
HAL Id: hal-04276556
https://ut3-toulouseinp.hal.science/hal-04276556

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Polystore Querying System applied to heterogeneous
and horizontally distributed data

Léa El Ahdab, Olivier Teste, Imen Megdiche, André Péninou

To cite this version:
Léa El Ahdab, Olivier Teste, Imen Megdiche, André Péninou. A Polystore Querying System applied
to heterogeneous and horizontally distributed data. 34th International Conference on Database and
Expert Systems Applications (DEXA 2023), Aug 2023, Penang, Malaysia. pp.437 - 442, �10.1007/978-
3-031-39847-6_35�. �hal-04276556�

https://ut3-toulouseinp.hal.science/hal-04276556
https://hal.archives-ouvertes.fr

A Polystore Querying System applied to
heterogeneous and horizontally distributed data

Lea El Ahdab∗, Olivier Teste∗, Imen Megdiche∗, and Andre Peninou∗

*Université de Toulouse, IRIT, Toulouse, France
{lea.el-ahdab,olivier.teste,imen.megdiche,andre.peninou}@irit.fr

Abstract. Data storage in various systems such as SQL and NoSQL
leads to important problems when trying to unify data querying. Mul-
tiple storage systems conduct to heterogeneous data structures and to
multiple query languages. In the context of horizontally and disjointed
distributed data, this paper proposes a system that allows the user to na-
tively query a polystore system without taking care of data distribution
and heterogeneity. Our approach relies on two mechanisms: (i) map-
ping dictionaries to define the navigation between systems, (ii) operator
rewriting mechanisms from native query operators (selection, projection,
aggregation and join) to execute queries on any polystore system. Using a
dataset from TPC-H benchmark and a horizontally distributed between
document and relational database management system, we conduct ex-
periments showing that the rewriting process has a minimum impact
when compared to executing queries in both systems.

Keywords: Polystore · Heterogeneity · Data distribution.

1 Introduction

Nowadays, data is more likely to be found distributed in classical (SQL) or multi-
ple heterogeneous and flexible data sources (NoSQL), which forms polystores [2].
It complexifies querying in multiple languages based on non-standardized data
modeling paradigms and data querying operators. New solutions are based on
new languages [7], operators [10] [8], models [6], and sometimes flexible schemas
[4] [3], which depend on data manipulation. This paper deals with horizontal
data distribution in which one entity class is stored in different datastores (rela-
tional and document-oriented). We introduce a solution for querying polystore
systems, based on automatic rewriting and decomposition of queries, facilitat-
ing access to horizontally distributed and heterogeneous data using a mapping
dictionary able: i) to link each attribute of any dataset to the corresponding
attributes in other datasets and, ii), to integrate possible heterogeneity of data
inside any dataset. Working on a TPC-H dataset, we experiment our solution
with a query rewriting process without impacting the initial query execution
time on relational databases and document-oriented datastores. The remainder
of the paper is structured as follows. In section 2, we discuss existing solutions
and present their limits. Section 3 defines our polystore data model. Section 4

2 L. Author et al.

presents and illustrates the proposed rewriting process and the mapping dictio-
nary with data distribution. Section 5 shows our solution results on real data.
Finally, in section 6 we give some perspectives about future work.

