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Abstract
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A

classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture
models, has shown interesting properties when compared to other popular approaches such as
those based on k-nearest neighbors or on multiple imputations by chained equations. However,
Gaussian mixture models are known to be non-robust to heterogeneous data, which can lead to
poor estimation performance when the data is contaminated by outliers or follows non-Gaussian
distributions. To overcome this issue, a new EM algorithm is investigated for mixtures of elliptical
distributions with the property of handling potential missing data. This paper shows that this
problem reduces to the estimation of a mixture of Angular Gaussian distributions under generic
assumptions (i.e., each sample is drawn from a mixture of elliptical distributions, which is possibly
different for one sample to another). In that case, the complete-data likelihood associated with
mixtures of elliptical distributions is well adapted to the EM framework with missing data thanks
to its conditional distribution, which is shown to be a multivariate t-distribution. Experimental
results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be
used with non-Gaussian data. Furthermore, experiments conducted on real-world datasets show
that this algorithm is very competitive when compared to other classical imputation methods.

Keywords
EM algorithm, Elliptical distributions, Angular Gaussian distributions, Mixture Models, Missing
data, Imputation

1 Introduction
Missing data is a recurrent problem in data analysis that has been studied for decades (Anderson,
1957; Dempster et al., 1977; Little and Rubin, 2002; van Buuren, 2018). Missing data appear in
a wide range of applications including biomedical signal processing, medical imaging (Cismondi
et al., 2013; Mirza et al., 2019) and remote sensing (Shen et al., 2015). As an example, in remote
sensing applications, missing data can be due to acquisition problems, cloud coverage or poor
atmospheric conditions. The missing data problem is also of critical importance in applications
relying on techniques that are non-robust to the absence of data, which is often the case with
classical machine learning approaches (e.g., most of the regression or classification algorithms
provided in the benchmark Python library scikit-learn (Pedregosa et al., 2011) cannot be used
with missing data). Moreover, having access to imputed values can be interesting for the end-user.
An example that will be investigated in this paper is crop monitoring based on remote sensing
images, which requires to have access to timely and accurate information on the crop status (Moran
et al., 1997; Mouret et al., 2022).
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1.1 Related work
Missing value imputation (MVI) is a common solution to bypass the data incompleteness. Two
main approaches are generally used for this task, namely statistical and machine learning tech-
niques (Lin and Tsai, 2020). Some imputation strategies are very simple, e.g., imputing the missing
data by the mean or mode of the feature or by linear interpolation when working with time series.
The simplicity of these methods and their straightforward implementation have motivated their
use in various applications (Farhangfar et al., 2007). However, their performance can be limited in
some practical applications, motivating the use of more sophisticated techniques for MVI. Methods
based on the Expectation Maximization (EM) algorithm have been widely used for MVI (Lin and
Tsai, 2020). As explained in (Ghahramani and Jordan, 1994a), the EM algorithm can be naturally
extended to handle missing data, the problem of mixture estimation being itself a missing data
problem. Similarly to clustering or classification tasks, a particular attention has been devoted
to the EM algorithm for Gaussian Mixture Models (GMM) with missing data (Dempster et al.,
1977; Ghahramani and Jordan, 1994a; Eirola et al., 2014). However, GMM estimation is known to
be non-robust to noisy data and outliers (Campbell, 1984; Tadjudin and Landgrebe, 2000; Roiz-
man et al., 2020). Moreover, when the data has a non-Gaussian distribution (i.e., with heavier
or lighter tails than the Gaussian distribution), the performance of GMM estimation algorithms
might decrease significantly (Fraley and Raftery, 2002). In the complete-data case, various strate-
gies have been investigated to solve these issues ranging from robust parameter estimation to the
use of non-Gaussian distributions such as multivariate t- or hyperbolic distributions (Campbell,
1984; Tadjudin and Landgrebe, 2000; Peel and McLachlan, 2000; Browne and McNicholas, 2015).
Some of these strategies have been adapted to the missing data case, e.g., using multivariate t-
distributions Wang et al. (2004) or skew t-distributions Wei et al. (2019). However, their extension
to the missing data case is generally not straightforward since new conditional expectations have
to be computed during the expectation step of the EM algorithm.

1.2 Contributions of this work
A flexible EM algorithm (FEM) was recently investigated in Roizman et al. (2020, 2021), showing
good properties for the clustering of noisy and non-Gaussian data. An outstanding property of this
algorithm is its robustness to the underlying data distribution when assuming cluster-independent
density generators, see (Roizman et al., 2020, Proposition 4). This property was used to build a
versatile EM clustering algorithm characterized by a simple parameter tuning (i.e., self-contained).

This paper proposes to extend the FEM algorithm to handle missing data. The resulting
algorithm is able to perform an efficient MVI, which generally outperforms the classical EM for
GMMs1. The main contributions of this work can be summarized as follows:

• A new EM algorithm for mixtures of elliptical distributions potentially affected by missing
data is derived. The algorithm assumes that each sample is drawn from a mixture of elliptical
distributions, which is possibly different for one sample to another. Under these generic
assumptions, the complete likelihood is shown to be upper bounded by the likelihood of a
mixture of Angular Gaussian (AG) distributions. Moreover, the conditional distribution of
the complete likelihood used in the considered EM framework is shown to be a Student’s
t-distribution.

• Algorithms for the implementation of the proposed EM algorithm are provided. In addition,
we show that the proposed algorithm is intuitive in the sense that its derivation is very similar
to the EM for GMM in the missing data case.

• Imputation results obtained on different synthetic and real world datasets are presented to
evaluate the flexibility of the proposed approach.

1.3 Notations
In the following, a refers to a scalar quantity, a to a vector and A to a matrix. The notation
det(A) (resp. tr(A)) refers to the determinant of matrix A (resp. trace of matrix A). Moreover
AT is the transpose of A.

The rest of this paper is organized as follows. Section 2 presents the general context and
background necessary to understand the FEM method. Section 3 derives the proposed algorithm

1The proposed approach could also be used for clustering, as in the case without missing data. However, this task is
not considered in this paper.
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for missing data with appropriate theoretical justifications. Section 4 evaluates the performance
of the proposed FEM algorithm to impute missing values in various datasets, using both synthetic
and real world data. Note that this paper focuses on the data reconstruction task, the performance
of the FEM algorithm for clustering was evaluated in Roizman et al. (2020) in the complete data
case. Section 5 finally draws some conclusions and presents some future work that would deserve
to be conducted.

2 Background: an EM algorithm for mixtures of elliptical
distributions
Elliptical Symmetric (ES) distributions refer to a broad family of distributions generalizing the
multivariate normal distribution, such as the famous multivariate t-distribution (Peel and McLach-
lan, 2000) or the multivariate generalized Gaussian distributions (Pascal et al., 2013). They have
been used in a wide range of applications to deal with heavy-tailed distribution or outliers (Conte
et al., 2002; Tadjudin and Landgrebe, 2000). Their flexibility and robustness have proven to be
very interesting in tasks such as classification or clustering when compared to standard meth-
ods (Hippert-Ferrer et al., 2022; Roizman et al., 2020), particularly for heterogeneous or noisy
datasets. More information regarding elliptical distributions can be found in the pioneering pa-
per from Kelker (1970), which introduced for the first time this generalization of the Gaussian
distribution. A more recent survey in the complex case can be found in Ollila et al. (2012).

This section briefly recalls the FEM algorithm in its standard formulation, i.e., without missing
data, as proposed in Roizman et al. (2020) (for more details and justifications, the reader is invited
to consult this reference). We focus on the case where the density generator is the same for each
component, which allows us to derive generic estimators that do not depend on the underlying
distribution of the data. In a second step, we extend this procedure to the missing data scenario,
which is the main contribution of this work. The resulting algorithm is very intuitive and has the
interesting property to be robust to outliers.

