows that GAI are strictly more expressive than complete LP trees.

We summarize these observations below.

Proposition 5. CP = GAI = complete-LPT.

The second source of limitations on expressiveness comes from the bounding of the number of attributes present in

the expression of local preferences. Using the same counter example as those used for showing that CP is strictly more

expressive than k-CP, one can show that GAI and k-CP restrictions are incomparable in terms of expressiveness.

Proposition 6. For every k ∈ N: GAIk+1 = GAIk , and (k-1)-CP ̸= GAIk .

5 Succinctness
Another criterion is the relative sizes of formulas that can represent the same preorder in different languages. This

section details our results about the succinctness of the various languages introduced above.

Cadoli et al. [18] study the space efficiency of various propositional knowledge representation formalisms. An

often used definition of succinctness [35, 24] makes it a particular case of expressiveness, which is not a problem when

comparing languages of same expressiveness. However, we study here languages with very different expressiveness, so

we need a more fine grained definition:

Definition 2. Let L and L′
be two languages for representing preorders. We say that L is at least as succinct as L′

, written

L ≦ L′
, if there exists a polynomial p such that for every φ′ ∈ L′

, there exists φ ∈ L that represents the same preorder as

φ′
and such that |φ | < p(|φ′ |).7 Moreover, we say that L is strictly more succinct than L′

, written L ≪ L′
, if L ≦ L′

and for every polynomial p, there exists φ ∈ L such that:

• there exists φ′ ∈ L′
such that ⪰φ=⪰φ′ , but

• for every φ′ ∈ L′
such that ⪰φ=⪰φ′ , |φ′ |>p(|φ |).

With this definition, L≪L′
if every formula of L′

has an equivalent formula in L which is “no bigger” (up to

some polynomial transformation of the size of φ), and there is at least one sequence of formulas (one formula for every

polynomial p) in L that have equivalent formulas in L′
but necessarily “much bigger”.

8

Proposition 7. The following hold, for languages L, L′
, L′′

:

• if L ⊇ L′
then L ≦ L′

; and if L ≦ L′
, then L ⊒ L′

;

• if L ≪ L′
then L ≦ L′

and L′ ̸≦ L;

• if L ⊑⊒ L′
, the reverse implication holds:

if L ≦ L′
and L′ ̸≦ L then L ≪ L′

(otherwise, it might be that L′ ̸≦ L because L′ ̸⊒ L);

• if L ⊇ L′
and L′ ≪ L′′

, then L ≪ L′′
.

Restricting the conditioning part of CP statements to be conjunctions of literals leads to a loss in succinctness.

7
Where |φ | =

∑
α |V :w≥w′∈φ(|α |+ |V |+2 |Var(w) |), with |α | = the number of connectives plus the number of atoms of α.

8
When ≪ is defined as the strict counterpart of ≦, it can happen that L≪L′

even if there is no real difference in representation size in the two

languages, but L=L′
.

7

G
A
I

G
A
I k

G
A
I 1

C
P

1-
C
P⋫

1-
C
P⋫

∧
C
Pn

e
t

C
Pn

e
t
̸⟳

C
Pn

e
t̸
⟳
po
ly

LP
T

consistency ✘✘ ✘✘ ✘✘ ⊤ ⊤ ⊤
R-comparison, R ∈ {⪰,≻, ▷◁} ✓ ✓ ✓ ✘✘ ✘✘ ✘✘ ✘◦ ✘ ✓ ✓

∼-comparison ✓ ✓ ✓ ✘✘ ✘✘ ✘✘ ⊥ ⊥ ✓

eqivalence ✘✘ ✘◦ ✘◦ ✓ ✓ ✘◦
top-p ✓ ✓ ✓ ✓ ✓ ✓

undominated check ✘ ✘ ✓ ✘✘ ✘✘ ✘✘ ✓ ✓ ✓

undominated extract ✘◦ ✘◦ ✓ ✓ ✓ ✓

⪰-cut extraction ✘ ✘ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

≻-cut extraction ✘ ✘ ✓ ✘✘ ✘✘ ✘✘ ✓ ✓ ✓

≻-cut counting #✘ #✘ #✘ ✘✘◦ ✘✘◦ ✘✘◦ #✘◦ #✘◦ ✓

Each column corresponds to one sublanguage of CP. They are sorted in order of decreasing expressiveness from left to

right, except when columns are separated by double lines. For each query and sublanguage: ⊤ = always true for the

language; ⊥ = always false for the language; ✓ = polytime answer; ✘ = NP/coNP-complete query; ✘◦ = NP/coNP-hard

query; #✘= #P-complete query; #✘◦= #P-hard query; ✘✘ = PSPACE-complete query; ✘✘◦ = PSPACE-hard query.

Table 1: Complexity of queries.

Example 6. Consider 2n + 1 binary attributes X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, Z , and let φ contain 2n + 2 unary CP-

statements with no free attribute: (x1∨y1)∧(x2∨y2)∧. . .∧(xn∨yn) : z≥ z̄, ¬[(x1∨y1)∧(x2∨y2)∧. . .∧(xn∨yn)] : z̄≥ z
and x̄i≥xi and ȳi≥ yi for every i ∈ {1, . . . , n}. Then φ ∈ 1-CP⋫, but φ is not in conjunctive form. A set of conjunctive

CP-statements equivalent to φ has to contain all 2n statements of the form µ1µ2 . . . µn : z≥ z̄ with µi = xi or µi = yi for

every i.

Also, free attributes enable the succinct representation of the relative importance of some attributes over others;

disabling free attributes thus incurs a loss in succinctness:

Example 7. Consider n+ 1 binary attributes X1, X2, . . . , Xn, Y , let U = {X1, X2, . . . , Xn}, and let φ = {U | y≥ ȳ}.

Then φ∗ = {(uy, u′ȳ) |u, u′ ∈ U}, and φ∗
is equal to its transitive closure, so, if o ̸= o′, then o ⪰φ o′ if and only if

o[Y] = y and o′[Y] = ȳ. This can be represented, without free attribute, only with formula ψ that contains, for every

V ⊆ U and every v ∈ V , the statement vy≥ v̄ȳ, where v̄ denotes the tuple obtained by inverting all values of v. For every

0≤ i≤n there are

(
n
i

)
subsets of V of size i, with 2i ways to choose v ∈ V , thus ψ contains

∑n
0

(
n
i

)
2i = 3n statements.

Restricting to CP-nets yields a further loss in succinctness, as the next example shows:

Example 8. Consider n + 1 binary attributes X1, X2, . . . , Xn, Y , and let φ be the 1-CP⋫∧ formula that contains the

following statements: xi≥ x̄i for i = 1, . . . , n; x1x2 . . . xn : y≥ ȳ; x̄i : ȳ≥ y for i = 1, . . . , n. The size of φ is linear in n.

Because preferences for Y depend on all Xi’s, a CP-net equivalent to φ will contain, in the table for Y , 2n CP statements.

Proposition 8. The following hold:

• L ≪ L∧ for every L such that 1-CP⋫ ⊆ L ⊆ CP;

• L ≪ L⋫ for every L such that 1-CP∧ ⊆ L ⊆ CP;

• 1-CP⋫∧ ≪ CPnet.

We have seen that any complete preorder, and in particular the preference captured by any complete LP-tree can be

represented by a GAI. This representation comes with no increase in size.

Proposition 9. Any complete LPT can be transformed in polytime and space into an equivalent GAI.

6 Queries
Table 1 gives an overview of the tractability of the queries that we study in this section. We begin this section with the

two queries that have generated most interest in the literature on CP statements.

8

6.1 Consistency
Knowing that a given φ ∈ CP is consistent (that is, that ⪰φ is antisymmetric) is valuable, as it makes several other

queries easier. It also gives some interesting insights into the semantics of φ. The following query has been addressed

in many works on CP statements:

Consistency Given φ, is φ consistent?

[10] prove that when its dependency graphDφ is acyclic, then a CP-netφ is consistent. This result has been extended

by [25, 14, 51], who give weaker, sufficient syntactical conditions that guarantee that a locally consistent set of unary,

conjunctive CP statements is consistent. [36, Theorem 3 and 4] prove that consistency is PSPACE-complete for 1-
CP⋫∧. We have already seen that the preorder defined by any LP tree is antisymmetric.

6.2 Comparing alternatives
A basic question, given a formula φ and two alternatives o, o′ is: how do o and o′ compare, according to φ? Is it the case

that o ≻φ o′, or o′ ≻φ o, or o ▷◁φ o
′
, or o ∼φ o′? We define the following query, for any relation R ∈ {≻,⪰,∼, ▷◁}:

R-comparison Given formula φ, alternatives o ̸= o′, is it the case that oRφo
′
?

For LP-trees, in order to compare alternatives o and o′, one only has to traverse the tree from the root downwards

until a node that decides the pair is reached, or down to a leaf if no such node is encountered: in this case o and o′ are

incomparable. Note that checking if a node decides the pair, and checking if a rule at that node applies to order them,

can both be done in polynomial time. For generalized additive utilites, two alternatives can be compared by computing

their utilities, which is tractable.

Proposition 10. R-comparison is in P for LPT and for GAI for all relations R∈{≻,⪰,∼,▷◁}.

For CP, tractability of comparisons, except in some trivial cases, comes at a heavy price in terms of expressiveness:

⪰-comparison is tractable for CP-nets when the dependency graph is a polytree [10, Theorem 14], but [10, Theorems

15, 16] prove that ⪰-comparison is already NP-hard for the quite restrictive language of binary-valued, directed-path

singly connected CP-nets, which are acyclic. [36, Prop. 7, Corollary 1] prove that ⪰-comparison, ≻-comparison, ▷◁-
comparison and ∼-comparison are PSPACE-complete for 1-CP⋫∧ and for consistent, locally complete formulas of

1-CP⋫. More precise hardness results for acyclic CP-nets are also shown in [41]. Proposition 11 completes the picture.

Proposition 11. ≻-comparison and ▷◁-comparison are NP-hard for the language of acyclic CP-nets, and tractable for

polytree CP-nets.

6.3 Comparing theories
Checking if two theories yield the same preorder can be useful during the compilation process. We say that two formulas

φ and φ′
are equivalent if they represent the same preorder, that is, if ⪰φ and ⪰φ′ are identical; we then write φ ≡ φ′

.

Eqivalence Given two formulas φ and φ′
, are they equivalent?

Consider a formula φ ∈ CP, two alternatives o, o′, and let φ′ = φ ∪ {o≥ o′}: clearly o ⪰φ′ o′, thus φ ≡ φ′
if and

only if o ⪰φ o′. Therefore, if a language L ⊆ CP is such that adding the CP statement o≥ o′ to any of its formulas

yields a formula that is still in L, then eqivalence has to be at least as hard as ⪰-comparison for L. This is the case

of CP. The problem remains hard for 1-CP⋫, because it is hard to check the equivalence, in propositional logic, of the

conditions of statements that entail a particular swap x≥x′.