2 Related Work

With the complexity of data storage systems in polystores (distribution and het-
erogeneity), query and accessibility should stay as simple as it is in a mono system
type store. Some works focus on inferring schemas to access data: graph repre-
sentation [4] [5] or a u-schema model [3] showing structural variations. Existing
works mainly focus on vertical distribution where each entity class is found in
one database. Some systems [3] [8] introduce an external function to manipulate
several entities for binary operators. The join operator is not always executed
inside DBMS which requires to have an external algorithm joining the sub re-
sults [9] [8]. However, horizontal data distribution is possible, where every entity
class is divided inside multiple databases: user query gets complex and should
be expressed by taking into account data location, query formulation according
to polystore systems languages. Another aspect is data heterogeneity: semantic
[2] [9] or syntactic [4] issues. They use synonyms in mapping solutions to build
their queries [2] [9]. Surprisingly, they do not deal with structural heterogene-
ity which is induced by the schema-less principle of NoSQL stores. A specific
query is translated and parsed into languages of the considered datastores [2]
[9]. To support our comparison with existing works, table 1 illustrates the dif-
ferences we can find between our works and others working on query rewriting
and mapping. It shows their position about data distribution (H: horizontal, V:
vertical), the supported systems (Relational, Document, Column, Graphs) and
the query expression with operators. It also provides the query of relational and
document-oriented systems in their native languages using algebraic equivalences
and presents to the user results in their native form without transforming data.
Our solution consists in the rewriting of the combination of SPAJ operators
(selection, projection, aggregation and join).

3 Algebraic definition of Polystores for horizontally
distributed data

In SQL approaches, data is represented according to the relational model
[1], where data is structured according to relation schemas. NoSQL (docu-
ments) approaches are "schema-less" - each record has its own structure that
may be different from those of other records in the same dataset. A poly-
store system is defined as PL = {DB1 , ... , DBB} where each database is
DBi = {DS1 , ... , DSSi }. ∀j ∈ [1 ... Si], DSj is a dataset. Our model gives a
universal representation of these different databases. Each dataset, DSj , is de-
fined by an extension and an intention DSj = (Intj , Extj). An extension is
a set of instances ik = (χk, vk). χk is its key, internal identifier in database sys-
tems, and vk is the instance value which can be atomic or recursively an instance

Title Suppressed Due to Excessive Length 3

Table 1. A comparison of existing solutions on polystores

Authors Data Heterogeneity
Distrib. R D C G Query σ π γ ▷◁

El Ahdab et al H Structural SQL
Semantic MongoDB
Syntactic

Barret et al [4] V Syntactic SparkQL
Candel et al [3] V SQL
Ben Hamadou V Structural SQL
et al [5] Semantic MongoDB
Hai et al [9] V Semantic SQL

JSONiq
Duggan et al [2] V Semantic Declarative
Curino et al [10] V Structural SQL

value or an array of values. The intention inferred from the extension is the set
of all absolute paths deduced from all instance structures existing in the exten-
sion Int =

⋃Nj

k=1 Sk. We focus on polystores where ∀i1 ∈ [1...B], DSj1 ∈ DBi1 ,
∃i2 ∈ [1...B] such as DSj2 ∈ DBi2 and DSj1 , DSj2 contain different instances of
the same class of an entity. A horizontal distribution is strict when each attribute
of a dataset has at least one equivalent designation in all equivalent datasets.
A data distribution is disjointed when ∀ik1

∈ Extj1 , ik2
∈ Extj2 , j1 ̸= j2 |

vk1
= vk2

where vk1
and vk2

are values corresponding to the same entity in the
real world. The mapping dictionary mapDSj

matches each path of a dataset
to all its corresponding paths (including itself) in all equivalent datasets dealing
with structural, syntactic and semantic heterogeneity. Due to space limitation,
we do not detail in this paper how the mapping dictionaries are built; they are
maintained with the definition and using data alignment and schema-matching
algorithms [4]. For example, a path A in DSi is mapped with every corresponding
paths in the equivalent dataset DSj as: {(A,DSj), (X.A,DSj), (A

′.DSj)}.

4 Rewriting process definition

We introduce a closed set of operators to formalize a universal algebra: K =
{σ , π , γ , ▷◁} where σ is a selection operator (restriction), π is a projection
operator, γ is an aggregate operator and ▷◁ is a binary operator used to join
two datasets. Their combination formulates a query Q = q1 ◦ ... ◦ qr where
∀k ∈ [1 ... r], qk is a simple operator or a composition of operators as a sub-query
itself. Each qk of Q is rewritten according to the mapping dictionaries of the
queried datasets mapDSin . A list of mappings for one field fi is inferred from
the set identified in its respective dictionary.