2.1 Data model and complete log-likelihood
Suppose that each sample xi ∈ Rm of the dataset X = {x1, ...,xN} (containing N samples of
dimension m) is drawn from a mixture of distributions with the following probability density
function (pdf):

fi,θ(xi) =

K∑
k=1

πkfi,θk
(xi) with

K∑
k=1

πk = 1, (1)

where πk denotes the a priori probability of class k, θ = (θT1 , ...,θ
T
K)T and fi,θk

is the pdf of xi
(that is potentially different for each sample). Note that the parameters of cluster k are grouped
into the vector θk. This paper assumes that fi,θk

is an ES distribution with mean vector µk and
covariance matrix τikΣk (Kelker, 1970), whose pdf can be written:

fi,θk
(xi) = Aik det(Σk)

−1/2τ
−m/2
ik gi,k

(
(xi − µk)TΣ−1

k (xi − µk)
τik

)
, (2)

where Aik is a normalization constant and gi,k is a density generator such that Eq. 2 defines a
pdf. Σk is referred to as the scatter matrix, which defines the structure of the covariance of xi (in
particular Σk is equal to the covariance matrix of xi up to a scale factor). Finally, τik is known
as the scale or nuisance parameter and is not of direct interest when estimating the other model
parameters. After introducing the scale factor

sik =
(xi − µk)TΣ−1

k (xi − µk)
τik

,

the pdf fi,θ can be expressed as follows:

fi,θk
(xi) = Aik det(Σk)

−1/2
[
(xi − µk)TΣ−1

k (xi − µk)
]−m/2

s
m/2
ik gi,k(sik). (3)

In the rest of this paper, we will suppose that the density generator is the same for
each component (but is possibly different from one sample to another), i.e., gi,k = gi, leading
to

fi,θk
(xi) = Ai det(Σk)

−1/2
[
(xi − µk)TΣ−1

k (xi − µk)
]−m/2

s
m/2
ik gi(sik). (4)
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In this paper, we show that this specific structure for the density generator allows us to have
a model that is as generic as possible with intuitive and relatively simple derivations. Indeed,
assuming the pdf depends on sample i is more generic without any complexity added to the
algorithm. Moreover, while preserving the generality of the estimated model, this assumption
on the density generator provides an algorithm allowing the model parameters to be estimated
without knowing the generator gi, which is an interesting property of the FEM algorithm Roizman
et al. (2020). Note that a precise knowledge of the underlying data distribution could improve
the estimation of the model parameters (Roizman et al., 2020). However, the main interest of the
FEM algorithm presented in this paper is that it can be used without any a priori on the data
distribution (e.g., if the x observations are identically distributed or not).

The complete log-likelihood for a mixture of elliptical distributions can be defined by introduc-
ing latent vectors Z = {z1, ...,zN} containing the cluster labels for the different observed vectors.
More precisely, for each sample xi, the latent vector zi = (zi1, ..., ziK)T is such that zik = 1 if the
vector xi belongs to the kth component of the model and zik = 0 otherwise:

logLc(θ;X ,Z) =
N∑
i=1

K∑
k=1

zik log (πkfi,θk
(xi)) . (5)

Based on Eq. 4, logLc(θ;X ,Z) can be rewritten as:

logLc(θ;X ,Z) =
N∑
i=1

K∑
k=1

zik [`0k(xi;πk,µk,Σk) + `ik(xi;πk,µk,Σk, τik)] (6)

with

`0k(xi;πk,µk,Σk) = log(πk) + log(Ai) +
1

2
log
(
det(Σ−1

k )
)

− m

2
log
(
(xi − µk)TΣ−1

k (xi − µk)
)
,

(7)

`ik(xi;πk,µk,Σk, τik) = log
(
s
m/2
ik gi(sik)

)
. (8)

2.2 The M-step
Using the EM algorithm, where t denotes the current iteration, we can derive the new set of
parameters θ(t+1) based on the current set of parameters θ(t) and pik = E[zik|xi,θ(t)], the proba-
bility that sample i has been generated by component k. The probabilities pik (also referred to as
responsibilities) are computed in the E-step defined in the next section. We begin by the M-step
since interesting results regarding the estimation of τik will allow the E-step to be simplified sig-
nificantly. For brevity, denote as θ(t) = θ, i.e., µ(t)

k = µk, Σ
(t)
k = Σk, τ

(t)
ik = τik and π(t)

k = πk the
current set of parameters.

• Estimation of the nuisance parameters τik: One can observe that τik is only related
to the term `ik(xi;πk,µk,Σk, τik) of the complete log-likelihood. For fixed (πk,µk,Σk), the
value of τik maximizing pik log(s

m/2
ik gi(sik)) is:

τik =
(xi − µk)TΣ−1

k (xi − µk)
aim

, (9)

with aim = arg supt(tm/2gi(t)) (see proof and complementary results in Roizman et al.
(2020), in particular, it has been shown that aim ∼ m when m is sufficiently large). After
replacing τik by its estimate in sik, the following results can be obtained:

sik =
(xi − µk)TΣ−1

k (xi − µk)
τik

= aim, (10)

`ik(xi;πk,µk,Σk, τik) = log(s
m/2
ik gi(sik)) = log(a

m/2
im gi(aim)). (11)

This central result indicates that `ik(xi;πk,µk,Σk, τik) does not depend on (πk,µk,Σk)
within the EM framework, and thus only depends on aim. Consequently, estimating these
parameters using the complete log-likelihood can be done using `0k(xi;πk,µk,Σk) only, which

4



reduces to estimate the parameters of a mixture of AG distributions. More formally, we
denote as AGm(µk,Σk) the AG distribution studied in (Ollila et al., 2012), with pdf

fAG(xi) = Bi det(Σk)
−1/2

[
(xi − µk)TΣ−1

k (xi − µk)
]−m/2

, (12)

where Bi is a normalization constant.

Remark 1. The estimation of τik reduces Σ
−1/2
k (xi − µk) to lie on a hypersphere, which

explains the apparition of the AG distribution. Indeed, the stochastic representation theorem
(see e.g., Roizman et al. (2020)) for xi distributed according to an elliptical distribution can
be stated as follows:

xi
d
= µk +

√
QikAkui

where d
= stands for “is distributed as”, Qik is a positive random variable independent of ui,

Ak is such that AkA
T
k = Σk and ui is a uniform random vector on the unit hypersphere.

Since Qik is distributed as (xi −µk)TΣ−1
k (xi −µk) (Ollila et al., 2012), the following result

is obtained:
Σ

−1/2
k (xi − µk)√

Qik
d
= ui,

which shows that the normalized observation xi lies on the unit hypersphere.

• Estimating the model parameters (πk,µk,Σk): maximizing the log-likelihood with re-
spect to the model parameters leads to the following expressions defined through fixed-point
equations:

πk =
1

N

N∑
i=1

pik, (13)

µk =

N∑
i=1

wikpikxi∑N
l=1 wlkplk

, (14)

Σk =m

N∑
i=1

pikwik(xi − µk)(xi − µk)T∑N
l=1 plk

, (15)

where wik = 1
(xi−µk)

TΣ−1
k (xi−µk)

. One can notice that Eq. 14 and Eq. 15 are classical
expressions of the mean and covariance matrix in a robust estimation framework. More
precisely, wik are weights reducing the influence of outlier samples (see for instance (Campbell,
1984; Tadjudin and Landgrebe, 2000), where similar forms are obtained using the Huber
function for the weight function). Typically, when wik is close to zero, the considered sample
will have little influence on the estimation of the model parameters.
Finally, it should be noted that the scatter matrix Σk is equal to the covariance matrix up
to a scale factor. In this work, we choose to fix the trace of Σk to m, as in Roizman et al.
(2020). The aforementioned reference has shown that the scale of Σk has no influence on the
clustering results. In subsection 3.2, we will show that the scale of Σk has also no influence
either on the imputation results in the missing data case, which is an important result.