Example 9. Consider three attributes A, B and C with respective domains {a, ā}, {b, b̄} and {c1, c2, c3}. Consider two

CP statements s = ā : c1 ≥ c2 and s′ = b : c2 ≥ c3, and let φ = {s, s′, a : c1 ≥ c3}. Because of statements s and s′ we have

ābc1 ≥φ ābc2 ≥φ ābc3; also, abc1 ≥φ abc3 because of statement a : c1 ≥ c3. Hence, for any u ∈ A×B, if u |= a∨ (āb) then

uc1 ≥uc3. Thus φ ≡ φ∪{āb : c1 ≥ c3} ≡ φ∪{b : c1 ≥ c3}: the last equivalence follows from the fact that a∨(āb) ≡ a∨b.

Proposition 12. equivalence is coNP-hard for 1-CP⋫∧̸⟳, and for 1-LPT∧, both restricted to binary attributes.

As usual, comparing two formulas is easier for languages where there exists a canonical form. This is the case of

acyclic CP-nets, as shown by [39, Lemma 2]; their proof makes it clear that the canonical form of any acyclic CP-net φ
can be computed in polynomial time. Hence:

Proposition 13. Equivalence is in P for CP-net.

9

6.4 Top p alternatives
Given a set of alternatives S and some integer p, we may be interested in finding a subset S′

of S that contains p “best”

alternatives of S, in the sense that for every o ∈ S′
, for every o′ ∈ S \ S′

it is not the case that o′ ≻φ o. Note that such

a set must exist, because ≻φ is acyclic. The Top-p query is usually defined for totally ordered sets; a definition suited to

partial orders is given in [51] (where it is called ordering), we adopt this definition here:

Top-p Given S ⊆ X , p < |S |, and φ, find o1, o2, . . . , op ∈ S such that for every i ∈ 1, . . . , p, for every o′ ∈ S, if

o′ ≻φ oi then o′ ∈ {o1, . . . , oi−1}.

Note that if o1, o2, . . . , op is the answer to such query, if 1≤ i < j≤ p, then it can be the case that oi ▷◁ oj , but it is

guaranteed that oj ̸≻ oi: in the context of a recommender system for instance, where one would expect alternatives to

be presented in order of non-increasing preference, oi could be safely presented before oj .
[10] prove that top-p is tractable for acyclic CP-nets for the specific case where |S | = 2. More generally, ≻-

comparison queries can be used to compute an answer to a top-p query (by asking ≻-comparison queries for every

pair of elements of S, the number of such pairs being in Θ(|S |2)). Thus top-p is tractable for every language where

≻-comparison is tractable; this is the case in particular of GAI and LPT.

6.5 Optimization
Instead of ordering a given set, we may want to find a globally optimal alternative. We say that alternative o is undom-

inated if there is no o′∈X such that o′≻φo.
9

Note that any finite set of alternatives always has at least one undominated alternative. We will consider the fol-

lowing queries:

undominated extract Given φ, return an undominated alternative.

undominated check Given φ and an alternative o, is o undominated?

These queries are easily shown to be tractable for LPT.

For CP-nets, [10] give a polytime algorithm that computes the only undominated alternative when the dependency

graph is acyclic.

[36] prove that undominated check is PSPACE-complete for 1-CP⋫, and their reductions for proving hardness

indeed yield formulas of 1-CP⋫∧.

For GAI1, extracting an undominated alternative can be performed by separately maximizing the unary utilities; and

checking if a given alternative is undominated can be done by comparing its utility to that of an extracted undominated

alternative. Undominated extract and undominated check are both NP-hard for GAI2 and thus for GAI and GAIk in the

general case. We will see these results in the next subsection where we make several similar constructions (Proposition

18).

6.6 Cuts
Cuts are sets of alternatives that are at the same “level” with respect to ⪰. For rankings defined with real-valued

functions, cuts are defined with respect to possible real values. In the case of pre-orders, we define cuts with respect to

some alternative o: given φ ∈ CP, for any R ∈ {≻,⪰}, for every alternative o, we define

CUTR,o(φ) = {o′ ∈ X | o′ ̸= o, o′Rφo}.

Following [31], we define two families of queries:

R-cut extraction Given φ, o, return an element of CUTR,o(φ) (or that it is empty)

R-cut counting Given φ, o, count the elements of CUTR,o(φ)

Note that

Proposition 14. ⪰-cut counting and ≻-cut counting are #P-hard for CP-nets and acyclic CP-nets.

Proposition 15. ≻-cut counting is #P-complete for GAI, GAIk and GAI1.

Proposition 16. ⪰-cut extraction is tractable for CP, and ≻-cut extraction is tractable for acyclic CP-nets. ≻-cut

counting and ≻-cut extraction are PSPACE-hard for 1-CP⋫∧. ≻-cut extraction, ⪰-cut extraction and ≻-cut

counting are tractable for LP-trees.

9
[36] say that o is in this case “weakly undominated”. They also say that o is: undominated if there is no o′ ∈ X , o′ ̸= o, such that o′ ⪰φ o;

dominating if for every o′ ∈ X , o ⪰φ o′; strongly dominating if for every o′ ∈ X with o′ ̸= o, o ≻φ o′. The complexity of queries related to the

latter three definitions is studied in [29].

10

G
A
I

G
A
I k

G
A
I 1

C
P

1-
C
P

1-
C
P⋫

1-
C
P⋫

∧
C
Pn

e
t

C
Pn

e
t̸
⟳

C
Pn

e
t̸
⟳
po
ly

LP
T

1-
LP

T
lin

c
o
m

p
l
e
t
e

conditioning ✓ ✓ ✓ ✓ ✓

conjunction

disjunction

Lower projection ✓ ✓

Weak opt. proj. ✘◦ ✘◦ ✓ ✓

Strong opt. proj. ✘◦ ✘◦ ✓ ✓

Each column corresponds to one sublanguage of CP. They are sorted in order of decreasing expressiveness from left to

right, except when columns are separated by double lines. For each transformation and sublanguage: ✓ = polytime

answer; ✘◦ = NP/coNP-hard transformation; = transformation result may be outside the language.

Table 2: Complexity of Transformations.

Proposition 17. ⪰-cut extraction,≻-cut extraction, undominated check, andundominated extract are tractable

for GAI1.

The problems above become intractable as soon as we allow utility functions of arity at least 2.

Proposition 18. ⪰-cut extraction and ≻-cut extraction are NP-complete for GAIk for k ≥ 2 and GAI. undominated
check is coNP-complete and undominated extract is NP-hard for GAIk for k ≥ 2 and for GAI.

7 Transformations
Several transformations have been studied in the literature on knowledge compilation. A transformation takes as in-

put one or more formulas, and, possibly, other arguments like some attributes, and returns another formula. Table 2

summarizes our results on these transformations. As can be seen from the table, for many sublanguages of CP and

transformations, the result of the transformation may be outside that sublanguage.

7.1 Conditioning
Several studies, in particular in the context of propositional logic like e.g. [24] work with a syntactic definition of this

transformation; however, in logic, these definitions have a clear semantic counterpart. In the case of CP statements,

we shall see that there are languages for which the transformation cannot always be applied, so we give a semantic

description, similar to the one given by [31].

Given a preference relation ⪰ on X and a partial instantiation u ∈ U for some U ⊆ X , let ⪰|u
be the relation

defined for every r, r′ ∈ X − U by r ⪰|u r′ if and only if ru ⪰ r′u. It is straightforward to check that ⪰|u
is a preorder.

Conditioning a formula φ in a language consists in computing a formula of the same language representing ⪰|u
φ .

conditioning Given a language L, a formula φ of L and an instantiation u ∈ U ⊆ X , compute a formula φ′ ∈ L that

represents ⪰|u
φ .

For LPT, a simple syntactic transformation on a formula φ allows, for every attribute X and every value x ∈ X , to

represent ⪰| x
φ : for every nodeN , whose label containsX , removeX from the label ofN , remove the node if it contains

no other attribute; if N has several children, keep only those that correspond to instantiation X = x (there will only

be one if the label of N contains no other attribute); at the nodes below N , replace every rule α :≥ by α| x :≥, where

α| x
is the result of conditioning applied to α, as defined by e.g. [24]; remove the rule if α| x |= ⊥; otherwise, since we

assume that ≥ is given in extension, it is easy to keep only the pairs (u, u′) such that u[X] = u′[X] = x and remove x
from them. This can be performed with a single traversal of the tree.

Even simpler, conditioning a GAI with X = x amounts to removing from every sub-utility that bears on X the

cases where X ̸= x.

The next example is an acyclic CP-net, whose dependency graph is even linear, for which there is a conditioning

transformation, the result of which cannot be expressed in 1-CP⋫.

11

Example 10. Consider 3 binary attributes A,B,C , with respective domains {a, ā}, {b, b̄}, {c, c̄}, and let

φ = {a≥ ā, a : b≥ b̄, ā : b̄≥ b, b : c≥ c̄, b̄ : c̄≥ c}.

The underlying, acyclic dependency graph has set of edges {(A,B), (B,C)}. Then abc ⪰φ abc̄ ⪰φ ab̄c̄ ⪰φ āb̄c̄ ⪰φ āb̄c ⪰φ
ābc ⪰φ ābc̄, thus abc ⪰φ abc̄ ⪰φ ābc ⪰φ ābc̄, that is: ac ⪰| b

φ ac̄ ⪰| b
φ āc ⪰| b

φ āc̄. However, ⪰| b
φ cannot be represented in

1-CP⋫.

Note that, in the example above, ⪰| b
φ can be represented in 1-CP, with formula {|C : a≥ ā, c≥ c̄, }. The next example

is another CP-net, with a cycle in the dependency graph, for which there is a conditioning transformation, the result of

which cannot be expressed in 1-CP.

Example 11. Consider 3 binary attributes A,B,C , with respective domains {a, ā}, {b, b̄}, {c, c̄}, and let

φ = {bc̄ : ā≥ a,¬(bc̄) : a≥ ā, c : b≥ b̄, c̄ : b̄≥ b, a : c≥ c̄, ā : c̄≥ c}.