Selection. σP (DSin) is rewritten as σPnew
(DSj) where DSj is a targeted

dataset during query rewriting process and the rewriting of P is Pnew =

4 L. Author et al.

∧(∨(∨ pkl
ωk vk)) where pkl

are the paths obtained from the rewriting dic-
tionary associated to DSj and that corresponds to fi.

Projection. πE(DSin) is rewritten as πEnew
(DSj) where DSj is a targeted

dataset and Enew is the rewriting of E = e1, ..., en. If ei = fi (projection): fi
is replaced by the combination of its corresponding absolute paths according
to the mapping dictionary: pk1

| . . . |pkm
∀pkl

for DSj . The "|" operator leads
to the projection of the existing path pkl

in any instance value of ExtDSj . If
ei = f ′

i : fi (projection and renaming): fi is replaced by f ′
i : pk1 | . . . |pkm for all

DS identified.

Aggregation. GγF (DSin) is rewritten to a dataset DSj as GγF (πEnew(DSj))
where Enew is a projection rewriting of fields of G ∪ {fi}. The projection on fi
of the function F is rewritten to fi : pk1

| . . . |pkm
∀pkl

∈ ∆
DSj

fi
. The same process

is applied to all fields of G.

Join. DSin1 ▷◁J DSin2 is rewritten for a database DBj using the corresponding
datasets of DSin1 and DSin2 in DBj as: DSjin1

▷◁Jnew
DSjin2

. Jnew corresponds
to the join condition containing the mapped fields.

The user queries one dataset in one language and the query is translated
in its algebraic form. Query rewriting rules are used to produce B queries, one
for each DBi of PL. Rewritten queries are then translated into their specific
language (SQL or MongoDB) before being executed on DBi. The sub-results
are presented to the user in their original form (using JSON notations). In some
complex queries, they may represent only intermediate results and may need
more computation to give the target result; in case of aggregation using sum
function, some cases may require an additional aggregation to sum intermediate
results.

5 Experiments

TPC-H Benchmark. Considering TPC-H data (https://www.tpc.org/) and
queries, we have stored data in one SQL database (MySQL) and one Document
oriented database (MongoDB). Tables and collections were created in each re-
spective systems. We have considered two volumes of data v1 as 1 Mo (3600
tuples) and v2 as 10 Mo (30000 tuples).

Query rewriting evaluation TPC-H queries are classified according to the
number of queried datasets and to their operators composition. Almost half of
them are an association of selection (σ), projection (π), aggregation (γ) and joins
(▷◁). Our evaluation focuses on (1) analyzing query execution time over an equal
data distribution inside both system and when this distribution is unbalanced,
and (2) on the impact of operations on the query execution time in the same
context of data distribution. We considered a condition of fragmentation on
nation name and which respects a disjointed repartition of 50% of instances in

Title Suppressed Due to Excessive Length 5

Fig. 1. Evolution of average execution time for TPC-H queries according to data dis-
tribution inside polystore with different data volumes v1 (1Mo) and v2 (10Mo)

the relational database and 50% in the document-oriented one. We have evolved
this distribution to consider other situations (10%-90%, 20%-80%...).

As illustrated in figure 1, the relational system shows a lower execution time
than the document system. Focusing on the 50%-50% distribution, SPA opera-
tions have no impact on execution time but the join operation presents a higher
difference between systems: execution time is 80% times higher for multitable
queries than monotable queries (value A, value C of figure 1). When data is
distributed 90% in documents, query rewriting time is maximize in comparison
of 90% of data distribution inside relations. Since each query is executed in each
database, it results in a set of separate pieces of data, with possible different
structures presented to the user (tuples and documents).

