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INTRODUCTION

Assemblages are structured according to species sorting
processes (i.e., assemblage rules) constraining the co-
occurrences of species in local assemblages. While species
richness has been largely used as a good metric of diversity,

Gaél Grenouillet*

Abstract

Evaluating the effects of anthropogenic pressures on several biodiversity
metrics can inform the management and monitoring of biodiversity loss.
However, the type of disturbances can lead to different responses in different
metrics. In this study, we aimed at disentangling the effects of different types
of anthropogenic disturbances on freshwater fish communities. We calculated
diversity indices for 1109 stream fish communities across France by computing
richness and evenness components for ecological, morphological, and
phylogenetic diversity, and used null models to estimate standardized effect
sizes. We used generalized linear mixed models to assess the relative effects of
environmental and anthropogenic drivers in driving those diversity indices.
Our results demonstrated that all diversity indices exhibited significant
responses to both climatic conditions and anthropogenic disturbances. While
we observed a decrease of ecological and phylogenetic richness with the
intensity of disturbance, a weak increase in morphological richness and even-
ness was apparent. Overall, our results demonstrated the importance of
disentangling various types of disturbances when assessing human-induced
ecological impacts and highlighted that different facets of diversity are not
impacted identically by anthropogenic disturbances in stream fish communi-
ties. This calls for further work seeking to integrate biodiversity responses to
human disturbances into a multifaceted framework, and could have beneficial
implications when planning conservation action in freshwater ecosystems.

KEYWORDS
anthropogenic pressures, functional diversity, habitat filtering, morphology, phylogenetic
diversity

many studies showed the importance of adopting an inte-
grative approach including several facets in the calculation
of diversity metrics, such as phylogenetic and functional
diversity so as to better understand the effects of distur-
bances on biodiversity (Cote et al., 2019; Gaston & Spicer,
2004; Kuczynski et al., 2018). Indeed, each facet of diversity
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can bring information about different processes. For
instance, if species richness can be a good indicator of
quantification of diversity, functional diversity can explain
ecosystem functioning since it represents the diversity of
ecological and morphological traits whereas phylogenetic
diversity represents the evolutionary history of assemblages
(Devictor et al., 2010). In this context, understanding the
function and sensitivity of different facets of diversity can
inform management decisions and identify hotspots for
spatial prioritization and protection.

Biodiversity can be strongly affected by environmental
stressors but also by anthropogenic pressures, such as land
use (D’agata et al., 2014; Frishkoff et al., 2014; Odanaka &
Rehan, 2019; Sol et al., 2014, 2017) which can generate a
shift in functional structure of assemblages since species
presenting poorly-adapted traits to new environmental
conditions will be lost, for the benefit of better-adapted
species (Mouillot et al., 2013). One of the consequences of
anthropogenic pressures on assemblages in most of ecosys-
tems is habitat filtering, which selects species with similar
functional traits and strategies in response to environmen-
tal factors. This can lead to the loss of rare species, which
are more vulnerable, with particular combinations of traits
which are not shared by dominant species, and can impact
ecosystem functioning (Teichert et al., 2017).

In lotic ecosystems, organisms are exposed to multiple
pressures (Malmgqvist & Rundle, 2002; Winemiller et al.,
2010) which can lead to a strong loss of diversity (Albert
et al, 2021). In streams, anthropogenic disturbances can
shape communities by locally altering ecological continuity
and water flow, which can lead to a change in hydro-
morphological characteristics of the river (Delgado et al.,
2010; Siriwardena et al., 2006; Swank et al., 2001). More-
over, the use of aquatic habitat by human activities can also
strongly affect the abundance and the occurrence of species
and consequently modify the structure of communities
(Friberg, 2014). Finally, human-mediated introductions are
known to be involved in biodiversity changes (Su et al.,
2021), especially by the loss of functionally unique species
(Matsuzaki et al., 2013, 2016) and the increase of functional
redundancy within communities (Kuczynski & Grenouillet,
2018). Nevertheless, in rivers, it can be difficult to provide
precise measures of disturbances impacts at a fine scale.