2.3 The E-step

In the E-step, one needs to compute E[logLc(θ;X ,Z))|θ(t)], which reduces to evaluate p̂ik =

E[zik|xi,θ(t)] when there is no missing data. By replacing unknown parameters by the current
state of parameters at iteration t, i.e., by θ(t), p̂ik can be computed as follows:

p̂ik =
πkfi,θk

(xi)∑K
j=1 πjfi,θj

(xi)
. (16)

Using the result obtained in Eq. 10 leads to:

p̂ik =
πk det(Σk)

−1/2
[
(xi − µk)TΣ−1

k (xi − µk)
]−m/2∑K

j=1 πj det(Σj)−1/2
[
(xi − µj)TΣ−1

k (xi − µj)
]−m/2 . (17)
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It is important to note here that the result obtained in Eq. 17 shows that p̂ik does not depend
on the density generator g when gik = gi. This result is particularly important since knowing
the precise data distribution (and the corresponding density generator) is often not possible in
practical applications.

2.4 Algorithm
Algorithm 1 provides the pseudo-code for the FEM implementation in the complete data case. The
reader is invited to consult Roizman et al. (2020) for a discussion regarding implementation details
and numerical considerations. Regarding the initialization of θ(0), it is possible to use random
values. However, a more efficient way is to use a fast clustering algorithm (such as the K-means
algorithm) to have a more relevant initial guess for the set of parameters. This is for instance the
strategy adopted in the Python library scikit-learn for the estimation of GMM.

Algorithm 1 Scheme of the FEM algorithm in the complete data case (Roizman et al., 2020).
Input: Data {x i}ni=1, K the number of clusters
Output: Clustering labels Z = {zi}ni=1 and model parameters θ = {π1, ..., πk, µ1, ...,µk,Σ1, ...,ΣK}
1: Initialize θ(0) (randomly or using a clustering algorithm);
2: t← 1;
3: while not convergence do
4: for 1 ≤ k ≤ K: do . E-step

5: p
(t)
ik =

π
(t−1)
k

det(Σ
(t−1)
k

)−1/2
[
(xi−µ

(t−1)
k

)T (Σ
(t−1)
k

)−1(xi−µ
(t−1)
k

)
]−m/2

∑K
j=1 π

(t−1)
j det(Σ

(t−1)
j )−1/2

[
(xi−µ

(t−1)
j )T (Σ

(t−1)
k

)−1(xi−µ
(t−1)
j )

]−m/2 ;

6: end for
7: for 1 ≤ k ≤ K: do . M-step

8: π
(t)
k = 1

N

∑N
i=1 p

(t)
ik ;

9: set µ
′

k = µ
(t−1)
k and Σ

′
k = Σ

(t−1)
k ;

10: while not convergence do . Fixed-point loop
11: wik = 1

(xi−µ
′
k
)T (Σ

′
k
)−1(xi−µ

′
k
)
;

12: µ
′′

k =
∑N
i=1

wikp
(t)
ik
xi∑N

l=1
wlkp

(t)
lk

;

13: Σ
′′
k = m

∑N
i=1

wikp
(t)
ik

(xi−µ
′
k)(xi−µ

′
k)

T∑N
l=1

p
(t)
lk

;

14: Update: µ
′

k = µ
′′

k and Σ
′
k = Σ

′′
k ;

15: end while
16: Update: µ(t)

k = µ
′′

k and Σ
(t)
k = Σ

′′
k ;

17: end for
18: t← t+ 1;
19: end while
20: Set zi as the index k that has the maximum pik;

6



3 A generalization to incomplete data
This section explains how to extend the previous FEM algorithm to handle missing data. In this
case, each sample can be decomposed into xi = (xoii ,x

mi
i ), where xoii and xmi

i are the vectors
of observed and missing variables respectively (we denote X o the sets of all observed variables
and Xm the set of all missing variables). More generally, the superscripts oi and mi denote the
observed and missing components of sample i. These subscripts can be used for matrices too, e.g.,
Σoimi

k refers to the elements of the matrix Σk in the rows and columns specified by oi and mi.
Thus, the covariance matrix for xi is defined as

Σk =

(
Σoioi
k Σoimi

k

Σmioi
k Σmimi

k

)
(18)

where Σk has the same structure for any vector xi, with submatrices Σoioi
k , Σoimi

k , Σmioi
k and

Σmimi

k changing according to the number of missing data (that depends on i). For brevity, we
will denote oi = o and mi = m in the following, but the reader should keep in mind that these
subscripts are sample-dependent.

Note that the proposed algorithm assumes data missing completely at random (MCAR) or
missing at random (MAR) (see Little and Rubin (2002) for a detailed description of the different
missing data mechanisms), which is a standard assumption for EM-based algorithms. This implies
that the missing data mechanism is ignorable, i.e., the missingness is independent of all the values
(MCAR) or independent of the missing values (MAR). In practice, the MCAR or MAR assumptions
apply to a wide range of data. As a first example, the presence of clouds in remote sensing images
induce missing data that may be regarded as MAR since the spatial distribution of clouds is
independent of the land cover (Salberg, 2011). As a result, any cloud detection task will not
change the distribution of the observed data. A second example concerns missing pixels due to
sensor failure. This setting is clearly MCAR since the missing-data mechanism is independent
of the observed and missing data. In both MAR and MCAR settings, valid inferences can be
obtained by ignoring the missing-data mechanism (Little and Rubin, 2002) instead of using an ad
hoc procedure (data deletion, mean imputation, etc.). Consequently, the use of the EM algorithm
is justified by the assumption that the probability that a value is missing does not depend on
the missing-data value itself. Finally, it would be interesting to study the case where the data is
missing not at random (MNAR), such as in Sportisse et al. (2021), which is left for future work.

3.1 The E-step

The E-step for elliptical distributions with missing data requires to evaluate E[logLc(θ;X ,Z))|θ(t),X o].
Similarly to the complete data case, this can be done by focusing only on the terms `0k defined
in Eq. 7, which means that the parameters τik can be ignored. This leads us to the following
proposition.

Proposition 1. Maximizing the complete log likelihood with respect to θk and X o is equivalent to
maximising:

E
[
logL0(θ;X ,Z)|θ(t),X o

]
=

N∑
i=1

K∑
k=1

E
[
zik`0k(xi;πk,µk,Σk)|θ(t),xoi

]
Proof. See Appendix A.1 for details.

This result is of crucial importance, since it implies that the estimation problem reduces to
the estimation of a mixture of AG distributions (logL0(θ;X ,Z) is the log-likelihood of an AG
distribution, whose pdf is provided in Eq. 12). This leads to:

E
[
logL0(θ;X ,Z)|θ(t),X o

]
=

N∑
i=1

K∑
k=1

(
E
[
zik|θ(t),xoi

]
× E

[
`0k(xi;πk,µk,Σk)|zik = 1,θ(t),xoi

])
,

(19)
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where the expression of E[zik|θ(t),xoi ] is similar to the case without missing data, except that p̂ik
is estimated using the observed data:

p̂ik =
πk det(Σ

oo
k )−1/2

[
(xoi − µok)T (Σ

oo
k )−1(xoi − µok)

]−do/2∑K
j=1 πj det(Σ

oo
j )−1/2

[
(xoi − µoj)T (Σ

oo
k )−1(xoi − µoj)

]−do/2 , (20)

with do the number of observed features for each sample.