The underlying dependency graph has set of edges {(B,A), (C,A), (C,B), (A,C)}, it is not acyclic. φ represents the

preorder that is the transitive closure of abc ⪰φ ab̄c ⪰φ ab̄c̄ ⪰φ āb̄c̄ ⪰φ ābc̄ ⪰φ ābc ⪰φ āb̄c and ābc̄ ⪰φ abc̄, thus

ac ⪰| b
φ āc̄ ⪰| b

φ āc and āc̄ ⪰| b
φ ac̄: φ∗

contains all swaps sanctioned by the 1-CP⋫statements c : a≥ ā (because ac ⪰| b
φ āc),

c̄ : ā≥ a, a : c≥ c̄ and ā : c̄≥ c, but these statements do not entail that ac is preferred over āc̄.

Since CP can represent any preorder, the result of a conditioning transformation can be expressed in CP.

7.2 Conjunction
Conjunction is classical for Boolean functions: given two Boolean functions fLφ and fLψ represented in a language L,

one looks for an L representation of fLφ ∧ fLψ . An analogous definition is also possible when considering formulas

representing preferences:

Conjunction Given a language L, two formulas φ and ψ of L compute a formula χ of L such that o ⪰χ o′ if and only

if o ⪰φ o′ and o ⪰ψ o′.

This definition corresponds to the classical unanimity rule used in ordinal aggregation.

The conjunction of two preorders is a preorder, thus CP is closed under conjunction. Furthermore, the conjunction

of two antisymmetric preorders is antisymmetric too, thus LPT is closed under conjunction

The GAI language is not complete for such a transformation: the expressiveness of this languages is limited to

complete relations whereas the conjunction of two complete preference relations is not complete in the general case.

Consider for instance a GAI decomposition φ such that there at least two alternatives o and o′ with o ≻φ o′, and let

ψ be the GAI decomposition defined by gψ(o) = −gφ(o) for every alternative o: then o′ ≻ψ o and o′ ▷◁χ o, where χ
denotes the conjunction of φ and ψ. Note that this also applies if φ ∈ GAI1, therefore neither GAI nor GAI1 are closed

under conjunction.

The next example shows that the languages CPnet ̸⟳poly
, CPnet ̸⟳ and CPnet are not closed under conjunction.

Example 12. Consider the following two CP-nets in variables A,B: φ with statements a ≥ ā, a : b≥ b̄ and ā : b̄≥ b and

ψ with statements ā ≥ a, a : b≥ b̄ and ā : b̄ ≥ b. The directed graph over the variables in both cases is a polytree that has A
as the parent of B, so both φ and ψ are indeed polytree CP-nets. The complete orders induced by φ and ψ are respectively

ab ⪰φ ab̄ ⪰φ āb̄ ⪰φ āb,

āb̄ ⪰ψ āb ⪰ψ ab ⪰ψ ab̄.
Then the only preferences in ⪰φ∧ψ are ab ⪰φ∧ψ ab̄ and āb̄ ⪰φ∧ψ āb. This cannot be expressed by a CP-net, since any

CP-net on {A,B} orders the four unary swaps, in particular any CP-net must order for instance {āb̄, ab̄}, which ⪰φ∧ψ does

not. It cannot be represented with an LP-tree nor with a utility since it is not a complete relation.

We now give an example that shows that 1-CP, 1-CP⋫, and 1-CP⋫∧ are not closed under conjunction.

Example 13. Consider the following two sets of CP-statements over binary attributesA andB: φ = {b : ā > a, a : b> b̄, b̄ : a> ā}
and ψ = {a : b̄ > b, b : a> ā, ā : b> b̄}. Both φ and ψ are in 1-CP⋫∧. The two sets respectively induce the orders

āb ⪰φ ab ⪰φ ab̄ ⪰φ āb̄,

ab̄ ⪰ψ ab ⪰ψ āb ⪰ψ āb̄.
For the conjunction, we get that ab ⪰φ∧ψ āb̄ and ab is incomparable to the other two alternatives. Thus, this conjunction

cannot be expressed by a 1-CP, since we cannot go from ab to āb̄ in a 1-CP without any intermediate flips.

Many rules of ordinal aggregation could be considered and this opens a large stream of research which is out of

the scope of the present paper - e.g. scoring rules like Borda’s, for which the GAI framework is obviously a good

candidate language. LP trees on the other hand will probably fail to handle such rules, because the aggregation of several

lexicographic orders is generally not a lexiocographic order. The CP language in itself as such is neither powerful enough

to encompass most of the rules, but extensions have been proposed that typically address this question [44].

12

7.3 Disjunction
We can define the disjunction operation by symmetry:

Disjunction Given a language L and two formulas φ and ψ of L, compute a formula χ′
of L such that o ⪰χ′ o′ if and

only if o ⪰φ o′ or o ⪰ψ o′.

Such a definition is nevertheless not really significant in the domain of preference handling, since the disjunction

of two transitive relations is generally not transitive: it can happen that o ≻φ o′, o′ ≻ψ o” but neither o ≻φ o” nor

o ≻ψ o”.

Example 14. φ is the linear 1-LPT where B is more important than A with a preferred to ā and b̄ preferred to b; ψ is the

linear 1-LPT where A is more important than B with a preferred to ā and b preferred to b̄. We get

ab̄ ≻φ āb̄ ≻φ ab ≻φ āb and ab ≻ψ ab̄ ≻ψ āb ≻ψ āb̄

Now, āb̄ ≻φ ab and ab ≻ψ ab̄, but āb̄ ̸≻φ ab̄ and āb̄ ̸≻ψ ab̄. Note that φ and ψ can be represented with additive utilities

and with CP-nets.

This shows that none of the languages studied in this paper is complete for disjunction.

7.4 Variable elimination
We next consider transformations where the information is projected onto a subset of the initial variables of interest.

This is also called variable elimination. In an interactive setting, like product configuration, it enables the user to focus

on her preferences over a subset of the variables, which may be less daunting than considering the preferences over

the entire set of variables. Variable elimination is a well-known technique in propositional logic, as well as in many

graphical models like Bayesian networks or constraint satisfaction problems (weighted or not), where it is a component

of some efficient query answering algorithms, that can be used for instance for GAIs. (See e.g. [20] for a recent unified

description and overview of algorithmic aspects of graphical models.)

Variable elimination has not been studied much in the context of preferences in general. In a pioneering work, [6, 5]

distinguish several ways to define the projection of a preference relation onto a subset of variables. Given a preorder ⪰
and a set of variable U ⊆ X , let V = X \ U , they first consider two relations defined on V :

Lower projection v ⪰↓V
low

v′ if and only if uv ⪰ uv′ for every u ∈ U ;

Upper projection v ⪰↓V
up

v′ if and only if uv ⪰ uv′ for some u ∈ U .

It is easy to see that ⪰↓V
low

and ⪰↓V
up

are respectively the conjunction and the disjunction of the relations obtained by

conditioning the original relation by every combination of value for X \ U .

Let us also consider what [5] call the optimistic projections of ⪰ on V :

Weak optimistic projection v ⪰↓V
w.opt.

v′ if and only if for every u′ ∈ U , there is u ∈ U , such that uv ⪰ u′v′.

Strong optimistic projection v ⪰↓V
s.opt.

v′ if and only if there is u ∈ U , such that for every u′ ∈ U , uv ⪰ u′v′.

[6] prove that ⪰↓V
w.opt.

extends ⪰↓V
low

and ⪰↓V
s.opt.

(if o ⪰↓V
low

o′ (resp. o ⪰↓V
s.opt.

o′), then o ⪰↓V
w.opt.

o′), and that the weak

and strong optimistic projections are identical when ⪰ is a weak order.
10

Proposition 19. Given a preorder ⪰ over X , given V ⊆ X , let U ⊆ X \ V . If v, v′ ∈ V and v ⪰↓V
w.opt.

v′, then there is

some u ∈ U such that for no u′ ∈ U it holds that u′v′ ≻ uv.

The proposition above indicates that if v ⪰↓V
w.opt.

v′, then a decision maker may safely focus on v, without risking

missing a strictly better full alternative that would extend v′. Note that this holds too if v ⪰↓V
s.opt.

v′ or if v ⪰↓V
low

v′, since

both imply v ⪰↓V
w.opt.

v′. From a preference representation point of view, the weak optimistic projection seems more

interesting, as it is the one that keeps the most information – it contains the other two.

We define the following transformations, for any projection π ∈ {low, up, s.opt,w.opt}:

π-projection Given some language L, some formula φ ∈ L, some subset of variables V , return a formula ψ ∈ L such

that ⪰ψ= (⪰φ)↓Vπ .

10
[6] also define pessimistic counterparts of the optimistic projections: v ⪰↓V

w.pess. v
′

if and only if for every u ∈ U , there is u′ ∈ U , such that

uv ⪰ u′v′; and v ⪰↓V
s.pess. v

′
if and only if there is u′ ∈ U , such that for every u ∈ U , uv ⪰ u′v′. We do not consider them here because their

significance, from a decision making point of view, is not clear.

13

The next example shows that the languages GAI and CP-net, CPnet̸⟳ and CPnet̸⟳poly
are not closed under lower

projection.

Example 15. Consider the preference relation ab ≻ ab̄ ≻ āb̄ ≻ āb. This relation can be represented with a utility function,

and by an acyclic, polytree CP-net where A has no parent and is the only parent of B.

The elimination of A by lower projection will lead to the preorder in which the only two alternatives b and b̄ are incom-

parable due to ab ≻ ab̄ and āb ≺ āb̄. Thus the lower projection cannot be expressed by a GAI, nor with a CP-net since a

CP-net over {B} has only one node labelled with B and the associated table must order the pair of values {b, b̄}; nor with

a complete LP-tree.

We will next see that the 1-CP families are not closed under lower projection either.

Example 16. The idea is to modify the construction in Example 13 by adding an additional variable C to simulate con-

junction. So we consider the 1-CP⋫∧formula

φ = {cb : ā > a, ca : b> b̄, cb̄ : a> ā, c̄a : b̄ > b, c̄b : a> ā, c̄ā : b> b̄}.

In the resulting preorder we have

cāb ⪰φ cab ⪰φ cab̄ ⪰φ cāb̄, c̄ab̄ ⪰φ c̄ab ⪰φ c̄āb ⪰φ c̄āb̄,

and all other pairs of alternatives are incomparable.

When eliminating C by lower projection, we get ab ⪰↓{A,B}
φ,low āb̄ and ab is incomparable to the other alternatives.

However, as we have seen before, this cannot be expressed by a 1-CP, since we cannot go from ab to āb̄ in a 1-CP without

any intermediate flips.

Most of the languages considered in this paper are not complete for the upper projection, because this projection

may lead to a non transitive relation (since the disjunction of two relations is not necessarity transitive), except LPTlin

and GAI1.
11

Example 17. We simply construct an LP tree on {A,B,C} that has C as the attribute in the root with two children; for

the left child of C , the LPT tree for φ from Example 14 is used, for the right child LPT for the relation ψ is used. Then, when

we apply upper projection on C , we get the disjunction of the orders φ and ψ which, as argued before, cannot be expressed

as an LPT.