In the context of European Water Framework Directive
(WFD), a number of indicators of aquatic biodiversity state
have been developed, especially for fish, so as to assess eco-
logical status of stream ecosystems since fish communities
respond to numerous anthropogenic disturbances such as
fragmentation, hydro-morphological alteration, or water
quality degradation (Ormerod, 2003). These metrics are
based on abundance, species composition and age structure
of fish. One of them, the Index of Biotic Integrity (IBI, Karr,
1981; Pont et al., 2021) has been considered as a good

measure of alteration of fish assemblages. But, as biodiver-
sity is multifaceted and complex, it cannot be summarized
as only one indicator and a lot of studies highlighted the
importance of integrative approaches in biodiversity conser-
vation (Brunialti, 2014; Geist, 2011; Kraus & Krumm,
2013). New indicators of functional or phylogenetic diver-
sity (Villeger et al., 2008) have been developed, but how
they respond to anthropogenic pressures remains poorly
understood.

Moreover, most studies addressing the effects of
anthropogenic pressures on biodiversity in such ecosys-
tems focused at the scale of river basin or catchment but
none at a national scale (Liu et al., 2021). However, work-
ing at such a large scale can indicate the relative impor-
tance of environmental and anthropogenic factors. One
study on stream macro-invertebrates showed that natural
environmental gradients could mask the effect of perturba-
tions on biodiversity (Heino et al., 2007), contrary to what
has been found in terrestrial ecosystems (Zhu et al., 2021).
Other studies in stream insects showed that anthropogenic
disturbances could modify the relationship between envi-
ronmental factors and diversity (Agra et al., 2021).

In this study, our goal was to evaluate the effects of dif-
ferent anthropogenic disturbances on multifaceted diversity
indices in freshwater fish communities. We hypothesized
that anthropogenic disturbances could lead to a decrease of
diversity, whatever the facets considered (Matuoka et al.,
2020) with different contrasted effects depending on the
type of anthropogenic disturbances and higher effects
expected for hydro-morphological disturbances. In the com-
parison between anthropogenic disturbances and climatic/
natural factors, we expected lower effect of anthropogenic
disturbances than environmental factors (Heino et al.,
2007). One of our expectations was a difference in the
response to anthropogenic pressures between the different
facets of diversity, in agreement with what was observed in
previous studies focusing on the effect of global change
(Kuczynski et al., 2018). First, we characterized spatial pat-
terns in both richness and evenness for ecological, morpho-
logical, and phylogenetic diversity. Then, we described the
relationship between the intensity of anthropogenic distur-
bances and the different facets of diversity so as to assess
the consequences on assemblage rules. Third, we compared
the relative effects of climatic variables and different types
of anthropogenic disturbances on these facets of diversity.

MATERIALS AND METHODS
Fish data and study area

Fish species abundances covering the period from 2006 to
2012 were obtained from the French Biodiversity
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Office (OFB) database on 1109 sampling sites all over
metropolitan France. Abundances OFB database was
downloaded from https://naiades.eaufrance.fr/ by searching
for “accés aux données” and then “France entiere” and
“Hydrobiologie”. Metropolitan France is constituted of
six main hydrographic basins under a temperate climate.
Atlantic ocean at west brings moderate winters with strong
rainfall whereas Mediterranean and continental flux at
south and east can bring warm summers. Concerning
hydro-morphology, a strong heterogeneity in slope and
altitude is observed due to relief and seas. Our database
included a total of 55 freshwater fish species from which
20 were non-native. Only sites with at least five fish
species were kept for analyses (Villeger et al., 2008). Fish
data consisted of a standardized electro-fishing protocol
conducted during low-flow periods (from May to October)
for each sampling occasion. Sampling protocols were
defined depending on river width and depth. Streams
were sampled by wading (mostly two-pass removal), while
fractional sampling strategies were undertaken in larger
rivers. However, to compare inter-annual densities for a
given site, only surveys performed with the same sampling
protocol were selected. Sites have been sampled one or
several times, depending on sites but we selected the last
sampling on the period 2006-2012.