3.1.1 Conditional expectations

As can be observed in Eq. 19, additional terms coming from E
[
`0k(xi;πk,µk,Σk)|zik = 1,θ(t),xoi

]
have to be computed with respect to the case without missing data. More precisely, we need
to compute two new sufficient statistics, E[xmi |zik = 1,xoi ,θ] and E[xmi (xmi )T |zik = 1,xoi ,θ]
which are first and second order conditional expectations of the missing variables for a sample
xi, given that xi has been generated by the AG k (this is in fact similar to the GMM case,
but with different expectations, see Ghahramani and Jordan (1994b) for a detailed example in
that case). These sufficient statistics can be determined easily after identifying the conditional
distribution fi,θk

(xmi |xoi ). Using Proposition 1, we have noted that the pdf fi,θk
(xi) reduces to

an AG distribution, which is an outstanding result. Based on this, the conditional mean and
covariance of xmi |xoi ,θ can be determined using the following proposition.

Proposition 2. Suppose that x ∼ AGm(µ,Σ), with x = [xT1 ,x
T
2 ]
T ∈ Rd, and d = d1 + d2. Then,

x2|x1 ∼ tν(µ2.1,Σ22.1), where tν(µ2.1,Σ22.1) is a multivariate t-distribution with ν = d1 degrees
of freedom, mean vector µ2.1 = µ2 + Σ21Σ

−1
11 (x1 − µ1) and scale matrix Σ22.1 = s22.1(Σ22 −

Σ21Σ
−1
11 Σ12) with s22.1 = 1

d1
(x1 − µ1)

T (Σ11)
−1(x1 − µ1) ∈ R.

Proof. See Appendix A.2.

Remark 2. This proposition is in agreement with some results obtained in the general case of ellip-
tical distributions, denoted as Ed(µ,Λ) (see for instance (Bilodeau and Brenner, 1999, Chapter 13)
for detailed proofs). More precisely, if x = [xT1 ,x

T
2 ]
T ∼ Ed(µ,Λ), then x2|x1 ∼ Ed2(µ2.1,Λ22.1)

with µ2.1 = µ2 + Λ21Λ
−1
11 (x1 − µ1) and Λ22.1 = Λ22 − Λ21Λ

−1
11 Λ12. In that case, the covari-

ance matrix of x2|x1 is cov[x2|x1] = w(x1)Λ22.1, with w a function depending on x1. This paper
shows that within the EM framework for elliptical distributions with missing data, the estimation
of the model parameters (µk,Σk, πk) of any elliptical distribution reduces to consider an Angular
Gaussian distribution, when assuming that the density generator is the same for each component.
Further work based on this result could be interesting, but such investigations are out of the scope
of this paper.

The expectation of the log-likelihood can then be derived as follows:

E
[
logL0(θ;X ,Z)|θ(t),X o

]
=

N∑
i=1

K∑
k=1

p̂ik

(
log(πk) + log(Ai)−

1

2
log(det(Σk))

− m

2
log
[
tr((Σk)

−1Σ̃ik)
]

− m

2
log
[
(x̃i − µk)TΣ−1

k (x̃i − µk)
])

,

(21)

where Σ̃ik and x̃i are defined hereafter. Eq. 21 is obtained by computing the following sufficient
statistics thanks to the conditional distributions found in Proposition 2:

E[xmi |zik = 1,xoi ,θ] = µ
m
ik =µmk + Σmo

k (Σoo
k )−1(xoi − µok), (22)

E[xmi (xmi )T |zik = 1,xoi ,θ] = Σmm
ik =Coi × (Σmm

k −Σmo
k (Σoo

k )−1Σmo
k ), (23)

where Σoo
k , Σmo

k , Σom
k and Σmm

k are properly defined in Eq. 18 for each sample and Coi =
(xo

i−µ
o
k)

T (Σoo
k )−1(xo

i−µ
o
k)

do−2 .
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As for the classical EM for GMM with missing data (Ghahramani and Jordan, 1994a; Eirola
et al., 2014), the missing components of each xi are replaced by the conditional mean µmik, along
with the computation of the quantity Σ̃ik given by

x̃i = (xoi ,µ
m
ik) (24)

Σ̃ik =

(
0oo 0om

0mo Σmm
ik

)
(25)

where 0oo,0om and 0mo are matrices of zeros of appropriate dimensions. Note that the tilde symbol
is used here to highlight the terms related to the conditional expectations computed in Eq. 22 and
Eq. 23, similarly to Eirola et al. (2014).

3.2 The M-step
Maximizing the log-likelihood leads to the following expressions for µk, Σk and πk defined thanks
to (classical) fixed-point equations:

µk =

N∑
i=1

wikpikx̃i∑N
l=1 wlkplk

, (26)

Σk =m

N∑
i=1

pik∑N
l=1 plk

(
Σ̃ik

tr(Σ−1
k Σ̃ik)

+ wik(x̃i − µk)(x̃i − µk)T
)
, (27)

πk =
1

N

N∑
i=1

pik, (28)

where wik = 1
(x̃i−µk)

TΣ−1
k (x̃i−µk)

.

These expressions are intuitive, in the sense that they follow the same logic as the EM for
GMM with missing data. Indeed, in the M-step, missing values are replaced by their imputed
values in x̃i, and covariances matrices are updated using an additional term taking into account
the missing values. One can also notice that those expressions are fixed-point equations as often
in robust approaches (e.g., for M - or FEM estimators).

Finally, note that the scale of Σk has no influence on the estimation of missing values (i.e., the
scale of Σk does not change the result in Eq. 22). This is an important result since, as explained
in subsection 2.2, the scatter matrix Σk is equal to the covariance matrix up to a scale factor.

3.3 Proposed algorithm
The proposed generalized FEM algorithm is detailed in Algorithm 2. As for Algorithm 1, a more
efficient way to initialize θ(0) when compared to a random initialization is to use the K-means
algorithm. In that case, a first imputation of the missing values is needed, for instance using
imputations based on the mean or k-nearest neighbors. In the presence of missing data, the EM
algorithm comes with a higher computational cost (it is true for GMM as well) mainly because
one needs to evaluate (Σoo

k )−1 for each sample with missing data. See Delalleau et al. (2018) for
an interesting discussion regarding this issue.
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Algorithm 2 Scheme of the generalized FEM algorithm in the the incomplete data case.
Input: Data {x i}ni=1, K the number of clusters
Output: Clustering labels Z = {zi}ni=1, model parameters θ = {π1, ..., πk, µ1, ...,µk,Σ1, ...,ΣK} and imputed samples
x̃i

1: For each sample, identify observed and missing components o and m;
2: Initialize θ(0);
3: t← 1
4: while not convergence do
5: for 1 ≤ k ≤ K: do . E-step

. Compute observed responsibilities:

6: p
(t)
ik =

π
(t−1)
k

det(Σ
oo(t−1)
k

)−1/2
[
(xo

i−µ
o(t−1)
k

)T (Σ
oo(t−1)
k

)−1(xo
i−µ

o(t−1)
k

)
]−do/2

∑K
j=1 πj det(Σ

oo(t−1)
j )−1/2

[
(xo

i−µ
o(t−1)
j )T (Σ

oo(t−1)
k

)−1(xo
i−µ

o(t−1)
j )