As previously, the same counter example holds when considering GAI nets.

Interestingly, linear 1-LP trees and additive utilities (GAI1) avoid the problems in these two counterexamples.

Proposition 20. All four projections defined above are equivalent for the 1-GAI language and the language that contains

complete LP-trees of 1-LPTlin, and can be computed in polynomial time.

We next show that if both the conditioning and the weak optimistic projection can be done in polynomial time on

a language, then an undominated alternative o can be obtained in polynomial time, as well.

Proposition 21. If conditioning can be done in polynomial time for language L but the extraction of an undominated

alternative is NP-hard, then the strong optimistic projections cannot be computed in polynomial time for L (unless P = NP).

A direct corollary is that GAI and GAIk (k > 1) fail to provide strong and weak optimistic projections in polynomial

time (unless P = NP) - since (i) the extraction of an undominated alternative is NP-hard for these languages and (ii)

they support conditioning in polytime.

Proposition 22. The strong (resp. weak) projection cannot be computed in polytime for GAI and GAIk (k > 1) (unless

P = NP).

The next example shows that the weak and strong optimistic projections of the preorder induced by an acyclic CP-net

cannot always be represented in 1-CP.

Example 18. Consider a CP-netN over three binary attributesA, B and C , with respective domains {a, ā}, {b, b̄}, {c, c̄}:

A

a≥ ā

B

a : b≥ b̄
ā : b̄≥ b

C

ab, āb̄ : c≥ c̄
āb, ab̄ : c̄≥ c

Let ⪰ denote the linear order represented by N : abc ⪰ abc̄ ⪰ ab̄c̄ ⪰ ab̄c ⪰ āb̄c ⪰ āb̄c̄ ⪰ ābc̄ ⪰ ābc, and it can be checked

that ⪰↓AC
w.opt.

is the relation that corresponds to the set of CP-statements {a≥ ā, c≥ c̄, ac̄≥ āc}, which is not included in 1-CP:

they correspond to a CP-net where A and C are preferentially independent but with the additional trade-off ac̄≥ āc. Since

⪰ is complete, ⪰↓AC
s.opt.

is the same as ⪰↓AC
w.opt.

[5].

11
[6, 5] in fact define the upper projection to be the transitive closure of the relation that we denote by ⪰↓V

U above. However this means completing

a relation when there is not necessarily a justification to do so.

14

8 Conclusion
The literature on languages on CP statements has long focused on statements with unary swaps. Several examples

in Section 4 show that this strongly degrades expressiveness. Table 1 shows that comparison queries seem to resist

tractability for CP-statements, but the top-p query may be sufficient in many applications. The practical interest of

CP-nets also lies in the fact that with this language, finding an optimal (undominated) alternative is easy [10].

Contrastingly, with GAIs, it is easy to compare alternatives, but computing an undominated alternative is only

tractable in the very restrictive case of additive utilities (GAI1).

Tractability of the eqivalence query relies on the existence of canonical form: it is the case when the language

enforces a structure like a dependency graph or a tree, and when the conditions of the statements are restricted to some

propositional language with a canonical form.

As for transformations, the languages of (generalized) additive utilities and LP trees seem to offer better prospects,

as in both cases conditioning is tractable – whereas conditioning a formula of the most studied sublanguages of CP does

not always result in a formula in the same language. Note however that for projections, tractability necessitates very

strong restrictions (it only holds for GAI1 and 1-LPTlin.

An important direction for future work is to study the properties of the various languages studied here with respect

to machine learning: in some context, preferences can be learnt, either through some interaction with the current user

of a system, or from data gathered during past interactions. The complexity of this learning phase can influence the

choice of preference model, depending on the type of interaction and on the amount of data available, and also on the

computational complexity of the learning algorithms. Preliminary results about the complexity of learning CP-nets,

GAIs, LP-trees can be found in e.g. [9, 39, 19, 7, 1, 3, 2, 28].

Acknowledgements We thank anonymous referees for their valuable comments. This work has benefited from the

AI Interdisciplinary Institute ANITI. ANITI is funded by the French ”Investing for the Future – PIA3” program under

grant agreement ANR-19-PI3A-0004. This work has also been supported by the PING/ACK project of the French National

Agency for Research, grant agreement ANR-18-CE40-0011.

15

Bibliography

[1] Eisa Alanazi, Malek Mouhoub, and Sandra Zilles. The complexity of learning acyclic CP-nets. In Subbarao Kamb-

hampati, editor, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI 2016),

page 1361–1367. IJCAI/AAAI Press, 2016.

[2] Eisa Alanazi, Malek Mouhoub, and Sandra Zilles. The complexity of exact learning of acyclic conditional preference

networks from swap examples. Artififical Intelligence, 278, 2020.

[3] Thomas E. Allen, Cory Siler, and Judy Goldsmith. Learning tree-structured CP-nets with local search. In Vasile

Rus and Zdravko Markov, editors, Proceedings of the Thirtieth International Florida Artificial Intelligence Research

Society Conference (FLAIRS 2017), pages 8–13. AAAI Press, 2017.

[4] Fahiem Bacchus and Adam J. Grove. Graphical models for preference and utility. In Philippe Besnard and Steve

Hanks, editors, UAI, pages 3–10. Morgan Kaufmann, 1995.

[5] Philippe Besnard, Jérôme Lang, and Pierre Marquis. Variable forgetting in preference relations over combinatorial

domains. In Brewka et al. [16], page 763–764.

[6] Philippe Besnard, Jérôme Lang, and Pierre Marquis. Variable forgetting in preference relations over combinatorial

domains. In Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling (MPREF’05),

2005.

[7] Damien Bigot, Hélène Fargier, Jérôme Mengin, and Bruno Zanuttini. Using and learning GAI-decompositions for

representing ordinal rankings. In Fürnkranz and Hüllermeyer [33], page 5–10.

[8] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chattrakul Sombattheera. Learning various

classes of models of lexicographic orderings. Rapport de recherche IRIT/RR–2009-21–FR, IRIT, Université Paul

Sabatier, Toulouse, juin 2009.

[9] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chattrakul Sombattheera. Learning condition-

ally lexicographic preference relations. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proceedings

of the 19th European Conference on Artificial Intelligence (ECAI 2010), volume 215 of Frontiers in Artificial Intelligence

and Applications, page 269–274. IOS Press, 2010.

[10] Craig Boutilier, Romen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole. CP-nets: a tool for

representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence

Research, 21:135–191, 2004.

[11] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David Poole. Preference-based con-

strained optimization with CP-nets. Computational Intelligence, 20(2):137–157, 2004.

[12] Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. Reasoning with conditional ceteris paribus

preference statements. In Kathryn B. Laskey and Henri Prade, editors, Proceedings of the 15th Annual Conference

on Uncertainty in Artificial Intelligence (UAI-99), page 71–80. Morgan Kaufmann, 1999.

[13] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. Conditional importance networks: A graphical language for

representing ordinal, monotonic preferences over sets of goods. In Craig Boutilier, editor, Proceedings of the 21st

International Joint Conference on Artificial Intelligence (IJCAI’09), page 67–72, 2009.

[14] Ronen I. Brafman, Carmel Domshlak, and Solomon E. Shimony. On graphical modeling of preference and impor-

tance. Journal of Artificial Intelligence Research, 25:389–424, 2006.

[15] Darius Braziunas and Craig Boutilier. Local utility elicitation in GAI models. In Fahiem Bacchus and Tommi

Jaakkola, editors, Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI’05), page 42–49.

AUAI Press, 2005.

16

[16] Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors. Proceedings of the 17th European

Conference on Artificial Intelligence (ECAI 2006), Frontiers in Artificial Intelligence and Applications. IOS Press,

2006.

[17] Michael Bräuning and Eyke Hüllermeyer. Learning conditional lexicographic preference trees. In Fürnkranz and

Hüllermeyer [33], page 11–15.

[18] Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf. Space efficiency of propositional knowl-

edge representation formalisms. Journal of Artificial Intelligence Research, 13:1–31, 2000.

[19] Yann Chevaleyre, Frédéric Koriche, Jérôme Lang, Jérôme Mengin, and Bruno Zanuttini. Learning ordinal pref-

erences on multiattribute domains: the case of CP-nets. In Johannes Fürnkranz and Heike Hüllermeier, editors,

Preference learning, page 273–296. Springer, 2011.

[20] Martin C. Cooper, Simon de Givry, and Thomas Schiex. Graphical models: Queries, complexity, algorithms (tuto-

rial). In Christophe Paul and Markus Bläser, editors, Proceedings of the 37th International Symposium on Theoretical

Aspects of Computer Science (STACS 2020), volume 154 of LIPIcs, page 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020.

[21] Sylvie Coste-Marquis, Jérôme Lang, Paolo Liberatore, and Pierre Marquis. Expressive power and succinctness of

propositional languages for preference representation. In Dubois et al. [26], page 203–212.

[22] Yves Crama and Peter L. Hammer. Boolean Functions - Theory, Algorithms, and Applications, volume 142 of Ency-

clopedia of mathematics and its applications. Cambridge University Press, 2011.

[23] Adnan Darwiche. Compiling knowledge into decomposable negation normal form. In Thomas Dean, editor, Pro-

ceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI 99), page 284–289. Morgan

Kaufmann, 1999.

[24] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence Research,

17:229–264, 2002.

[25] Carmel Domshlak and Ronen I. Brafman. CP-nets: Reasoning and consistency testing. In Dieter Fensel, Fausto

Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, Proceedings of the Eights International

Conference on Principles of Knowledge Representation and Reasoning (KR-02), page 121–132. Morgan Kaufmann,

2002.

[26] Didier Dubois, Christopher A. Welty, and Mary-Anne Williams, editors. Proceedings of the Ninth International

Conference on the Principles of Knowledge Representation and Reasoning. AAAI Press, 2004.

[27] Piotr Faliszewski and Lane A. Hemaspaandra. The complexity of power-index comparison. Theor. Comput. Sci.,

410(1):101–107, 2009.

[28] Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin, and Bao Ngoc Le Nguyen. The complexity of unsu-

pervised learning of lexicographic preferences. In Meltem Öztürk, Paolo Viappiani, Christophe Labreuche, and

Sébastien Destercke, editors, Proceedings of the 13th Multidisciplinary Workshop on Advances in Preference Han-

dling, 2022. Also on CoRR: 10.48550/arXiv.2209.11505.

[29] Hélène Fargier and Jérôme Mengin. A knowledge compilation map for conditional preference statements-based

languages. In Frank Dignum, Ulle Endriss, Alessio Lomuscio, and Ann Nowé, editors, Proceedings of the 20th

International Conference on Autonomous Agents and Multiagent Systems. International Foundation for Autonomous

Agents and Multiagent Systems, 2021.