Anthropogenic disturbances and
environmental conditions

Anthropogenic disturbances were extracted from the IPR+
database (Marzin et al., 2013) collected by the OFB (Office
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Francais de la Biodiversité) (Figure 1). IPR+ database
was downloaded from https://naiades.eaufrance.fr/ by
searching for “accés aux données” and then “France
entiére” and “Hydromorphologie”. We distinguished three
types of disturbances linked to (1) hydro-morphology
(HYDRO) (i.e., modifications and variations of flow, mor-
phology of the river, embankment and riparian zone and
presence of clogging), (2) human use of aquatic habitat
(HUM) (i.e., presence of areas dedicated to fishing, pres-
ence of water sports and episodes of stocking), and (3) the
percentage of non-native species (NNS). The first two vari-
ables were computed as the average value among the dif-
ferent descriptors coded in the IPR+ database with four
levels of disturbances from null (value equal to zero) to
strong (value equal to 3). Then, we computed an index of
overall disturbances calculated as the mean of the two
previous disturbances indices (HYDRO and HUM) and
categorized into three modalities (low, intermediate, high)
based on the quartiles of this mean. For environmental
variables, four climatic variables were extracted from
the WorldClim database (Hijmans et al., 2005): mean
annual air temperature (TEMP), seasonality of air temper-
ature (TSEAS), total annual precipitation (PREC), and
seasonality of precipitation (PSEAS). Worldclim database
was downloaded from https://www.worldclim.org/ by
searching for “historical climate data” and then
“bioclimatic variables”. The upstream-downstream gradi-
ent was characterized by the first axis of a Principal Com-
ponent Analysis summarizing 92% of the variation of
three variables (i.e., distance to the source, stream width
and surface of drainage area) describing the
hydrographical network (RHT, Pella et al., 2012).

FIGURE 1 Sampling sites across France and their level of disturbance.
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Trait databases

Morphological diversity of fish assemblages was
described using 16 morphological measures (Toussaint
et al., 2016) available on 62 species (from which 23 were
considered as non-native). The database included body
length, the number of barbels and 14 ratios (see Appen-
dix S1: Figure S1) linked to prey detection (i.e., eye size
and barbel length), prey capture (i.e., oral gape position
and maxillary length), position in the water column
(i.e., eye position and body elongation), and swimming
abilities (i.e., body lateral shape, pectoral fin position,
pectoral fin shape, pectoral fin size, caudal peduncle
throttling, caudal fin aspect ratio, fin surface ratio, and
relative fin surface).

Ecological diversity was described using 14 qualitative
ecological traits available for 60 species (whose 21 were
non-native) linked to life-history strategies (i.e., fecundity,
spawning time, egg diameter, life span, age of first female
maturity, parental care, incubation period), habitat use
(i.e., rheophily, reproduction habitat, migration, salinity
preference, and position in the water column), and feeding
(i.e., feeding diet and feeding habitat). Those traits were
downloaded from Fishbase (https://www.fishbase.se/
search.php) searching the name of the species and the lit-
erature for all the species (Appendix S1: Table S1).

Indices of diversity

We used richness and evenness indices developed by
Villeger et al., 2008 so as to quantify the ecological and
morphological facets of diversity. We calculated two
Gower distance matrices for ecological and morphological
traits, separately and we performed a Principal Coordi-
nates Analysis (PCoA) to project the species into a four-
dimensional space (Maire et al., 2015). Morphological and
ecological richness (MRic and ERic, respectively)
corresponded to the volume occupied by co-occurring spe-
cies in the morphological and ecological space, respec-
tively (ranging from 0 to 1, 1 meaning that the maximal
volume in the space is occupied). The morphological and
ecological evenness (MEve and EEve, respectively) mea-
sured the aggregation of species within the morphological
and ecological space, respectively (ranging from 0 to 1, 1
meaning an even distribution of species within the space).
Finally, we used the phylogenetic tree from (Rabosky
et al., 2018) so as to calculate indices of phylogenetic
diversity on 55 species. Thus, we estimated phylogenetic
richness (PRic) using Faith’s PD (Faith, 1992) and phylo-
genetic evenness using Villéger’s FEve (Villeger et al.,
2008). We also included species richness in the study, as
the number of species per site.

The calculations of indices were done on complete
assemblages (i.e., including native and non-native species)
but also on assemblages involving only native species.

Null models and standardized effect sizes

As the previous indices calculated can be influenced by
specific richness, we used randomizations of species traits
and phylogeny to control for this effect. We kept the
same number of species and abundance per assemblage
in the complete dataset but we randomized species iden-
tity. For analyses based on native assemblages, we con-
sidered only the combinations of traits as well as the
species observed in the native species pool. We performed
999 randomizations so as to obtain 999 null values of the
indices of diversity per assemblage. Then, we calculated
the standardized effect size (SES) as obs- mean (rand)/sd
(rand). obs was the observed index and rand was the
999 null values of the index. A positive SES value indi-
cates a higher value of the index than expected randomly
given the number of species, while a negative value indi-
cates a lower value than expected (Gotelli & Graves,
1996). Hereafter, we used SES values for all indices.

