
HAL Id: hal-04276653
https://ut3-toulouseinp.hal.science/hal-04276653v1

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified views for querying heterogeneous multi-model
polystores

Léa El Ahdab, Olivier Teste, Imen Megdiche, André Péninou

To cite this version:
Léa El Ahdab, Olivier Teste, Imen Megdiche, André Péninou. Unified views for querying heteroge-
neous multi-model polystores. 25th International Conference on Big Data Analytics and Knowledge
Discovery (DaWaK 2023), Aug 2023, Penang, Malaysia. pp.319–324, �10.1007/978-3-031-39831-5_29�.
�hal-04276653�

https://ut3-toulouseinp.hal.science/hal-04276653v1
https://hal.archives-ouvertes.fr


Unified views for querying heterogeneous
multi-model polystores

Lea El Ahdab∗, Olivier Teste∗, Imen Megdiche∗, and Andre Peninou∗

*Université de Toulouse, IRIT, Toulouse, France
{lea.el-ahdab,olivier.teste,imen.megdiche,andre.peninou}@irit.fr

Abstract. Data storage, in various SQL and NoSQL systems brings
complexity to data querying when entities are fragmented because data
is not always stored in the same system, plus heterogeneous structures
can appear for entities. A unique query language is not sufficient to
address data distribution and heterogeneity. Considering vertically dis-
tributed data, this work implements a framework capable of rewriting a
user query addressed over a unified view to access all data and provide
results with transparency. Our framework works with a conceptual model
producing unified views to guarantee polystore querying without having
to know data distribution nor data heterogeneity. It complements the ini-
tial query with intermediate operations. It is applied on an e-commerce
scenario (UniBench benchmark) distributed vertically between relational
and document-oriented databases. Performance results and the low im-
pact of query rewriting process are illustrated in this work.

Keywords: Polystore · Heterogeneity · Data distribution.

1 Introduction

Various storage systems have emerged and constitute polystore systems that
federate SQL and NoSQL data stores. Querying a polystore without a unique
model is complicated due to databases diversity and data distribution. Solutions
have appeared focusing on vertical data distribution [1] [2] [3]. The distribution
of one entity class over several databases is not considered in such works. In this
article, we introduce a framework for querying a multi-model polystore system
with vertically distributed entities. The framework provides unified logical views
of the polystore in relational or document model. The user queries over one of
these logical views which serves as a pivot representation for translating user
queries into the different paradigms of the multi-model polystore, guaranteeing
transparency of data distribution and to data heterogeneity. In section 2 of this
paper, we explain our scope with a motivating example based on an e-commerce
scenario. Section 3 discusses existing solutions and their limits. Section 4 defines
query construction process and section 5 shows results of our experiments on real
data. In the last section, we conclude on this work and we give some perspectives
about the future ones.



2 L. Author et al.

2 Motivating example

Based on an E-Commerce scenario from the multi-model benchmark UniBench
[11], we consider four entity classes distributed in two family systems: two rela-
tional databases (DB1 and DB2) and one document-oriented database (DB3) .
DB1 contains Customers entity, DB3 contains Reviews Entity. Entities Product
and Orders are vertically fragmented into DB2 and DB3 and their ids prod-
uct_id and order_id are the fragmenting key. The relationship Order_Line
is included in Orders of DB3 (fig. 1). The consideration of document-oriented
databases brings possible data heterogeneity. In this example, entity classes Or-
ders and Reviews contains different structures: different structures for nested
values for order_line, optional values for feedback.

Fig. 1. Our multi-model framework based on logical views and one unified internal
conceptual view ensuring data location and data model equivalences

Let us consider the query: analysis of order prices and brand per customer
within the best rating products (>=5). Such query requires the user to query
SQL tables and documents collections to retrieve and join both Customers, Re-
views and build additional joins to retrieve Products and Orders/order_lines.
Our approach is based on unified logical views that present all the data either
in relational (UV1 in fig 1) or document-oriented (UV2 in fig 1) form. These log-
ical views are used to hide data distribution in the polystore and their various
modeling paradigms. The user builds a query against one of these logical views.
Our system works to generate executable sub-queries on the different databases
which are connected using joins over a specific property of the fragmented en-
tities (fig 2). This process potentially induces data transfers. It works on the
algebraic tree of the query and transforms it to insert necessary joins to resolve
data distribution and “rebuild” fragmented entities when necessary. A final step
transforms the algebraic tree to insert data transfers and transformations. The
final result is presented in the form of the unified logical view used for querying.