[30] Hélène Fargier, Pierre Francois Gimenez, and Jérôme Mengin. Learning lexicographic preference trees from pos-

itive examples. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence (AAAI 2018), page 2959–2966. AAAI Press, 2018.

[31] Hélène Fargier, Pierre Marquis, Alexandre Niveau, and Nicolas Schmidt. A knowledge compilation map for ordered

real-valued decision diagrams. In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, page 1049–1055. AAAI Press,

2014.

[32] Peter C. Fishburn. Lexicographic orders, utilities and decision rules: A survey. Management Science, 20(11):pp.

1442–1471, 1974.

[33] Johannes Fürnkranz and Eyke Hüllermeyer, editors. Preference Learning: Problems and Applications in AI. Proceed-

ings of the ECAI 2012 workshop, 2012.

17

[34] Gerd Gigerenzer and Daniel G. Goldstein. Reasoning the fast and frugal way: Models of bounded rationality.

Psychological Review, 103(4):650–669, 1996.

[35] Goran Gogic, Henry A. Kautz, Christos H. Papadimitriou, and Bart Selman. The comparative linguistics of knowl-

edge representation. In Mellish [42], page 862–869.

[36] Judy Goldsmith, Jérôme Lang, Miroslaw Truszczynski, and Nic Wilson. The computational complexity of domi-

nance and consistency in CP-nets. Journal of Artificial Intelligence Research, 33:403–432, 2008.

[37] Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In Dubois et al. [26], page 224–233.

[38] Christophe Gonzales and Patrice Perny. GAI networks for utility elicitation. In Didier Dubois, Christopher A.

Welty, and Mary-Anne Williams, editors, KR2004), pages 224–234, 2004.

[39] Frédéric Koriche and Bruno Zanuttini. Learning conditional preference networks. Artificial Intelligence,

174(11):685–703, 2010.

[40] Jérome Lang, Jérome Mengin, and Lirong Xia. Voting on multi-issue domains with conditionally lexicographic

preferences. Artificial Intelligence, 265:18–44, 2018.

[41] Thomas Lukasiewicz and Enrico Malizia. Complexity results for preference aggregation over (m)CP-nets: Pareto

and majority voting. Artificial Intelligence, 272:101–142, 2019.

[42] Chris S. Mellish, editor. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI

95). Morgan Kaufmann, 1995.

[43] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[44] Francesca Rossi, Kristen Brent Venable, and Toby Walsh. mCP nets: Representing and reasoning with preferences

of multiple agents. In AAAI, volume 4, pages 729–734, 2004.

[45] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued constraint satisfaction problems: Hard and easy

problems. In Mellish [42], page 631–639.

[46] Michael Schmitt and Laura Martignon. On the complexity of learning lexicographic strategies. Journal of Machine

Learning Research, 7:55–83, 2006.

[47] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410–421, 1979.

[48] Nic Wilson. Consistency and constrained optimisation for conditional preferences. In Ramón López de Mántaras

and Lorenza Saitta, editors, Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), page

888–892. IOS Press, 2004.

[49] Nic Wilson. Extending CP-nets with stronger conditional preference statements. In Deborah L. McGuinness and

George Ferguson, editors, Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI’04),

page 735–741. AAAI Press / The MIT Press, 2004.

[50] Nic Wilson. An effcient upper approximation for conditional preference. In Brewka et al. [16].

[51] Nic Wilson. Computational techniques for a simple theory of conditional preferences. Artificial Intelligence,

175:1053–1091, 2011.

1 Proofs for Section 3 (Languages)
Proposition 1. Let φ be an LP-tree over X , then ⪰φ as defined above is a partial order. Furthermore, ⪰φ is a linear order

if and only if 1) every attribute appears on every branch and 2) every preference rule specifies a linear order.

Proof. By definition, ⪰φ is reflexive. The fact that it is antisymmetric follows from the antisymmetry of the local pref-

erence relations in the conditional preference tables. For transitivity, the proof given by [8] is for a restricted family

of LP-trees, so we recast it here for our more general family of LP-trees. Suppose that o ⪰φ o′ ⪰φ o′′ and o, o′,
o′′ are distinct. There must be a node N at which {o, o′} is decided, let W be the set of attributes that labels N ,

then o[Anc(N)] = o′[Anc(N)], and there is one rule α :≥ such that o[NonInst(N)] = o′[NonInst(N)] |= α and

o[W]≥ o′[W]. Similarly, let N ′
be the node at which {o′, o′′} is decided, let W ′

be the set of attributes that labels

N ′
, then o[Anc(N ′)] = o′[Anc(N ′)], and there is one rule α′ :≥′

s.t. o′[NonInst(N ′)] = o′′[NonInst(N ′)] |= α′
and

o′[W ′]≥′ o′′[W ′]. If N = N ′
, then o[Anc(N)] = o′[Anc(N)] = o′′[Anc(N)], and o[W]>o′[W]>o′′[W] since ≥

is antisymmetric, thus o[W]>o′′[W] because ≥ = ≥′
is also transitive, hence N decides {o, o′′} and o ⪰φ o′′. If

N ̸= N ′
, note that both nodes are in the unique branch in φ that corresponds to o′, so one of N , N ′

must be above the

18

other. Suppose that N is above N ′
, then, it must be the case that o′[W] = o′′[W], and o[W] ̸= o′[W], thus N decides

{o, o′′}; moreover, since NonInst(N) ⊆ NonInst(N ′), o[NonInst(N)] = o′[NonInst(N)] = o′′[NonInst(N)] |= α, and

o[W]≥ o′[W] = o′′[W]; hence o ⪰φ o′′. The case where N ′
is above N is similar.

For the second part of the proposition, suppose first that every attribute appears on every branch and that every

preference rule specifies a linear order: we will show that ⪰φ is antisymmetric and connex. For antisymmetry, consider

distinct alternatives o, o′ ∈ X : because every attribute appears on every branch, there must be a node N , labelled with

some W ⊆ X , that decides {o, o′}, and a unique rule α :≥ at N such that o[NonInst(N)] = o′[NonInst(N)] |= α; ≥
must be a linear order over W , so either o[W]>o′[W] and o ≻φ o′, or o′[W]>o[W] and o′ ≻φ o: ⪰φ is connex and

antisymmetric. For the converse, assuming that either there is some branch where some attribute does not appear, or

that there is some rule at some node that does not define a linear order, it is not difficult to define two distinct alternatives

that cannot be compared with ⪰φ.

2 Proofs for Section 4 (Expressiveness)
Proposition 3. CP =

⋃
k∈N k-CP and, for every k ∈ N, k≥ 2:

CP∧ ⊑⊒ CP⋫ ⊑⊒ CP∧⋫ ⊑⊒ CP = k-CP ⊑⊒ k-CP∧ = k-CP⋫ ⊑⊒ k-CP∧⋫
k-CP = (k-1)-CP and k-CP∧⋫ = (k-1)-CP∧⋫ = CPnet.

Proof. That CP ⊑⊒ CP∧ ⊑⊒ CP⋫ ⊑⊒ CP∧⋫ follows from property 2.

By definition CP ⊃ 1-CP ⊃ 1-CP⋫ ⊃ 1-CP∧⋫ and 1-CP ⊃ 1-CP∧ ⊃ 1-CP∧⋫, thus CP ⊒ 1-CP ⊒ 1-CP⋫ ⊒
1-CP∧⋫ and 1-CP ⊒ 1-CP∧ ⊒ 1-CP∧⋫. Restricting to conjunction of literals does not induce a loss in expressiveness

because, given a statement α |V :x≥x′, it is possible to compute a DNF logically equivalent to α, and then consider a

set of statements, each statement having one disjunct of the DNF as conditioning part. Example 3 prove that CP = 1-CP.

Example 4 proves that 1-CP = 1-CP⋫, it can be generalized to prove that k-CP∧ = k-CP⋫ by considering k binary

attributes A1, . . . , Ak instead of A, and the preorder a1 . . . akb ≻ a1 . . . ak b̄ ≻ ā1 . . . ākb ≻ ā1 . . . āk b̄, which can be

represented in k-CP∧ but not in k-CP⋫.

To prove that k-CP = (k-1)-CP, simply consider k binary attributes A1, . . . , Ak and the preorder that contains

a single pair: a1 . . . ak ≻ ā1 . . . āk , it can be represented in k-CP with the single statement a1 . . . ak ≥ ā1 . . . āk , but

not in (k-1)-CP. Note that this statement is in k-CP∧⋫, so it proves that k-CP∧⋫ = (k-1)-CP∧⋫. The fact that

CP-net ̸⊒ (k-1)-CP follows from the “completeness” condition in the definition of CP-nets: in a CP-net, every attribute

must have some local preference rules associated to it, whereas a formula in 1-CP∧⋫ may consist of one rule only.

Proposition 4. LPT =
⋃
k∈N k-LPT and, for every k ∈ N:

CP = LPT ⊑⊒ LPT∧ = k-LPT ⊑⊒ k-LPT∧ = (k-1)-LPT

k-CP = k-LPT = k-LPTlin = (k-1)-LPTlin.

Proof. LP trees can only represent antisymmetric preorders, so LPT is strictly less expressive than CP. That k-LPT∧ ⊒
k-LPT follows from the fact that the condition of every CP-statement in the set of CP-statements that correspond to some

k-LPT can be represented with a DNF. To see that (k-1)-LPT ̸⊒ k-LPT for every k≥ 1, consider some k-LP-tree φ with k
attributesX1, . . . , Xk at the root, and a linear order with x1 . . . xk as top element, and x̄1 . . . x̄k as second best element:

then o ⪰φ o′ for every pair of alternatives (o, o′) such that o[X1 . . . Xk] = x1 . . . xk and o′[X1 . . . Xk] = x̄1 . . . x̄k;

no LP-tree in (k-1)-LPT can represent that. Note that we can choose φ to be linear, so that proves that (k-1)-LPTlin ̸⊒
k-LPTlin too.

To show that k-LPTlin ̸⊒ k-LPT, consider an LP-tree with attributes X1 . . . Xk at the root, with |{X1 . . . Xk}|
children, where every child is labelled with binary attribute Y , and at least two children order y and ȳ differently: no

linear k-LP tree can represent the same order.