]−do/2

. Compute conditional expectations:
7: µ

m(t)
ik = µ

m(t−1)
k + Σ

mo(t−1)
k (Σ

oo(t−1)
k )−1(xoi − µ

o(t−1)
k )

8: Σ
mm(t)
ik =

(xo
i−µ

o(t)
k

)T (Σ
oo(t)
k

)−1(xo
k−µ

o(t)
k

)

do−2
× (Σ

mm(t)
k −Σ

mo(t)
k (Σ

oo(t)
k )−1Σ

mo(t)
k )

9: Fill in: x̃(t)
ik ← [xoi ,µ

m(t)
ik ] and Σ̃

(t)
ik ←

(
0oo 0om

0mo Σ
mm(t)
ik

)
10: end for
11: for 1 ≤ k ≤ K: do . M-step

12: π
(t)
k = 1

N

∑N
i=1 p

(t)
ik

13: set µ
′

k = µ
(t−1)
k and Σ

′
k = Σ

(t−1)
k

14: while not convergence do . Fixed-point loop
15: wik = 1

(x̃
(t)
ik

−µ′
k
)T (Σ

′
k
)−1(x̃

(t)
ik

−µ′
k
)
,

16: µ
′′

k =
∑N
i=1

wikp
(t)
ik
x̃
(t)
ik∑N

l=1
wlkp

(t)
lk

,

17: Σ
′′
k = m

∑N
i=1

p
(t)
ik∑N

l=1
p
(t)
lk

(
Σ̃

(t)
ik

tr((Σ′
k
)−1Σ̃

(t)
ik

)
+ wik(x̃

(t)
i − µ

′

k)(x̃
(t)
i − µ

′

k)
T

)
;

18: Update: µ
′

k = µ
′′

k and Σ
′
k = Σ

′′
k

19: end while
20: Update: µ(t)

k = µ
′′

k and Σ
(t)
k = Σ

′′
k

21: end for
22: t← t+ 1
23: end while
24: Set zi as the index k that has the maximimum pik.
25: Final imputation: x̃mi =

∑K
k=1 p

(t)
ik x̃

(t)
ik
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4 Numerical results
This section evaluates the proposed method for the reconstruction of missing data coming from
various datasets used in biomedical analysis and remote sensing.

4.1 Experimental setup
In the following experiments, we assume that the missing data mechanism can be ignored, i.e., we
consider the missing values to be MCAR or MAR (see discussion in Section 3). The imputation
performance is quantitatively evaluated using the Mean Absolute Percentage Error (MAPE), which
is convenient to use and interpret and can be computed with features having different magnitudes.
The MAPE is defined as follows:

MAPE =
100

Nm

Nm∑
i=1

|fi − f̂i|
|fi|

, (29)

where Nm is the number of missing features, fi is the actual value of the ith feature and f̂i its
estimation (also known as imputation or reconstruction). Other metrics, such as the mean absolute
error (MAE) or the root mean squared error (RMSE) were also tested but are not reported here
since they lead to similar conclusions (with a simpler interpretation for MAPE). Finally, note
that when the features are very close to zero, the MAPE metric should be carefully used (see for
instance the discussion on the abalone dataset).

The FEM algorithm is compared to five other imputation methods, namely the k-nearest
neighbor (KNN) imputation (Troyanskaya et al., 2001), the Multiple Imputation by Chained Equa-
tions (MICE) (van Buuren and Groothuis-Oudshoorn, 2011), the MissForest imputation algorithm
(Stekhoven and Buhlmann, 2011), the GMM method (Dempster et al., 1977) and a robust version
of GMM (Mouret et al., 2022). The robust GMM algorithm uses an outlier detection algorithm
(namely, the isolation forest algorithm (Liu et al., 2012)) within the EM algorithm to reduce the
influence of outlier samples in the estimation of the mixture model (see the original paper Mouret
et al. (2022) for more details and derivations). For KNN, MICE and MissForest algorithms, we
used the Python library scikit-learn (Pedregosa et al., 2011) (version 0.24.2), whereas we have
implemented our own EM algorithm for GMM, robust GMM and FEM. A minimal parameter
tuning was considered for the different algorithms. To that extent, KNN, MICE, MissForest al-
gorithms were used with their default parameters: the number of neighbors was set to 5 for the
KNN algorithm, the MICE algorithm uses the IterativeImputer with BayesianRidge estimators
and the MissForest uses the IterativeImputer with ExtraTree regressor. The parameters of the
GMM algorithms were adjusted as in Mouret et al. (2022) (in brief, only a small regularization of
the covariances matrices is applied to avoid instabilities) and the FEM algorithm was used without
any tuning (i.e., no regularization was used for the covariance matrices). Finally, the number of
components K used for the GMM and FEM depends on the datasets (it is fixed when the number
of classes is known, otherwise it is estimated using the Bayesian Information Criterion, see results
on the abalone dataset for details).

In a first experiment, two synthetic datasets are considered to evaluate a change in the underly-
ing data distribution (i.e., Gaussian and non-Gaussian distributions). In a second step, imputation
tasks are conducted on different real world datasets. We mostly used benchmark datasets coming
from the University of California at Irvine (UCI) database2. To that extent, the results presented
here can be easily reproduced. The name, number of attributes and number of samples of each
dataset are summarized in Table 1. For all these datasets, 50 Monte Carlo (MC) simulations
were conducted by varying the percentage of missing data and the percentage of outliers added
to the dataset. The outliers are generated using uniform distributions on intervals defined by the
minimum and maximum of each feature.

4.2 Synthetic data
The proposed imputation algorithm is first tested on synthetic data. The conducted experiments
can be summarized as follows: 1) generation of synthetic data with N = 2000 (number of samples)
and m = 10 (number of features), 2) scaling of the generated data (this allows us to use the MAPE
metric without problems), 3) random generation of missing values (the missing elements of the
feature matrix are chosen randomly), 4) imputation (and metric computation). The datasets are

2https://archive.ics.uci.edu
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Table 1: Numbers of features and samples of the datasets used to evaluate the different imputation
techniques. UCI is added in parenthesis for the datasets coming from the UCI database.

Dataset Features Samples Reference
Synthetic (AR(1) time series) 10 2000 -
Mice protein expression (UCI) 82 1080 Higuera et al. (2015)
Abalone (UCI) 8 4176 Nash et al. (1994)
Statlog - Landsat Satellite (UCI) 36 4435 (train) -
Rapeseed crops - Sentinel satellites 106 2218 Mouret et al. (2021)

generated according to a mixture of K = 3 distributions (all classes are equally likely represented).
The generation of these datasets is summarized in Table 2 (which provides the distributions used
for the datasets) and Table 3 (which presents the generation of the synthetic samples). Note that
after having generated the synthetic samples, the dataset is scaled so that the minimum value of
the whole dataset is equal to 1 and the 98th3 percentile of the whole dataset is equal to 100 (this
allow us to avoid problems with the MAPE metrics when values are close to zero).

Table 2: Summary of the parameters used to generate the synthetic samples, where U is the uniform
distribution.

Parameters
µkf ∼ U [0, 1], ∀f with f feature #f
φk ∼ U [0.1, 0.9]
σ2k ∼ U [0.0005, 0.005]]

Σk =
σ2
k

1−φ2k


1 φk φ2k ... φm−1

k

φk 1 φk ... φm−1
k

φ2k φk 1 ... φm−1
k

... ... ... ... ...

φm−1
k ... φ2k φk 1



Table 3: Distributions used to generate the two synthetic datasets, which make use of the parameters
provided in Table 2, where t5 is the multivariate t-distribution with 5 degrees of freedom.