Unified views for querying heterogeneous multi-model polystores 3

Fig. 2. Application of our framework on the presented use case’s query using the as-
sociated conceptual model

3 Related Work

Combining SQL and NoSQL systems in one infrastructure, called polystore,
brings the notions of multi-store, heterogeneity and data distribution. With ver-
tical distribution where one entity class is found in one datastore of the poly-
store, unary operators are executed on one system and the binary operator join
is executed outside DBMS with an external function [1] [5] [12]. HydRa [10], a
framework, mentions entity fragmentation but do not explain how to consider-
ate it for querying purposes. Inferring schemas is proposed to unify querying the
polystore’s data. It can be a graph representation [6] [7] or a u-schema model
[5] illustrating structural variations. It brings the issues of query language(s) to
access data and the modification of data storage each time data is manipulated.
Changing data representation impacts users and modifies the initial paradigm
presented to them. A unifying model does not work on data heterogeneity. Some
works focus on semantic heterogeneity [3] [8] or syntactic [6] issues provided by
the multi-storage environment. Structural heterogeneity is set aside but they
consider matching techniques to find equivalences between attributes. Table 1
illustrates the differences found between our works and others working on ver-
tical data distribution inside polystores. is when the characteristic is fully
presented, is when some cases are missing and is when the characteristic
is not addressed in the paper. We compare the considered systems inside the
multi-model polystores (relational R, document-oriented D, column-oriented C
and graph G), data heterogeneity (structural, semantic and syntactic), the query
language(s) of the polystore and if it is question of entity class distribution in
one or several system (fragmentation). In our paper, we work on relational and
document-oriented system where the user is able to query a polystore in a SQL
or a NoSQL language (MongoDB) in a context of vertical distribution where
one entity class can be distributed in multiple databases from both systems.
Our rewriting system take into account data transfer and transformation and
favors the use of DBMS operators as well as its performance.



4 L. Author et al.

Table 1. A comparison of existing solutions on polystores

Entity class
Authors R D C G Struct. Sem. Syn. Query fragmentation
El Ahdab et al SQL

MongoDB
Barret et al [6] SparkQL
Candel et al [5] SQL
Ben Hamadou SQL
et al [7] MongoDB
Hai et al [8] SQL

JSONiq
Duggan et al [3] Declarative
Forresi et al [12] Spark

4 The proposed framework

Our framework is based on querying against unified views of a polystore. Unified
views are deducted from the entity relationship model of data which highlights
entity classes, attributes of entities, entity keys that can serve as distribution key,
relationship roles, and relationship attributes. A logical view UV is the factoriza-
tion of all distributed entities inside the polystore, according to a fragmentation
key. There is one logical view per polystore system (relational or document).
We follow converting rules between the conceptual model and the logical models
seen by the user: one entity corresponds to one dataset (relation or collection)
and the relationships are implemented according to their cardinality. For (N,M)
cardinality, in SQL a new relation is created that contains the relations keys of
the N and M side (along with relationship attributes); in collections nested values
are added inside the two linked collections. For (1,N) and (0,N) cardinality, in
SQL a foreign key is created in the 0/1 side relation; in collections, a foreign key
is created in the 0/1 side collection and nested values with foreign key are added
in N-side collection. Unified views also hide data heterogeneity. To manipulate
these variations of attributes, we use an existing mapping technique [7] using
a dictionary for each dataset grouping for each attribute (entity, relationship)
and for each key of the conceptual model, their equivalences in the unified views
and in the real data implementation inside the polystore. The user can build a
query against one logical view (fig. 1). We consider a user query Quser on the
unified view UV referring to one DB of the polystore PL. It is composed of op-
erators from a non-closed set of {σ , π , ▷◁} that manipulate datasets (relations
or collections). The main objective is to query the polystore by analyzing Quser

as an algebraic graph to generate sub queries on all systems of PL. The steps of
our rewriting engine can be described by algebraic tree transformations (fig. 2):
i) build an algebraic tree of the query against the unified view, ii) locate each
dataset of the query in the polystore to know whose databases contains it, iii)
reconstruct fragmented entities when need by adding necessary joins, iv) add
transfer and/or transform operation when needed in the tree. Finally, to deal



Unified views for querying heterogeneous multi-model polystores 5

with structural heterogeneity, the engine uses this dictionary and processes to
rewrite each query operator of the algebraic tree. In case of multiple correspon-
dences in the dictionary, our solution privileges the equivalent attribute from
the same database of the system interrogated. When the final rewritten query
is executed, results are presented to the user in the data format of the system
selected depending on the queried logical view (relational or document).