That k-CP ⊒ k-LPT follows from the remark below Proposition 1 that describes a set of CP-statements equivalent to

a given LP-tree φ: it is not difficult to check that if every node in φ has at most k attributes, then the corresponding CP-

statements are all in k-CP. To prove that k-LPT ̸⊒ k-CP, consider a CP-net φ over k+1 binary attributesX1, . . . , Xk+1,

with xi≥ x̄i for every 1≤ i≤ k + 1 (thus the CP-net has no edge): clearly φ ∈ 1-CP ⊆ k-CP. Consider now some

LP-tree ψ with j≤ k attributes at the root; w.l.o.g. we can assume that these attributes are X1, . . . , Xj ; then the CPT

at the root of ψ must contain the preorder over X1, . . . , Xj defined by the set of CP-statements {xi≥ x̄i | 1≤ i≤ j}.

But then x1 . . . xj x̄j+1 . . . x̄k+1 ≻ψ x̄1 . . . x̄jxj+1 . . . xk+1, whereas x1 . . . xj x̄j+1 . . . x̄k+1 ̸≻φ x̄1 . . . x̄jxj+1 . . . xk+1.

Since LPT ⊒ CP = k-CP, we can conclude too that LPT = k-LPT.

Proposition 6. For every k ∈ N: GAIk+1 = GAIk , and (k-1)-CP ̸= GAIk .

19

Proof. We first prove the first statement. GAIk+1 ⊒ GAIk is clear, since GAIk+1 ⊇ GAIk , so it suffices to show that the

increase in expressiveness is strict.

Fix the set of attributes X = {X1, . . . , Xk+1} and set as the domain of each attribute Xi = {0, 1}. For every set

A ⊆ X , define the indicator function IA(X1, . . . , Xk+1) as the function that, given as input an alternative o ∈ X ,

returns 1 if for all X ∈ A we have o(X) = 1 and 0 otherwise. Set φ = {IX }, then we have that gφ(o) = IX (o). For

every A define oA to be the alternative that is 1 on exactly the attributes in A. Then gφ induces the total preorder ⪰ in

which oX strictly dominates all other alternatives, whereas for all pairs o, o′ both different from oX we have o ∼ o′.
Clearly, ⪰ is expressed in GAIk+1. We claim that it cannot be expressed in GAIk . To this end, assume that this were

wrong, then there is a set φ = {gZ1
, . . . , gZm

} of real valued functions bearing on strict subsets Zi of X such that gφ
induces the order ⪰ on X . Without loss of generality, assume that for every A ⊂ X the set X contains exactly one

function gA. It will be convenient to represent gA as a weighted sum of indicator functions.

We use the following representation result for functions from {0, 1}ℓ → R whose proof can e.g. be found in [22,

Section 13.2].

Lemma 1. For every function f :{0, 1}ℓ → R with ℓ ∈ N and in variables x′1, . . . , x
′
ℓ, there are coefficients cA ∈ R for

A ⊆ {x′1, . . . , x′ℓ} such that

f(x′1, . . . , x
′
ℓ) =

∑
A⊆{x′

1,...,x
′
ℓ}

cAIA(x
′
1, . . . , x

′
ℓ).

Applying this to the utility functions, it follows directly that, for everyA ⊂ X , there are coefficients λA,B forB ⊆ A
such that for all alternatives o ∈ X we have

gA(o) =
∑
B⊆A

λA,BIB(o).

We get by summing the gA that there are coefficients λB such that for all o ∈ X

gφ(o) =
∑
B⊂X

λBIB(o). (1)

By subtracting values in some of the gA, we may assume w.l.o.g. that gφ(o) = 0 for all o ̸= oX .

We claim that, for all B ⊂ X , we have λB = 0. We show this by induction on the size of B. For B = ∅, we

have with (1) that 0 = g(o∅) = λ∅I∅(o∅) = λ∅. For non-empty B ⊂ X , we have gφ(oB) =
∑
C⊂X λCIC(oB) =∑

C⊆B λCIC(oB). However, by the induction hypothesis, we know that for C ⊂ B we have λC = 0, so 0 =
λBIB(oB) = λB .

Plugging the λB into (1), we get that gφ(oX) = 0 which contradicts the assumption that in ⪰ the alternative oX
strictly dominates all others.

For the second statement, consider k binary attributes A1, . . . , Ak such that a1 . . . ak ≻ ā1 . . . āk . Extend this to an

arbitrary complete preference relation such that for all other alternatives o we have o ≻ a1 . . . ak . Clearly, any such

order can be expressed as a GAIk by simply giving all alternatives o a utility that yields this order in a single k-ary

function g{A1,...,Ak}. We claim that this order cannot be expressed by a (k-1)-CP. Assume this were false, so there

is a set of preference statements defining the order and in which the set of swapped attributes never contains more

than k − 1 attributes. In particular, there is such a statement α | V :w ≥ w′
that sanctions a1 . . . ak ≻ ā1 . . . āk

(this comparison cannot be obtained by transitivity, since all other alternatives have a utility that is strictly greater

than that of a1 . . . ak). By assumption w cannot contain all attributes, so there is one attribute, say w.l.o.g. A1 that

does not appear in w. If A1 is not in V , then, by definition, applying the statement cannot swap the value of A1, so

it cannot justify a1 . . . ak ≻ ā1 . . . āk . So A1 must appear in V . Then A1 /∈ Var(α), thus the statement also sanctions

a1a2 . . . ak ≻ a1ā2 . . . āk which contradicts the order we want to define. So as we claimed, ≻ is not defined by any

(k-1)-CP.

3 Proofs for Section 5 (Succinctness)
Proposition 9. Any complete LPT can be transformed in polytime and space into an equivalent GAI.

Proof. A complete LP tree φ induces a linear order over X , thus we can define the rank of alternative o w.r.t. ⪰φ:

rank(φ, o) = 1+ the number of alternatives strictly preferred to o, so that the most preferred alternative has rank 1, the

least preferred has rank |X |:
rank(φ, o) = 1 + |{o′ ∈ X | o′ ≻φ o}|.

20

[28] explain how rank(φ, o) can be decomposed as a weighted sum of “local” ranks associated to the nodes of φ:

rank(φ, o) = 1 +

α :≥∈CPT(N)∑
N∈nodes(φ)

Jo[Inst(N)]= inst(N) ∧ o |= αK

×
(
r(≥, o[Var(N)])− 1

)
× |Desc(N)|

where :

• nodes(φ) denotes the set of nodes of φ;

• Jo[Inst(N)] = inst(N)∧o |= αK is an indicator function, that equals 1 when the condition o[Inst(N)] = inst(N)∧o |=
α is true; that is, whenN is on the branch ofφ that corresponds to o, and α :≥ is the rule that orders atN alternatives

that have same values as o for the attributes in the ancestor nodes of N ; and equals 0 otherwise;

• r(≥, o[Var(N)]) denotes the rank in Var(N) with respect to ≥ of the instantiation given by o to Var(N); so that

r(≥, o[Var(N)])− 1 is the number of subtrees rooted at children of N that are less preferred than o at N ;

• Desc(N) = X − (Anc(N) ∪ Var(N)) is the set of attributes that appear below N in that branch, so that |Desc(N)|
is the number of instantiations that are “contained” in every subtree of φ rooted at any one child of N .

Thus we can define, for every node N of φ, and every rule α :≥ ∈ CPT(N), a sub-utility uN,α as follows:

uN,α(o) =

{(
r(≥, o[Var(N)])−1

)
×|Desc(N)| if o[Inst(N)]= inst(N) & o |= α

0 otherwise

and define a utility uφ that orders the alternatives as φ as follows:

uφ = −
α :≥∈CPT(N)∑
N∈nodes(φ)

uN,α

The number of non-null entries in the table of every uN,α is equal to Var(N)− 1, which also corresponds to the space

needed to represent the linear order ≥ of the rule α :≥. Assuming that Var(N) (resp. Desc(N)) contains p (resp. q)

attributes, the largest entry cannot be larger than dp+q ≤ dn, where d is the size of the largest attribute domain, so the

number of digits needed for representing the non-null values is polynomial inn and d. Thus the size of the representation

of uφ is polynomial in the size of φ.

4 Proofs for Section 6 (Queries)
Proposition 11. ≻-comparison and ▷◁-comparison are NP-hard for the language of acyclic CP-nets, and tractable for

polytree CP-nets.

Proposition 11 is proved using a result about the ordering query introduced in [10]: it is a particular case of the

top-p that is recalled in section 6.4.

Ordering Given S ⊆ X with |S| = 2, and φ, return some o ∈ S such that o′ ̸≻φ o, where o′ is the other element of S.

Note that when S contains exactly two elements, at least one of them is not strictly dominated by the other; it the

two elements in S are incomparable, then the ordering query may return any one of them.

Proof. Note that for ayclic CP-nets (and thus for polytree CP-nets), ⪰-comparison and ≻-comparison are “almost”

equivalent, in the sense that for different alternatives o and o′, o ≻φ o′ iff o ⪰φ o′ (because acyclic CP-nets are consis-

tent). In particular, ⪰-comparison can be reduced to ≻-comparison for consistent languages, thus ≻-comparison is

NP hard for acyclic CP-nets because ⪰-comparison is hard for this language [10, Theorems 15, 16].

≻-comparison can also be reduced, still for languages that guarantee consistency, to ▷◁-comparison: consider

alternatives o ̸= o′, in order to check if o ≻ o′ we can ask if o ▷◁ o′: if the answer is “yes”, then o ̸≻ o′; if the answer is

“no”, ask the ordering query for S = {o, o′}: the answer must be, in polynomial time for acyclic CP-nets [10, Theorem

5], that o ̸≻ o′ or o′ ̸≻ o: if the answer is that o ̸≻ o′, it answers the initial query; if the answer is that o′ ̸≻ o, since

we know that o ≻ o′ or o′ ≻ o because o and o′ are not incomparable and ⪰ is antisymmetric, it must be the case that

o ≻ o′.
Finally,⪰-comparison is tractable for polytree CP-nets, and two calls of this query at most can answer≻-comparison

and ▷◁-comparison.

21

Proposition 12. equivalence is coNP-hard for 1-CP⋫∧̸⟳, and for 1-LPT∧, both restricted to binary attributes.

Given a propositional language P we define P∨
to be the set of finite disjunctions of formulas in P , and:

1-CP⋫P is 1-CP⋫ restricted to those statements such that the condition is in P

1-LPTP is 1-LPT restricted to those LP-trees such that the condition of every rule is in P .

The proof of the proposition is based on the following lemma, which formalizes the intuition suggested by Example 9.

Lemma 2. Given a propositional language P closed for conjunction, equivalence for P∨
(in the sense of propositional

logic), reduces to equivalence for 1-CP⋫P restricted to acyclic formulas, and to equivalence for 1-LPTP .

Proof. Consider two formulas α =
∨
i∈I αi and α′ =

∨
i∈I′ α

′
i over a set X of binary attributes, with all αi’s and α′

i’s in

P ; take some binary attributeX /∈ X , with values x and x̄, and letφ = {αi :x≥ x̄ | i ∈ I} andφ′ = {α′
i :x≥ x̄ | i ∈ I ′}.