Name Generating distribution Classes
Gaussian dataset N (µk,Σk) 3
Student dataset t5(µk,Σk) 3

The various synthetic datasets can be viewed as AR(1) time series, which are grouped into 3
different clusters. Two representative examples generated according to the Gaussian and Student’s
t-distributions are displayed in Figure 1. One can observe that the Student dataset logically
contains more samples with extreme values. Because of these extreme values, the range of the
MAPE is different for these two types of datasets (since the data have been scaled).

Imputation results obtained for the two types of datasets are provided in Figure 2 for a percent-
age of missing values equal to 50%, without outliers (more experiments conducted with different
percentages of missing data are provided for the real world datasets). For the Gaussian datasets,
the GMM and FEM methods provide the best results, with a slight advantage for the FEM ap-
proach. This illustrates the versatility of the FEM algorithm, which is competitive against the
GMM imputations, even when it is used for a dataset adapted to Gaussian methods. When con-
sidering the Student datasets, FEM still provides the best results and outperforms all the other
tested approaches. In that case, the GMM approaches can provide good imputations depending
on the dataset generation, but can also lead to poor results. Moreover, the robust GMM does
not improve the imputation results for this type of data (this is probably due to a non-optimal
tuning of the algorithm parameters used for robust estimation). In both scenarios, the MissForest
provides competitive results, but with a higher MAPE than the one obtained using the FEM ap-

3This values was chosen so that most of the data (except outliers) are scaled in the range [1, 100].
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Figure 1: Synthetic datasets generated according to Table 3: a) multivariate Normal distribution, b)
multivariate t-distribution. Each color corresponds to a different class.

proach. Finally, for both types of datasets, MICE and KNN approaches are not competitive, with
a MAPE that can be almost twice higher than with FEM imputations.
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Figure 2: MAPE obtained after 50 MC simulations a) Gaussian and b) Student synthetic datasets
(generated randomly for each simulation). The percentage of missing features is 50% for this example.

4.3 Real-world experiments
We now proceed with experiments conducted on real-world data sets.

4.3.1 Mice protein expression dataset

The mice protein dataset contains expression levels of various protein or protein modification
measures in the cerebral cortex of 8 classes of control and down syndrome mice. This type of
data is subject to the missing data problem, which is interesting in the context of this study.
In particular, the dataset considered here already contains a small percentage of missing values
(around 1%). During the experiments, missing values were simulated completely at random. The
number of clusters was fixed to 8 for the GMM and FEM algorithms.

The imputation results obtained with the different methods are summarized in Figure 3. More
precisely, Figure 3(a) evaluates the influence of the percentage of missing data whereas Figure 3(b)
studies the influence of adding outliers in the dataset. It can be observed that, overall, the FEM and
MissForest algorithm outperform all the other tested algorithms. More precisely, for percentages
of missing values lower than 35%, the FEM imputation is optimal whereas for higher percentages
of missing data the MissForest algorithm provides the best imputation. The GMM approaches
are competitive only when the percentage of missing data is lower than 30%, with an important
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degradation for higher levels of missing data (in that case the FEM algorithm is much more
competitive than the other EM-based algorithms). Moreover, GMM are particularly sensitive to
the presence of outliers (for a better visualization, the MAPE obtained for GMM is not fully
displayed in Figure 3(b) since some values are close to 80%). For this dataset, the KNN and MICE
algorithms perform poorly (it is especially true for the MICE algorithm). Finally, Figure 3(c)
shows a boxplot representation of the MAPE obtained for different MC runs (missing data is set
to 40% without outliers). It can be observed that the MissForest algorithm always provides a
better MAPE in that configuration and that the MAPE obtained using the FEM algorithm is very
close.

Mice protein expression dataset
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(b) MAPE vs. percentage of contamination (missing data = 40%)
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(c) MAPE: missing data = 40%, contamination = 0%

Figure 3: MAPE obtained for the mice protein expression dataset by varying (a) the percentage of
missing data (MCAR) and (b) the percentage of outliers in the dataset. The results are obtained after
50 MC simulations (the plain line corresponds to the median and the shaded area is filled between the
first and third quartiles). Figure (c) shows a boxplot of the MC runs when the quantity of missing
data is set to 40% and there is no outlier, which corresponds to the red rectangle displayed in (a) and
(b).
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4.3.2 Abalone dataset

The abalone dataset consists of various physical measurements (length, diameter, etc.) made on
abalone. Note that the feature “sex” is a categorical feature taking the value M, F or I (Infant),
which was not considered in this experiment. A simple way to handle this feature would be to
convert it into integers. However, this conversion would provide inconsistent results for the MAPE
or other reconstruction metrics. Note also that the feature “rings”, which is an integer directly
related to the age of the abalone, was kept in the dataset. Because some features can be very
close to zero, a scaling of each feature in the range [1, 100] was made in order to use the MAPE
metrics in a relevant way. This scaling make senses since the aim of these experiments is to
compare the different imputation methods. Finally, the optimal number of clusters to be chosen
for EM approaches was estimated for each simulation using the Bayesian Information Criterion
(BIC), as recommended for instance in Bouveyron and Brunet-Saumard (2014). It is defined as
BIC = −2 log(L) + p log(N) (the lower the better), where L corresponds to the likelihood of a
given model, p is the number of parameters and N is the number of samples used to fit the GMM
parameters. When estimating the number of classes, we observed that the FEM algorithm tends
to use efficiently a higher number of components when compared to GMM approaches, which
on the contrary tend to be very unstable when the number of components is too high. Further
investigations on that topic could be interesting but are out of the scope of this paper.

The results obtained on the abalone dataset are summarized in Figure 4. In brief, most of the
conclusions obtained for the mice dataset can be transposed to the abalone dataset. More precisely,
the imputations obtained with the FEM algorithm have overall a lower MAPE when compared
to the other algorithms. In particular, the FEM algorithm performs well when the percentage of
missing data is high or when the data is contaminated by outliers, with a very low dispersion in
its results. As an exception, the MissForest provides better results when the percentage of missing
data is equal to 50%. This algorithm is, however, more sensitive than the FEM algorithm to the
presence of outliers. In absence of outliers, GMM imputations are close to those obtained with the
FEM algorithm, but are always sub-optimal (the MAPE is consistently higher of around 0.5%).
Finally, the MICE algorithm outperforms the KNN imputation method for this dataset. This
example confirms that MICE and KNN algorithms are very sensitive to the considered dataset.

4.3.3 Statlog - Landsat satellite data

This classic database contains multispectral pixel values (4 spectral bands) acquired in a 3 × 3
neighborhood region using the Landsat satellite. Each sample is characterized by a total of 3×3×
4 = 36 features, which belong to a land cover category (6 categories in total, e.g., red soil, cotton
crop, etc.). For this dataset, the missing data was simulated by removing all the values of some
pixels (i.e., all the spectral bands are missing), which could for instance correspond to a sensor
failure. Experimental results obtained on this dataset are summarized in Figure 5. Except for the
KNN algorithm, all methods provide decent results when the percentage of missing data is lower
than 20% (with a slight and consistent advantage for the FEM algorithm). However, for higher
percentages or in the presence of outliers, results obtained with the FEM algorithm are significantly
better (with a low dispersion). This confirms the results obtained on the datasets previously tested.
As a last remark, we would like to clarify that the relatively poor results obtained with the robust
GMM approach might be explained by a non-optimal tuning of the outlier detection mechanisms,
whereas the FEM algorithm is not impacted at all by outliers. This illustrates the advantage of
the FEM approach, which does not need additional tuning to take into account the presence of
outlier samples.
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Figure 4: MAPE obtained on the abalone dataset by varying the (a) percentage of missing data
(MCAR) and (b) the percentage of outliers in the dataset. The results have been obtained after
averaging 50 MCs simulations (the plain line corresponds to the median and the shaded area is filled
between the first and third quartiles). Figure (c) displays a boxplot of the MC runs when the quantity
of missing data is 40% without outliers added to the dataset, which corresponds to the red rectangles
displayed in (a) and (b).
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Landsat dataset