5 Experiments

We use UniBench dataset presented in a context of multi model DBMS
(http://udbms.cs.helsinki.fi/?projects/ubench). We have adapted data distribu-
tion as explained in section 2 and in fig. 2 between two SQL databases (MySQL)
and one document-oriented database (MongoDB). Queries were classified ac-
cording to their operators composition and to the number of dataset needed to
rewrite the operation ("Monotable", "Multitable"). Our evaluation focuses on
the comparison of rewriting time on each logical view (relational and document-
oriented) and the impact of data distribution for one entity class per database
and for one entity class in multiple databases. The join operator by itself presents
the lowest rewriting time (0.0003 seconds). It is due to the presence of the entity
key in every fragment inside polystores. For the selection and projection, they
work more with attributes than keys. The average rewriting time of a query with
a combination of all operators is higher (0.0041 seconds) than the average one
for mono operator operations (0.0003 seconds). For every attribute found in the
sub-queries, the dictionary is went through in order to find the exact position
in the polystore and then to create the intermediate joins. Data distribution
inside polystore impacts rewriting time: with two relation databases and one
document-oriented one, it is easier to find the attribute in a simple structure
than in nested values as we can find inside the NoSQL system. The logical view
considered is the only effect to the query rewriting time in this case. Considering
the execution of each query, the average execution time is close to 10 seconds, in-
cluding data transformation and data transfers. Adding the rewriting time does
not impact the global query time since the rewriting time does not extend 0.0041
seconds.

6 Conclusion

In this paper we focus on polystore systems with relational and document-
oriented systems, where entity classes are vertically distributed between datas-
tores and may be vertically fragmented. We define unified logical views in one
data model (relational or document) that cover all the real datasets in the poly-
store. We define a query rewriting mechanism able to access data in all databases
of the polystore according to a dictionary. Considering SPJ operators, the user
can transparently query both relational and document-oriented databases with
heterogeneous datasets. We have conducted experiments on a Unibench dataset,
showing the effectiveness of the rewriting solution. Considering our future work



6 L. Author et al.

on polystore systems, we will focus on experimenting data transfers and data
transformation optimisation.

Acknowledgments This work was supported by the French Gov. in the frame-
work of the Territoire d’Innovation program, an action of the Grand Plan
d’Investissement backed by France 2030, Toulouse Métropole and the GIS neO-
Campus.

References

1. KOLEV, Boyan, VALDURIEZ, Patrick, BONDIOMBOUY, Carlyna, et al. Cloud-
MdsQL: querying heterogeneous cloud data stores with a common language. Dis-
tributed and parallel databases, 2016, vol. 34, p. 463-503.

2. BOGYEONG, Kim, KYOSEUNG, Koo, UNDRAA, Enkhbat, SOHYUN, Kim,
JUHUN, Kim, and BONGKI Moon. M2Bench: A Database Benchmark for Multi-
Model Analytic Workloads. PVLDB, 16(4): 747-759, 2022.

3. DUGGAN, Jennie, ELMORE, Aaron J., STONEBRAKER, Michael, et al. The
bigdawg polystore system. ACM Sigmod Record, 2015, vol. 44, no 2, p. 11-16.

4. KARNITIS, Girts et ARNICANS, Guntis. Migration of relational database to
document-oriented database: Structure denormalization and data transformation.
7th international conference on computational intelligence, communication systems
and networks. IEEE, 2015. p. 113-118.

5. CANDEL, Carlos J. Fernández, RUIZ, Diego Sevilla, et GARCÍA-MOLINA, Jesús
J. A unified metamodel for NoSQL and relational databases. Information Systems,
2022, vol. 104, p. 101898.

6. BARRET, Nelly, MANOLESCU, Ioana, et UPADHYAY, Prajna. Abstra: Toward
Generic Abstractions for Data of Any Model. 31st ACM International Conference
on Information & Knowledge Management. 2022. p. 4803-4807.

7. BEN HAMADOU, Hamdi, GALLINUCCI, Enrico, et GOLFARELLI, Matteo. An-
swering GPSJ queries in a polystore: A dataspace-based approach. 38th Interna-
tional Conference, ER 2019, Salvador, Brazil, November 4–7, 2019, Proceedings 38.
Springer International Publishing, 2019. p. 189-203.

8. HAI, Rihan, QUIX, Christoph, et ZHOU, Chen. Query rewriting for heterogeneous
data lakes. Advances in Databases and Information Systems: 22nd European Con-
ference, ADBIS 2018, Budapest, Hungary, September 2–5, 2018, Proceedings 22.
Springer International Publishing, 2018. p. 35-49.

9. PAPAKONSTANTINOU, Yannis. Polystore Query Rewriting: The Challenges of
Variety. EDBT/ICDT Workshops. 2016.

10. GOBERT, Maxime, MEURICE, Loup, and CLEVE, Anthony. HyDRa A Frame-
work for Modeling, Manipulating and Evolving Hybrid Polystores. IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2022. p. 652-656.

11. Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. 2018. UniBench: A Bench-
mark for Multi-model Database Management Systems. Proceedings of the Technol-
ogy Conference on Performance Evaluation and Benchmarking (TPCTC 2018). Rio
de Janeiro, Brazil, 7–23.

12. FORRESI, Chiara, GALLINUCCI, Enrico, GOLFARELLI, Matteo, et al. A
dataspace-based framework for OLAP analyses in a high-variety multistore. The
VLDB Journal, 2021, vol. 30, no 6, p. 1017-1040.