Statistical analyses

First, we tested for the relationship between the three
levels of the index of overall disturbances previously
described (low, intermediate, and high) and each facet
(phylogenetic, ecological, and morphological) and com-
ponent (richness and evenness) of diversity by using
Kruskal-Wallis tests. Then, we checked for spatial auto-
correlation using Moran’s I (Fan & Myint, 2014). Since
spatial autocorrelation was significant (p < 0.001) for all
indices, we tested the relationship between climatic con-
ditions and local disturbances and each diversity index by
using linear mixed models performed with nime package
and integrating an autocorrelation structure (gaussian,
exponential or spherical) determined by semi-variograms
in all models. For each variable, we fitted a semi-
variogram using gstat library so as to model semi-
variance in function of distance (sill value = 1.5,
range = 50,000 and nugget = 1). The shape of semi-
variogram determined which autocorrelation structure
was the best adjusted. Anthropogenic disturbances
(i.e., HYDRO, HUM, and NSS) and climatic conditions
(i.e., TEMP, TSEAS, PREC, and PSES) were considered
as fixed effects whereas the upstream-downstream
gradient and the elevation were considered as random
effects. We did not notice evidence for multicollinearity
between the explanatory variables (variance inflation
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factors all lower than 2). All the predictors were stan-
dardized to compare their relative strength. R software
version 3.2.1 (R Core Team, 2017) was used so as to com-
pute all the analyses. Morphological and ecological indi-
ces as well as phylogenetic evenness were computed
using the function multidimFD available online at http://
villeger.sebastien.free.fr/Rscripts.html. We used picante
package to compute phylogenetic richness.

RESULTS

While negative values of diversity (lower than expected)
were observed for ecological and phylogenetic richness,
positive values of diversity (higher than expected) were
observed for morphological richness (Figure 2). For ecolog-
ical and phylogenetic richness, higher values of diversity
were observed in the north-west of France, whereas
negative or null values were observed across France. For
morphological richness, stronger values were mainly
observed in the center of France. Patterns of spatial

Ecological

123
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o
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=
.2
14

Morphological

autocorrelation for both components (richness and even-
ness) appeared less important for evenness than for rich-
ness (Figure 2).

While no difference was observed for ecological and
phylogenetic evenness, significant differences in ecologi-
cal and phylogenetic richness were observed among
levels of disturbances (p < 0.001, Figure 3), with a
decrease of SES values with increasing disturbance inten-
sity. By contrast, significantly (p < 0.001) higher values
of morphological richness and evenness were observed
with higher levels of disturbance, revealing a shift from
null to high SES values along the disturbance gradient
(Figure 3). Positive correlations between SES of ecological
richness and evenness calculated on complete and native
assemblages were observed for all indices (R® ranging
from 0.29 to 0.89, p < 0.001, Figure 4). While a strong
correlation was observed for phylogenetic and ecological
richness (R* = 0.89 and 0.75, respectively), the correla-
tion was weak for morphological richness and evenness,
as well as for phylogenetic evenness (R* = 0.33, 0.44 and
0.29, respectively). For these three indices, results showed

Phylogenetic

Diversity index (SES)

3 -2-10 1 2 3

FIGURE 2 Richness and evenness for (a, d) ecological, (b, €) morphological, and (c, f) phylogenetic facets of diversity. Values of indices
lower and higher than expected randomly given the number of species are indicated in green and purple, respectively.
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FIGURE 3 Relationships between the level of disturbance and the index values for each facet (morphological, ecological, and
phylogenetic) and each component (richness, evenness) of diversity. The first row of panels represents the relationship between level of
disturbances and richness, for (a) ecological, (b) morphological, and (c) phylogenetic facets. The second row presents the same relationship
for evenness for (d) ecological, (e) morphological, and (f) phylogenetic facets. Horizontal thin and bold lines depict the quartiles and the

median, respectively, with p-values of Kruskal-Wallis tests.

a relation slope lower to 1, with extreme positive and
negative SES values, weaker when computed on com-
plete assemblages.