6 Conclusion

In this paper we focus on polystore systems with relational and document-
oriented datasets, where data is distributed horizontally. A mapping dictio-
nary represents links between fields and their correspondences in every data
source and in their heterogeneous forms. A universal query algebra composed of
SPAJ operators is defined for querying both considered systems supporting query
rewriting rules and bringing transparency for users. Data remain in native form
and only dynamic rewriting of queries and the mapping dictionary are impacted
by eventually new data structures. Experiments on a TPC-H dataset show the
effectiveness of the proposed solution without significantly impacting the query
execution time on top of relational databases (MySQL) and document-oriented
databases (MongoDB). In the future, we will focus on the extension of the exist-

6 L. Author et al.

ing algebra to other systems (column, graph). Another direction is to consider
operators more specific to storage systems in order to find their rewriting forms.

Acknowledgements This work was supported by the French Gov. through the
Territoire d’Innovation program, an action of the Grand Plan d’Investissement
backed by France 2030, Toulouse Métropole and the GIS neOCampus.

References

1. CODD, Edgar F. Further normalization of the data base relational model. Data
base systems, 1972, vol. 6, p. 33-64.

2. DUGGAN, Jennie, ELMORE, Aaron J., STONEBRAKER, Michael, et al. The
bigdawg polystore system. ACM Sigmod Record, 2015, vol. 44, no 2, p. 11-16.

3. CANDEL, Carlos J. Fernández, RUIZ, Diego Sevilla, et GARCÍA-MOLINA, Jesús
J. A unified metamodel for NoSQL and relational databases. Information Systems,
2022, vol. 104, p. 101898.

4. BARRET, Nelly, MANOLESCU, Ioana, et UPADHYAY, Prajna. Abstra: Toward
Generic Abstractions for Data of Any Model. In: Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 2022. p. 4803-
4807.

5. BEN HAMADOU, Hamdi, GALLINUCCI, Enrico, et GOLFARELLI, Matteo. An-
swering GPSJ queries in a polystore: A dataspace-based approach. In : Conceptual
Modeling: 38th International Conference, ER 2019, Salvador, Brazil, November 4–7,
2019, Proceedings 38. Springer International Publishing, 2019. p. 189-203.

6. DANIEL, Gwendal, GÓMEZ, Abel, et CABOT, Jordi. UMLto [No] SQL: mapping
conceptual schemas to heterogeneous datastores. In : 2019 13th International Con-
ference on Research Challenges in Information Science (RCIS). IEEE, 2019. p. 1-13.

7. MISARGOPOULOS, Antonis, PAPAVASSILIOU, George, GIZELIS, Christos A.,
et al. TYPHON: Hybrid Data Lakes for Real-Time Big Data Analytics–An Evalu-
ation Framework in the Telecom Industry. In : Artificial Intelligence Applications
and Innovations. AIAI 2021 IFIP WG 12.5 International Workshops: 5G-PINE 2021,
AI-BIO 2021, DAAI 2021, DARE 2021, EEAI 2021, and MHDW 2021, Hersonis-
sos, Crete, Greece, June 25–27, 2021, Proceedings. Cham : Springer International
Publishing, 2021. p. 128-137.

8. KOLEV, Boyan, VALDURIEZ, Patrick, BONDIOMBOUY, Carlyna, et al. Cloud-
MdsQL: querying heterogeneous cloud datastores with a common language. Dis-
tributed and parallel databases, 2016, vol. 34, p. 463-503.

9. HAI, Rihan, QUIX, Christoph, et ZHOU, Chen. Query rewriting for heterogeneous
data lakes. In: Advances in Databases and Information Systems: 22nd European
Conference, ADBIS 2018, Budapest, Hungary, September 2–5, 2018, Proceedings
22. Springer International Publishing, 2018. p. 35-49.

10. CURINO, Carlo A., MOON, Hyun Jin, DEUTSCH, Alin, et al. Update rewrit-
ing and integrity constraint maintenance in a schema evolution support system:
PRISM++. Proceedings of the VLDB Endowment, 2010, vol. 4, no 2, p. 117-128.