10 15 20 25 30 35 40 45 50
Missing data [%]

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

M
AP

E
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(b) MAPE vs. percentage of contamination (missing data = 40%)
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Figure 5: MAPE obtained for the Landsat dataset by varying (a) the percentage of missing data
(MCAR) and (b) the percentage of outliers in the dataset. The results have been obtained after
averaging the metrics of 50 MCs simulations (the plain line corresponds to the median and the shaded
area is filled between the first and third quartiles). Figure (c) shows a boxplot of the MC runs when
the quantity of missing data is 40% without outliers in the dataset, which corresponds to the red
rectangles plotted in (a) and (b).
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4.3.4 Rapeseed crop monitoring - Sentinel satellite data

This section considers remote sensing time series computed for the monitoring of 2218 rapeseed
parcels. The time series are obtained using Sentinel-1 (S1) and Sentinel-2 (S2) satellites, which
provide synthetic aperture radar (SAR) and multispectral images, respectively. The dataset is
subject to missing data, especially because clouds affect multispectral images, which is a known
issue in remote sensing (Shen et al., 2015). The time series to be imputed are the median and
interquartile range (IQR) of statistics (computed at the parcel-level) of the Normalized difference
vegetation index (NDVI), which is a popular agronomic indicator used in remote sensing for agri-
cultural applications. The feature matrix used in these experiments also contains features coming
from S1 images, which are not subject to missing data. More precisely, these features are the
median (computed at the parcel-level) of the VV and VH backscattering coefficients (see (Mouret
et al., 2021) for more details regarding the construction of this feature matrix). To summarize,
each rapeseed parcel is characterized by 13 values (each value corresponds to a specific time instant
in the growing season of interest) of median NDVI, 13 values of IQR NDVI, 40 values of median
VV backscattering and 40 values of VH backscattering (i.e., a total of 106 features).

For this dataset, the missing values were not completely added at random to have more realistic
experiments. Indeed, missing data occurs on cloudy days and only affect the multispectral features
(here, the NDVI statistics computed at the parcel-level). More precisely, two parameters control
the missing data mechanism: the percentage of multispectral images affected by missing data
(i.e., the number of cloudy multispectral images), and the percentage of crop parcels with missing
data (i.e., generally, only a part of the image is covered by clouds). For each multispectral image
with missing data, we fixed the percentage of affected parcels to 50%. The number of mixture
components used in GMM and FEM is unknown and was fixed using BIC as for the abalone
dataset.

Results computed using 50 MC simulations are summarized in Figure 6, when looking separately
at the median NDVI (a,b) and the IQR NDVI (c,d). Some general observations are first provided.
The imputation results are more scattered than with the other datasets (one explanation is that
some periods of the growing season are more difficult to reconstruct, see Mouret et al. (2022) for
more details). However, very good reconstructions of the median NDVI are possible, even with
a high percentage of S2 images with missing data, in part due to the use of additional S1 data.
Regarding the IQR NDVI, the high values of the MAPE can be explained by 1) the fact that IQR
NDVI values are close to zero (i.e., a small imputation error implies a large MAPE) and 2) the
fact that IQR NDVI can change abruptly through time and is less correlated to S1 data.

When looking specifically at each algorithm, it appears that, overall, the robust GMM algorithm
is the best suited for this dataset, confirming previous results found in Mouret et al. (2022). It can
be observed that, as for the other datasets, methods based on the EM algorithm outperform the
KNN and MICE methods. The MissForest algorithm performs again well even if it is impacted
by outliers, confirming previous results. Finally, the FEM algorithm provides results that are very
close to the GMM imputations. This is interesting since the FEM algorithm was used without any
deep tuning of its parameters, whereas the robust GMM was mainly designed and tested for this
task with an accurate parameter tuning.
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Figure 6: MAPE obtained for the rapeseed dataset by varying (a, c) the percentage of S2 images
affected by missing data and (b, d) the percentage of outliers in the dataset (red boxes in (a,c)
correspond to the percentage of missing S2 images used for (b,d)). When an S2 image has missing
data, 50% of the parcels have their corresponding features missing. The results are obtained after
averaging the metrics of 50 MC simulations (the plain line corresponds to the median and the shaded
area is filled between the first and third quartiles). Figures (a,b) are obtained using the median NDVI
of the parcels whereas (c,d) corresponds to the IQR NDVI of the parcels.

4.4 Influence of different types of outliers
Two additional experiments are conducted using the Abalone dataset to 1) evaluate the im-
pact of outliers with a low percentage of missing data (10%) and 2) evaluate the impact of an-
other outlier generation mechanism. More precisely, we used a mechanism similar to the one
proposed in Hippert-Ferrer et al. (2022) by adding outliers generated as Gaussian noise (i.e.,
zi ∼ N (µ, diag{σ)}, with µ a vector whose elements are the mean of each feature and diag{σ}
a diagonal matrix whose elements are the variances of each feature. The obtained results are
summarized in Figure 7.

Overall, two main conclusions can be drawn. First, even with a low percentage of missing
data, imputation results obtained with the FEM algorithm are very competitive. Note that even
with a small amount of missing data, the impact of outliers can be important depending on some
algorithms (e.g., classical GMM). Secondly, changing the outlier generation mechanism has an
impact on the imputation results. In particular, the robust GMM algorithm is more impacted
by Gaussian white noise, while it is not the case with uniform white noise. Overall, these results
confirm that the FEM algorithm is almost not impacted by outliers when changing the percentage
of missing data and provide competitive results when compared to the state-of-the-art.

19



Abalone dataset

0 2 4 6 8 10 12 14
Contamination data [%]

8

10

12

14

16

M
AP

E

(a) Uniform white noise (missing data = 10%)

KNN
MICE
MissForest
GMM
Robust GMM
FEM

0 2 4 6 8 10 12 14
Contamination [%]

8

9

10

11

12

13

M
AP

E

(b) Gaussian white noise (missing data = 10%)

(a)

Figure 7: MAPE obtained for the Abalone dataset by varying the percentage of outliers in the dataset,
with a percentage of missing data equal to 10%. Outliers are generated according to (a) a uniform
distribution taking values between the minimum and maximum of the features and (b) a Gaussian
noise (i.e., zi ∼ N (µ, diag{σ}), with µ a vector whose element are the mean of the features and
diag{σ} a diagonal matrix whose element are the variances of the features. The results have been
obtained after averaging the metrics of 50 Monte Carlo simulations (the plain line corresponds to the
median and the shaded area is filled between the first and third quartiles).
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5 Conclusion
This paper proposed to extend the flexible EM (FEM) algorithm of Roizman et al. (2020, 2021)
to handle missing data. The algorithm is flexible in the sense that it is 1) robust to outliers and
2) adapted to any mixture of elliptical distributions (i.e., the data distribution is not necessarily
Gaussian). As a consequence, the FEM algorithm can be used for a wide range of datasets, unlike
the classical EM for Gaussian mixture models, which is impacted by noise and non-Gaussian
distributions. The main theoretical contribution of this paper is to derive, in the presence of
missing data, an EM algorithm which assumes that the data has been generated from a mixture
of (unknown) elliptical distributions having the same density generator. As in the complete-data
case, the FEM algorithm derived in the presence of missing data is intuitive and can be used with
little parameter tuning.