Overall, the goodness-of-fit of models was higher for
richness and SR than evenness indices (Table 1,
Appendix S1: Figure S2). All indices responded signifi-
cantly to climatic (i.e., both temperature and precipitation)

conditions. Environmental and hydro-morphological pres-
sures, presented similar importance, even if estimates
from mean and seasonality of temperature factors
were higher than those observed for anthropogenic
disturbances. For native assemblages, we observed a
negative effect of hydro-morphological disturbances on
ecological and phylogenetic richness but a positive effect
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(e) morphological, and (f) phylogenetic facets. The black line represents the linear relationship between the two indices, the dotted line

represents y = x.

on morphological evenness. The presence of non native spe-
cies (complete assemblages) exhibited similar results and
revealed a positive effect on morphological richness. The
models showed a significant negative effect of the aquatic
habitat use on ecological richness only. This negative effect
was stronger on complete assemblages, especially for mor-
phological richness and evenness (Table 1, Appendix S1:
Figure S2). Concerning the effect of climatic variables on
native assemblages only, we observed a negative effect of
temperature seasonality for almost all richness and even-
ness indices, except ecological evenness, but a positive effect
of temperature mean on morphological and phylogenetic
richness and a negative effect of temperature mean on eco-
logical and phylogenetic evenness. Rainfall mean and, espe-
cially, rainfall seasonality, negatively influenced almost all
indices (Table 1, Appendix S1: Figure S2). Similar results
were observed on complete assemblages, with the loss of
some effects for few indices.

DISCUSSION

Our results showed significant responses of all considered
indices to anthropogenic disturbances and climatic
drivers. We observed a decrease of ecological and phylo-
genetic richness with the intensity of disturbances
whereas a weak increase was observed in morphological
richness. Our study also highlighted contrasted effects of
anthropogenic variables on diversity indices, with a
strong importance of hydro-morphological and habitat
use variables.

Spatial patterns in diversity indices
Our results showed spatial patterns in multifaceted diver-

sity indices. Overall, low diversity values were mainly
observed across France for all indices except for
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TABLE 1

Results of linear mixed models of the effects of climatic variables and anthropogenic disturbances on standardized effect sizes (SES)

of diversity indices (Eric, MRic, and PRic: ecological, morphological, and phylogenetic richness, respectively; EEve, MEve, and PEve: ecological,

morphological, and phylogenetic evenness, respectively), computed on native assemblages only (Native) and entire assemblages (Complete).

Diversity

indices HYDRO HUM TEMP

Native
ERic —0.017 (0.03) —0.016 (0.03) —0.005 (0.49)
MRic —0.015 (0.20) —0.0006 (0.95) 0.031 (0.0096)
PRic —0.17 (<0.001)  —0.035 (0.28) 0.137 (0.0002)
EEve 0.016 (0.62) 0.021 (0.48) —0.283 (<0.001)
MEve 0.13 (<0.001)  —0.030 (0.17) —0.022 (0.35)
PEve —0.18 (<0.001)  —0.05 (0.07) —0.21 (<0.001)

Complete
ERic —0.02 (0.009) —0.031 (0.0001) —0.028 (0.0008)
MRic 0.034 (0.003) —0.043 (0.0001) 0.043 (0.0003)
PRic —0.104 (0.0005)  —0.033 (0.23) —0.150 (<0.001)
EEve 0.014 (0.62) —0.003 (0.93) —0.272 (<0.0001)
MEve 0.162 (<0.001) —0.080 (0.0002) —0.025 (0.33)
PEve —0.024 (0.47) —0.016 (0.63) 0.088 (0.02)

TSEAS PREC PSEAS R?
—0.105 (<0.001)

—0.046 (0.0001)

—0.023 (0.002)
—0.024 (0.028)

—0.023 (0.007)  0.16
—0.048 (0.0001)  0.57

—0.211 (<0.001) —0.473 (<0.001)  —0.008 (0.80) 0.29

0.004 (0.89) —0.062 (0.04) 0.062 (0.07) 0.07
—0.27 (<0.001)  —0.04 (0.042) —0.079 (0.0017)  0.12
—0.49 (<0.001)  —0.035 (0.22) —0.002 (0.96) 0.01

—0.086 (<0.001) —0.024 (0.0012)  —0.015 (0.066)  0.13

0.012 (0.29) —0.011 (0.27) —0.064 (<0.001) 0.55
—0.490 (<0.001) —0.049 (0.077)  —0.018 (0.57) 0.25
0.00005 (0.99)  —0.063 (0.027) 0.089 (0.005)  0.08
—0.121 (<0.001) —0.054 (0.025)  —0.008 (0.74) 0.05

—0.097 (0.005)  —0.046 (0.15) —0.085 (0.020)  0.01

Note: The indices were log-transformed when the distribution was not Gaussian. Given values are slope regression coefficients and p-values are indicated in

brackets (in bold when significant at p < 0.05).