Note that φ,φ′ ∈ 1-CP⋫P , that they are acyclic, and that they can be computed in time polynomial in |α |+ |α′ |. Then

φ∗ = {(ox, ox̄) | o ∈ X , o |= α} and for every o1, o2 ∈ X , for every x1, x2 ∈ X , o1x1 ⪰φ o2x2 if and only if o1 = o2,

x1 = x, x2 = x̄ and o1 |= α; similarly, o1x1 ⪰φ′ o2x2 if and only if o1 = o2, x1 = x, x2 = x̄ and o1 |= α′
. Thus α ≡ α′

if and only if for every o ∈ X , o |= α⇔ o |= α′
, iff for every o ∈ X , ox ⪰φ ox̄⇔ ox ⪰φ′ ox̄, if and only if φ ≡ φ′

.

Similarly, we can define two linear 1-LP-treesψ andψ′
as follows: the top | X | nodes are labelled with attributes from

X , in any order and with no rule; then there is one node labelled with X , and the same preference rules as above.

Proposition 14. ⪰-cut counting and ≻-cut counting are #P-hard for CP-nets and acyclic CP-nets.

Proof. Remember that a vertex cover in a graph G = (V,E) is a set S ⊆ V such that for each edge uv ∈ E we have

u ∈ S or v ∈ S. The problem #VertexCover is, given a graphG, to count its vertex covers. #VertexCover is well-known

to be #P-hard [47], so we will use a reduction from #VertexCover to ≻-cut-counting to establish the claim.

So let G = (V,E) be a graph. For every vertex v ∈ V we introduce an attribute Vv and for every edge e = uv ∈ E
we introduce an attribute Euv . Note that for convenience we denote Euv also by Ee sometimes. Finally, we introduce

attributes Di for i ∈ [|V |+ |E |+1]. The attributes Vv have no parents. Let e1, . . . , em be an order of the edges in

E where ei = uivi. For i> 1 the attribute Eei has the parents Vui
, Vvi , Eei−1

. The attribute Ee1 has parents Vu1
, Vv1 .

Finally, the attributes Dj all have the single parent Eem .

We next describe the CPTs for all attributes: all attributes have values in {0, 1}. All Vv have the order 1 ≥ 0. For all

Di, we have that if Eem has value 0 then the order is 0 ≥ 1 and if Eem has value 1, then 1 ≥ 0. For Ee1 we have the

order 1 ≥ 0 if and only if at least one of Vu1
, Vv1 has value 1 and the order 0 ≥ 1 otherwise. Finally, for i> 1, we have

the order 1 ≥ 0 if and only if Ei−1 has value 1 and at least one of Vui
, Vvi has value 1. Otherwise Eei has the order

0 ≥ 1. Call the resulting CP-net φ.

Note that one can easily see that no attribute in an increasing flipping sequence can ever be flipped back to 0 from

0: for the attributes Vv this is immediate. For the Eej it follows with an easy induction and the fact that it is true for the

Vv . For the Dj finally it follows from the fact that Eem can never flip back to 0.

Let o be the assignment that assigns 0 to all attributes. Let o′ be an assignment such that o′ is reachable from o by

an increasing flipping sequence, or equivalently o′ ⪰φ o. We claim that if Eem has value 1 in o′, then S : = {v ∈ V |
o′(Vv) = 1} is a vertex cover of G. To see this, first observe that in fact all Eej must take the value 1 in o′: to flip Eej
to 1, we must have flipped Ej−1 before (if it exists) and since we can never flip back to 0, Ej−1 must take 1 in o′. But

then when we flipped Eej to 1, at least one of Vvj , Vuj
must have had value 1 and since we cannot flip it back, in o′ one

of Vvj , Vuj
must have value 1. So for every ej we have that one of Vvj , Vuj

must have value 1 which proves that S is a

vertex cover as claimed.

Now for S ⊆ V , define oS to be the assignment that assigns 1 to Vv if and only if v ∈ S, assigns 1 to all Eei and

assigns 0 to all Dj . We claim that oS ⪰φ o if and only if S is a vertex cover of G. First note that if S is a vertex cover,

we can flip all Vv accordingly and then iteratively flip allEej to reach oS . The other direction is clear from what we saw

above, observing that Eem takes value 1 in o′.
Observe that for every oS , where S is a vertex cover, we can flip an arbitrary subset of the Dj to 1 to reach an

assignment o′ ⪰φ oS ⪰φ o. Note that for different vertex covers S1, S2, there is no such o′ ⪰ oS1
and o′ ⪰ oS2

since

oS1 and oS2 differ on the Vv and in the construction of the o′ from the oS we do not change those. It follows that

{o′ | o′ ⪰φ o′′, o′′(Eem) = 1} = ⋃
S vertex cover ofG

{o′ | o′ ⪰φ oS ,∀Vv : oS(Vv) = o′(Vv)}

and the union is disjoint. Now for every vertex cover S of G, we have

|{o′′ | o′′ ⪰φ oS ,∀Vv : oS(Vv) = o′′(Vv)} | = 2|V |+ |E |+1.

22

Let s be the number of vertex covers of G. It follows that

|{o′ | o′ ⪰φ o} | = |{o′ | o′ ⪰φ o, o′(Eem) = 0} |+ |{o′ | o′′ ⪰φ o, o′′(Eem) = 1} |
= |{o′ | o′ ⪰φ o, o′(Eem) = 0} |+s2|V |+ |E |+1.

Now since in no o′ with o′(Eem) = 0 any of the Dj can be flipped to 1 in any increasing flipping sequence, we have

|{o′ | o′ ⪰φ o, o′(Eem) = 0} | < 2|V |+ |E |,

since such o′ have only |V |+ |E | −1 attributes with domain {0, 1}which are not forced to be constant 0. Consequently,

s can be inferred from |{o′ | o′ ⪰φ o} | by a single integer division which completes the reduction.

This proves that ⪰-cut counting for acyclic CP-nets is as hard as #VertexCover; this holds for ≻-cut counting

since in the case of acyclic CP-nets, ⪰ is antisymmetric. And this hardness result extends to the larger class of CP-

nets.

Proposition 15. ≻-cut counting is #P-complete for GAI, GAIk and GAI1.

Proof. For containment in #P, observe that all elements in CUT≻,o(φ) have polynomial size, so we can easily guess them

and compare in polynomial time to o since ≻-comparison can be solved in polynomial time for GAI.
For hardness, we reduce from the problem #SubsetSum which is, given a set S = {s1, . . . , sn} of positive integers

and an additional integer k, to count the number of subsets of S that sum up to k. #SubsetSum is well-known to be

#P-complete, see e.g. [27]. It will be convenient to work with a slight variant which we call #SubsetSum> and which is,

given the same type of input as for #SubsetSum, to count the number of subsets of S which sum up to a value greater

than k. There is an easy oracle reduction from #SubsetSum to #SubsetSum>: given an input S, k, call an oracle for

#SubsetSum> on the two inputs S, k− 1 and S, k. Then the answer to the #SubsetSum instance is the difference of the

answers of the oracle calls. It follows that #SubsetSum> is #P-hard.

We now reduce #SubsetSum> to ≻-cut counting for GAI1. So let S = {s1, . . . , sn} and k be an instance of

#SubsetSum>. We construct n functions gi(Xi) for i = 1, . . . , n where Xi = {0, 1}. We set gi(0) = 0 and gi(1) = si.
Moreover, we add a function gY (Y) where Y = {0, 1} and gY (0) = 1 and gY (1) = k. Set φ = {g1, . . . , gn, gY } and

X = {X1, . . . , Xn, Y }. This completes the construction of the GAI. Call the induced relation ⪰.

To complete the reduction, let o∗ ∈ X be the alternative that setsY to 1 and all other attributes to 0. Then gφ(o
∗) = k.

Moreover, for o ∈ X , we have that gφ(o)>k if and only if o(Y) = 1 and there is an i ∈ [n] such that o(Xi) = 1—i.e. the

set {i ∈ [n] | o(Xi) = 1} is non-empty—, or o(Y) = 0 and

∑
i∈[n] gi(o[Xi]) =

∑
i∈[n] : o(Xi)=1 si>k. Note that there

are 2n− 1 alternatives of the former type, corresponding to the non-empty subsets of [n], so the number of subsets of S
that sum up to values greater than k is |CUT≻,o

∗
(φ) | −2n+1. Thus, one oracle call to ≻-cut counting allows solving

#SubsetSum> in polynomial time which completes the reduction.

Proposition 16. ⪰-cut extraction is tractable for CP, and ≻-cut extraction is tractable for acyclic CP-nets. ≻-cut

counting and ≻-cut extraction are PSPACE-hard for 1-CP⋫∧. ≻-cut extraction, ⪰-cut extraction and ≻-cut

counting are tractable for LP-trees.

Proof. ⪰-cut extraction is easy for CP: given o and φ, in order to return an element of CUT⪰,o(φ), it is sufficient

to find one statement in φ which sanctions an improving swap for o. For acyclic CP-nets (and more generally for any

language that guarantees consistency), ≻ is the asymmetric part of ⪰, thus ≻-cut extraction is equivalent to ⪰-cut

extraction and is tractable.

Note that alternative o is undominated iff CUT≻,o(φ) = ∅, iff |CUT≻,o(φ) | = 0; therefore, ≻-cut counting and

≻-cut extraction are at least as hard as undominated check, they are therefore PSPACE-hard for 1-CP⋫∧.

Finally, ≻-cut extraction, ⪰-cut extraction and ≻-cut counting are tractable for LP-trees: for LP-tree φ,

given o, in order to find some o′ such that o′ ≻φ o (resp. o′ ⪰φ o), it is possible to traverse the tree, starting at the root,

guided by the values assigned by o, until reaching a node where the value(s) assigned by o for the attributes at that node

is/are strictly dominated (resp. dominated) by other values at that node. Also, when going down φ in the branch that

corresponds to o, it is possible, at each node N encountered, labelled with T , to count the number of t′ in T such that

t> o[t′] (according to the preference rule β :≥β at N such that o |= β), and to multiply this number by the sizes of the

domains of the attributes that have not been encountered yet; adding these sums of products along the branch will give

the number of alternatives o such that o′ ≻φ o.

Proposition 17. ⪰-cut extraction,≻-cut extraction, undominated check, andundominated extract are tractable

for GAI1.

Proof. Given a GAI φ, we can simply choose the values for the attributes in such a way that the utilities are maximized.