The main focus of this paper is the imputation of missing data. Imputation results obtained
using the FEM algorithm were compared with 5 other benchmark algorithms, based on KNN,
MICE, MissForst, GMM and robust GMM. From all the experiments presented in this study, two
main conclusions can be drawn. First, it was observed that the FEM algorithm was competitive
for all considered datasets, generally outperforming all other tested methods when the percentage
of missing data is high or when outliers are contaminating the dataset. To that extent, the
experimental results confirm the theoretical robust properties of the algorithm and illustrate the
flexibility of the proposed algorithm when compared to the other tested methods, which may fail
depending on the considered dataset.

Using the FEM algorithm for outlier detection and classification tasks (potentially with missing
values) is an interesting prospect. Other perspectives are related to the regularization of the scatter
matrix, which can be complicated to estimate with high dimensional data (Bouveyron and Brunet-
Saumard, 2014). Various regularization strategies used for GMM could be investigated for FEM
models, such as the approaches proposed in Bouveyron et al. (2007) to regularize the eigenvalues of
the covariance matrices or the l− 1 constrained graphical lasso algorithm (Friedman et al., 2008),
which has been extended to GMM with missing data in Ruan et al. (2011).
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Appendix A Proofs

A.1 Independence of E[`ik(xi; πk,µk,Σk, τik)|zik,θ(t),xoi ] from the model pa-
rameters (πk,µk,Σk)

This appendix shows the independence of E[`ik(xi;πk,µk,Σk, τik)|zik,θ(t),xoi ] from the model
parameters (πk,µk,Σk). From (6), the expectation of the complete log-likelihood knowing the
model parameters and the observed variables can be written as follows:

E
[
logLc(θ;X ,Z))|θ(t),X o

]
=

N∑
i=1

K∑
k=1

E
[
zik`0k(xi;πk,µk,Σk) + zik`ik(xi;πk,µk,Σk, τik)|θ(t),xoi

]
,

(30)
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where, similarly to the complete data case, we define `ik(xi;πk,µk,Σk, τik) = log(s
d/2
ik gi(sik))

with sik =
(xi − µk)TΣ−1

k (xi − µk)
τik

. Using the fact that zik is a binary indicator, (30) can be

decomposed as follows:

E
[
logLc(θ;X ,Z))|θ(t),X o

]
=

N∑
i=1

K∑
k=1

E
[
zik|θ(t),xoi

]
E
[
`0k(xi;πk,µk,Σk)|zik = 1,θ(t),xoi

]
+

N∑
i=1

K∑
k=1

E
[
zik|θ(t),xoi

]
E
[
`ik(xi;πk,µk,Σk, τik)|zik = 1,θ(t),xoi

]
.

(31)

Since the first term of this expression does not depend on τik, the maximization of (31) w.r.t. τik
reduces to maximize the following function:

E
[
`ik(xi;πk,µk,Σk, τik)|zik = 1,θ(t),xoi

]
= E

[
log
(
s
d/2
ik gi(sik)

)
|zik = 1,θk,x

o
i

]
. (32)

Consider the one dimensional function f defined by f(t) = td/2g(t), t ∈ R. The maximum of this
function is denoted as

t∗ = arg sup
t
{f(t)},

which is a constant independent of πk,µk and Σk. Moreover, the supremum of the function f is
well-defined and is denoted as sup{f(t∗)}. Using the fact that log is an increasing function, one
has

log
(
s
d/2
ik gi(sik

)
≤ log[sup(f(t∗))],

which implies
E
[
`ik(xi;πk,µk,Σk, τik)|zik = 1,θ(t),xoi

]
≤ log[sup(f(t∗))].

Moreover, define

τ∗ik =
(xi − µk)TΣ−1

k (xi − µk)
t∗

.

Replacing τik by τ∗ik in (32) leads to

E
[
`ik(xi;πk,µk,Σk, τ

∗
ik)|zik = 1,θ(t),xoi

]
= log[sup(f(t∗))]. (33)

This shows that the conditional expectation is maximized for τik = τ∗ik and that this maximum
does not depend on the model parameters πk,µk,Σk and the missing data. Thus, maximizing
E
[
logLc(θ;X ,Z))|θ(t),X o

]
w.r.t. θ and X o is equivalent to maximizing the AG part of the

log-likelihood, i.e.,
∑N
i=1

∑K
k=1E

[
zik`0k(xi;πk,µk,Σk)|θ(t),xoi

]
, which concludes the proof.

A.2 Conditional distribution of an Angular Gaussian distribution
This appendix derives the conditional density fi,θk

(x2|x1). For brevity we denote xi = x, Σk = Σ
and µk = µ in the following. By definition of a conditional pdf, we have

fθ(x2|x1) =
fθ(x1,x2)

fθ(x1)
, (34)

i.e.,

fθ(x2|x1) ∝
det(Σ)−1/2

[
(x− µ)TΣ−1(x− µ)

]−d/2
det(Σ11)−1/2 [(x1 − µ1)

T (Σ11)−1(x1 − µ1)]
−d1/2

(35)

where d1 is the number of features in x1.
The determinant of the matrix Σ can be decomposed as

det(Σ−1/2) = [det(Σ22 −Σ21Σ
−1
11 Σ12) det(Σ11)]

−1/2. (36)

Moreover, by using standard manipulations on matrices, we obtain[
(x− µ)Σ−1(x− µ)

]−d/2
=
[
(x1 − µ1)

T (Σ11)
−1(x1 − µ1)

+ (x2 − µ2.1)
T

Σ−1
22.1 (x2 − µ2.1)

]−d/2
,

(37)
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with µ2.1 = µ2−Σ21Σ
−1
11 (x1−µ1) and Σ2.1 = Σ22−Σ21Σ

−1
11 Σ12. Thus plugin Eq. 37 into Eq. 35

gives:

fθ(x2|x1) ∝
det(Σ22.1)

−1/2
[
(x1 − µ1)

T (Σ11)
−1(x1 − µ1) + (x2 − µ2.1)

T Σ−1
22.1 (x2 − µ2.1)

]−d/2
[(x1 − µ1)

T (Σ11)−1(x1 − µ1)]
−d1/2

(38)

∝
det(Σ22.1)

−1/2
[
(x1 − µ1)

T (Σ11)
−1(x1 − µ1)

]−d/2 [
1 +

(x2−µ2.1)
T Σ−1

22.1(x2−µ2.1)

(x1−µ1)
T (Σ11)−1(x1−µ1)

]−d/2
[(x1 − µ1)

T (Σ11)−1(x1 − µ1)]
−d1/2

(39)

∝
det(Σ22.1)

−1/2

[
1 +

(x2−µ2.1)
T Σ−1

22.1(x2−µ2.1)

(x1−µ1)
T (Σ11)−1(x1−µ1)

]−d/2
[(x1 − µ1)

T (Σ11)−1(x1 − µ1)]
d−d1

2

. (40)

Looking at the numerator of Eq. 40, a multivariate t- distribution can be identified since

fstudent(x2) ∝
[
1 +

1

ν
(x2 − µstudent)

TΣ−1
student(x2 − µstudent)

]−(ν+d2)/2

, (41)

where Σstudent is the scale matrix of x2. By identification, the following results are obtained:

ν = d1

µstudent = µ2.1 = µ2 + Σ21Σ
−1
11 (x1 − µ1)

Σ−1
student =

d1
(x1 − µ1)

T (Σ11)−1(x1 − µ1)
×Σ−1

22.1

Σstudent =
(x1 − µ1)

T (Σ11)
−1(x1 − µ1)

d1
×Σ22.1
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