Abbreviations: HUM, human use; HYDRO, hydrological and morphological disturbances; NNS, percentage of non native species; PREC, total annual
precipitation; PSEAS, seasonality of precipitation; SR, Species richness; TEMP, mean annual temperature; TSEAS, seasonality of temperature.

morphological richness. Kuczynski and Grenouillet (2018)
found similar results on the same area, with mostly nega-
tive SES values for ecological and phylogenetic indices
across France. In our study, nevertheless, higher values
were observed in the North of France and Brittany for
phylogenetic and ecological richness but also evenness.
Another study, on phylogenetic diversity (Blanchet et al.,
2014), found similar results with stronger values in North-
ern France. On the contrary, for morphological diversity,
our results showed lower values for these two areas, espe-
cially for richness suggesting that morphology, usually
used as a good proxy of ecological strategies, can reflect
different patterns from those found using ecological traits.

Effect of anthropogenic disturbances on
diversity and assemblages

Our results indicate a decrease of phylogenetic and ecolog-
ical diversity with the increase of local disturbances. Previ-
ous studies showed contrasted results concerning this
question but an increase of diversity in several taxa was
observed (Galand et al., 2016; Geedicke et al., 2016;
Murray et al., 2017), suggesting that disturbances could
promote the cohabitation of different species and support
the intermediate disturbance hypothesis (Moi et al., 2020).

Regarding functional diversity, our study showed antago-
nistic results with a significant decrease of ecological diver-
sity with increasing disturbances and, on the contrary, a
weak increase of morphological diversity with distur-
bances, confirming contrasted responses between ecologi-
cal and morphological diversity previously observed at the
European scale (Kuczynski et al., 2018). These results sug-
gest that habitat filtering for ecological and phylogenetic
diversity significantly increased with the level of distur-
bances whereas limiting similarity increased with the level
of disturbances for morphological traits (Abgrall et al.,
2017; Escobedo et al., 2017). Indeed, human disturbances
could act as selective filters which can shape the structure
of communities (Mykri et al., 2016; Ribeiro et al., 2016;
Teichert et al., 2017).

Importance of the type of anthropogenic
disturbances and environmental factors on
facets and components of diversity

Our results highlighted the relative effect of both climatic
variations and anthropogenic disturbances (habitat use and
hydro-morphological disturbances) as strong drivers of com-
munities. Environmental factors played an important role
in the response of indices, with a strong negative effect of
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temperature and rainfall seasonality on several indices. It
has already been showed that seasonality strongly impacts
diversity of communities in tropical terrestrial ecosystems
(Correa et al., 2021; Dzekashu et al., 2022; Oita et al., 2021)
but few studies highlighted such a result in lotic ecosystems,
especially temperate (Epele et al., 2022; Li et al., 2019). Most
studies in lotic ecosystems (Faulks et al., 2011) but also in
other ecosystems highlighted the predominance of environ-
mental factors such as altitude or temperature seasonality
(Howard et al., 2019). Seasonality of climatic variables
seems to lead to habitat filtering and select for species with
similar ecological traits but also closely-related species from
an evolutionary perspective, in agreement with the stress-
dominance hypothesis (SDH) (Kuczynski & Grenouillet,
2018). Environmental stochasticity thus tended to decrease
diversity by eliminating species which are not well adapted
to their environment and not able to face strong environ-
mental fluctuations (Kuczynski & Grenouillet, 2018). Nev-
ertheless, our result is in agreement with what has been
previously found in neotropical fish where variance
partitioning analysis revealed relative similar importance of
environmental and anthropogenic gradients, much lower
than dispersal variables (Borges et al., 2020). Other studies
showed that natural environmental gradients could mask
the effect of perturbations on biodiversity (Heino et al.,
2007) and modify the relationship between environmental
factors and diversity (Agra et al., 2021).