Since the utilities are unary, this leads to a consistent and thus also maximal alternative o∗. For ⪰-cut extraction, o∗ is

always a valid output, so it solves the problem independent of the additional input alternative o. For ≻-cut extraction,

23

we check if gφ(o
∗)>gφ(o). If so, we return o∗ again. Otherwise, due to the maximality of o∗, we have gφ(o

∗) = gφ(o)
and thus there is no alternative strictly dominating o and thus no valid output.

For undominated check we have that o is undominated if and only if gφ(o) = gφ(o
∗) which we can check effi-

ciently. Finally, for undominated extract we can simply return o∗.

Proposition 18. ⪰-cut extraction and ≻-cut extraction are NP-complete for GAIk for k ≥ 2 and GAI. undominated
check is coNP-complete and undominated extract is NP-hard for GAIk for k ≥ 2 and for GAI.

Proof. Containment in NP, resp. coNP, is easy to see in all cases since alternatives can be compared efficiently

We show hardness for all problems by reduction from 3-Coloring which is, given a simple, undirected graph G =
(V,E), to decide if there is an assignment c :V → {r, g, b} such that for all edges uv ∈ E we have c(v) ̸= c(u). The

mapping c is called a coloring and it is said to be valid if it satisfies the condition on the edges. 3-Coloring is well-known

to be NP-complete, see e.g. [43, Theorem 9.8].

We use the same construction of a GAI2 φG from a graph G for all problems. So let a graph G be given in which

w.l.o.g. every vertex has at least two neighbors (vertices with fewer than two neighbors can iteratively be deleted without

changing the answer to the 3-Coloring question). We also assume that G is connected; if it is not, we can connect the

different connected components iteratively by adding edges without changing the answer to the 3-Coloring question.

We construct a GAI2 representation as follows: for every vertex v ∈ V , we introduce an attribute Xv with domain

Xv = {r, g, b, d}. For every edge e = uv, we construct a utility function guv in the variables Xu, Xv and which takes

value 1 on inputs rb, rg, br, bg, gr, gb, dd and 0 on all other inputs. Setting φG = {guv | uv ∈ E} completes the

construction of the GAI φG. Let ⪰ be the order that φG induces.

We first show hardness for ⪰-cut extraction. To this end, let od be the alternative in which all attributes take

value d. Then all guv evaluate to 1 on od, so gφG
(od) = |E |. Now consider o ∈ CUT⪰,od . Assume first that some

attribute of o takes value d. Since not all attributes can take value d and G is connected, there must be an edge uv such

that d = o(u) ̸= o(v). Then guv(o) = 0 and gφG
(o) < |E | = gφG

(od), so o /∈ CUT⪰,od which contradicts the choice

of o. Consequently, we must have that all Xv takes values in {r, g, b} in o. Moreover, for all uv ∈ E, we must have

that o(Xu) ̸= o(Xv). Thus, setting c(v) = o(Xv) for all v ∈ V yields a valid coloring of G. So if there is an element in

CUT⪰,od , the graph G is 3-colorable. The other way round, if G has a valid 3-coloring c, then defining o for all Xv by

o(Xv) = c(v) yields an alternative in CUT⪰,od . This shows NP-hardness of ⪰-cut extraction for GAI2 and thus for

all GAIk with k ≥ 2 and GAI.
The reasoning for ≻-cut extraction is similar. The only difference is that for one arbitrary edge uv we set guv(d, d)

to 0. Call the resulting GAI φ′
G. We have gφ′

G
(od) = |E | −1. The rest of the reduction and the argument for complete-

ness is exactly as that for ⪰-cut extraction.

For undominated check, observe that od is dominating forφ′
G if and only if there is no alternative owith gφ′

G
(od) <

gφ′
G
(o). Reasoning as above, this is exactly the case if and only if G has no valid 3-coloring. Thus undominated check

is coNP-hard.

Finally, to show hardness of undominated extract, multiply all utility values in gG by 2. Then, for one arbitrary

edge uv set guv(d, d) to 1. Call the resulting GAI φ′′
G. Then we have gφ′′

G
(od) = 2 |E | −1. Moreover, for all alternatives

o encoding a valid 3-coloring, we have gφ′′
G
(o) = 2 |E |. Finally, for all other alternatives o, we have gφ′′

G
(o) ≤ 2 |E | −2.

So in any case an undominated alternative is either a valid 3-coloring of the graph G or od, hence od is undominated if

and only if G is not 3-colorable which shows that undominated extract is NP-hard.

5 Proofs for Section 7 (Transformations)

Proposition 19. Given a preorder ⪰ over X , given V ⊆ X , let U ⊆ X \ V . If v, v′ ∈ V and v ⪰↓V
w.opt.

v′, then there is

some u ∈ U such that for no u′ ∈ U it holds that u′v′ ≻ uv.

Proof. Assume that v ⪰↓V
w.opt.

v′, and let u ∈ U be such that for no other u1 ∈ U it is the case that u1v ≻ uv: such a u

must exist because U is finite; if there is some completion u′ of v′ such that u′v′ ≻ uv, then, since v ⪰↓V
w.opt.

v′, there

must be some u1 ∈ U such that u1v ⪰ u′v′, but then u1v ≻ uv, which is a contradiction.

Proposition 20. All four projections defined above are equivalent for the 1-GAI language and the language that contains

complete LP-trees of 1-LPTlin, and can be computed in polynomial time.

Proof. Let φ ∈ 1-GAI, letX be any attribute, φ is dfined by a function of the form g(o) = gX(o[X])+
∑
Y ̸=X gY (o[Y]).

Let ⪰ denote the associated weak order over the set of alternatives. Let ψ be defined by h(o) =
∑
Y ̸=X gY (o[Y]). We

24

show that o ⪰low o
′

iff o ⪰up o
′

iff o ⪰w.opt. o
′

iff o ⪰s.opt o
′

iff o ⪰ψ o′:

o ⪰ψ o′ ⇔ h(o)≥h(o′)

⇔ (∀x ∈ X : gX(x) + h(o)≥ gX(x) + h(o′)) ⇔ o ⪰low o
′

⇔ (∃x ∈ X : gX(x) + h(o)≥ gX(x) + h(o′)) ⇔ o ⪰up o
′

⇔ (∀x′ ∈ X∃x ∈ X : gX(x) + h(o)≥ gX(x′) + h(o′)) (take x = x′)
⇔ o ⪰w.opt. o

′

⇔ (∀x′ ∈ X : gX(argmax
x′∈X

gX(x′)) + h(o)≥ gX(x′) + h(o′))

⇔ o ⪰s.opt. o
′

Suppose now that φ is a complete, linear LP-tree in 1-LPT over X , and let X ∈ X . Let ψ be the LP-tree defined

by removing node X , redirecting the parent of X to the unique child of X when X is an internal node of φ. Consider

alternatives o, o′ ∈ X \X , let x ∈ X . Let Y be the attribute that decides the pair {o, o′} in ψ then o ⪰ψ o′ iff

o[Y]>o′[Y] inCPT(Y). Suppose first thatY is an ancestor ofX inφ, then {ox, o′x′} is decided atY inφ forallx, x ∈ X ,

thus o[Y]>o′[Y] ⇒ (∀x, x′ ∈ X : ox ⪰φ o′x′) ⇒ o ⪰π o′ for all four projections; and o ⪰π o′ ⇒ o ⪰ψ o′ for any of

the four projections. Suppose now thatX is an ancestor of Y in φ, then for all x, x′ ∈ X 1) the pair {ox, o′x} is decided

at Y , whereas 2) pair {ox, o′x′} with x ̸= x′ is decided at X . From 1) it follows that o ⪰ψ o′ ⇔ o ⪰low o′ ⇔ o ⪰up o
′
;

moreover, let x0 be the optimal value for X in CPT(X) in φ (which exists and is unique because φ is a complete LP-

tree, thus the linear order over X in CPT(X) is a linear order), then ox0 ⪰φ o′x′ for all x′ ∈ X , thus o ⪰s.opt. o
′
; [5]

mention that o ⪰s.opt⇒ o ⪰w.opt o
′
; lastly, if o ⪰w.opt o

′
then there exists x such that ox ⪰φ o′x0, and ox0 ⪰φ ox, thus

ox0 ⪰φ o′x0, thus o[Y]>o′[Y].

Proposition 21. If conditioning can be done in polynomial time for language L but the extraction of an undominated

alternative is NP-hard, then the strong optimistic projections cannot be computed in polynomial time for L (unless P = NP).

Proof. We assume that for any preorder expressed in the language L, any strong optimistic projection leads to a preorder

that again can be expressed in L. If this is not true, then the statement of the theorem is trivially true, even without the

assumption P ̸= NP.

We give an algorithm that, given a preorder ⪰ encoded in L, computes an undominated alternative o in polynomial

time, assuming polynomial time algorithms for conditioning and computation of strong optimistic projection. The

algorithm considers the attributes of ⪰ in sequence, say from V1 to Vn. The value v1 of V1 is obtained by projecting ⪰
onto V1 - then an undominated value v1 is chosen for V1; indeed, v1 ⪰↓{V 1}

s.opt.
v′1 means that there exist an assignment

v of {V2, . . . , Vn} such that v1.v ⪰ v′1.v
′

for all v′ – V1 = v1 in one of the non dominated solutions. Then the original

formula is conditioned: value v1 is assigned to V1 and the procedure is repeated for the next variable - and this until

all the variables have been assigned. So, if a language offers the conditioning transformation in polytime but not the

undominated query, there cannot be any polynomial algorithm for performing the strong optimistic projection within

this language (unless P = NP).

Proposition 22. The strong (resp. weak) projection cannot be computed in polytime for GAI and GAIk (k > 1) (unless

P = NP).

Proof. The extraction of an undominated alternative is NP-hard for GAI and GAIk , k > 1 (Proposition 18) while condi-

tioning can be done in polytime for these languages. From Proposition 21 we deduce the strong optimistic projection

cannot be computed in polytime unless P = NP . Because GAI’s encode complete and transitive relations, the strong

and weak optimistic projections are identical [6] - hence the weak optimistic projection cannot be computed in polytime

unless P = NP .

25

	Introduction
	Preliminaries
	Combinatorial Domains
	Preference Relations

	Languages
	Conditional Preference Statements
	Statement-wise Restrictions
	Graphical Restrictions
	§CP§-nets
	Lexicographic Preference Trees
	GAI decompositions

	Expressiveness
	Succinctness
	Queries
	Consistency
	Comparing alternatives
	Comparing theories
	Top p alternatives
	Optimization
	Cuts

	Transformations
	Conditioning
	Conjunction
	Disjunction
	Variable elimination

	Conclusion
	Proofs for Section 3 (Languages)
	Proofs for Section 4 (Expressiveness)
	Proofs for Section 5 (Succinctness)
	Proofs for Section 6 (Queries)
	Proofs for Section 7 (Transformations)