Although climatic variables (e.g., mean and seasonality
of temperature) appeared to be the main drivers shaping
the diversity and structure of fish communities, local distur-
bances could also strongly rearrange these assemblages, as
it has been shown on several taxa (Steibl & Laforsch, 2019;
Ticktin et al., 2012). Our results showed a negative effect of
human use (recreational fishing, presence of water sport, or
stocking) on functional (ecological and morphological) rich-
ness. This loss in richness can suggest that anthropogenic
disturbances can lead to similar responses of assemblages
and modify assemblage rules. On the contrary, hydro-
morphological alterations only negatively affected phyloge-
netic richness but positively morphological richness. The
negative effect of hydro-morphological alterations on fish
richness has been showed in large rivers in a previous study
but the different facets of diversity and the relative impor-
tance of this effect in comparison with other environmental
drivers such as climatic ones were not investigated
(Schinegger et al., 2013; Schmutz et al., 2015, 2016). The
negative effect of non-native species on morphological
diversity showed higher morphological diversity in native
assemblages compared to complete ones. Similar results
have been observed in comparable ecosystems. In fish, some
studies showed a higher diversity of traits in non native spe-
cies, suggesting that being functionally different could be

one reason of their invasion success (Angulo-Valencia et al.,
2022; Takdcs et al., 2021). In aquatic plants in China, Wang
et al. (2021) showed an increase of plant functional diversity
with a high degree of invasion of a non-native species.
Moreover, the negative effect of some environmental drivers
on morphological richness observed on native assemblages
only disappeared when considering complete assemblages,
but it was not the case for ecological and phylogenetic rich-
ness. Non-native species bring new morphological diversity
and traits but these traits are not related to new ecological
functions, suggesting ecological redundancy.

Moreover, our results showed contrasted responses
depending on the component considered. Indeed, we
detected low effect of disturbances on evenness, even if we
observed an effect of all anthropogenic disturbances on
morphological evenness. Morphological evenness differed
between native and non-native species suggesting “a false
compensation” since non-native and native species do not
have equivalent functional roles within assemblages,
which could have strong consequences for the mainte-
nance of assemblages (Sobral et al.,, 2016). Moreover,
results showed higher significant effects of some environ-
mental factors such as mean temperature or mean rainfall
on phylogenetic, morphological, and ecological indices
than species richness. Then, the direction of the relation-
ship between environmental factors and diversity was dif-
ferent between species richness and other indices. It is
especially true for temperature seasonality for which a pos-
itive relationship was observed with species richness
whereas negative ones were observed for almost all indi-
ces. This result suggests that integrating new facets of bio-
diversity, in addition to species richness, which is
currently used in conservation studies, strongly enhances
the assessment of management decisions (Fleishman
et al., 2006; Hillebrand et al., 2018; Hurlbert & Jetz, 2007).
Our study brings new insights since it highlighted that the
type of anthropogenic pressures might be taken into con-
sideration by planners and conservation managers in the
prioritization of some sites, when facets are not congruent,
because different types of biodiversity are more sensitive
than others to different anthropogenic impacts. For
instance, Cadotte and Tucker (2018) highlighted an
approach of prioritizing sites which maximize 80%-85% of
the upper values indices for each facet. The strongest
anthropogenic impact in a given site might inform which
index constitutes the most useful and sensitive indicator
for management of biodiversity. For instance, the focus
might be on functional diversity (ecological and morpho-
logical) when considering sites impacted by hydro-
morphological pressures, whereas combining phylogenetic
and functional diversity indices would be helpful in identi-
fying sites impacted by human use.
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CONCLUSION

Our study highlighted that the type and the level of dis-
turbances could induce different responses, sometimes
antagonistic and could differently affect the diversity and
the structure of assemblages in freshwater fish. Conse-
quently, these results revealed the importance of integrat-
ing a multifaceted approach to assess the responses of
assemblages to multiple and different types of anthropo-
genic disturbances, which might be taken into account to
better understand community-level responses to anthro-
pogenic pressures and help guide priorities in conserva-
tion planning. Moreover, results showed that indices
presented in this study constitute interesting complemen-
tary indicators to ones previously developed for fish in
the assessment of local anthropogenic pressures but also
climatic factors, including evolutionary history of species
but also their functional characteristics.
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