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UWB Time of Flight based indoor IoT
localization solution with Deep Learning
optimized by meta-heuristics

Abstract: Nowadays, indoor localization is among the most important challenges in
IoT networks. On the other hand, Deep Learning techniques are emerging as a leading
method. Additionally, meta-heuristic algorithms attract several research domains due
to its efficiency in resolving optimization problems. In this work, a Deep Learning
model optimized by meta-heuristic algorithms and based on Time of Flight (ToF)
measurements captured by Ultra-Wide Band technology, as an indoor IoT localization
solution, is proposed. The findings showed that optimization with the Grey Wolf
Optimizer can accelerate convergence towards optimal parameters during the learning
phase. Furthermore, it was observed that ToF measurements enhance the positioning
estimation capabilities, in comparison with RSSI and Range measurements. Compared
with an existing multi-lateration method, the suggested solution provided more accurate
positions of the IoT mobile object as it yielded better results in terms of localization
accuracy (98.92%), Mean Absolute Error (0.057m) and Mean Squared Error (0.0095m).

Keywords: Internet of Things; Indoor Localization; Meta-heuristic Optimization; Ultra-
Wide Band; Time of Flight; Grey Wolf Optimizer; Arithmetic Optimization Algorithm.

1 Introduction

An indoor IoT localization solution involves applying
an indoor positioning technique capable of providing
precise object positioning in an IoT environment.
Incorporating localization data can optimize IoT
services and applications. Therefore, the development
of localization solutions and methods is necessary for
the proper functioning of these applications. However,
indoor localization is among the most significant
challenges faced by IoT networks. Indeed, users of
IoT applications seek indoor positioning solutions that
can give precise positioning of people and objects.
However, the nature of indoor environments (walls
and obstacles), prevent the radio signals emitted by
satellites from penetrating these environments, making
the use of satellite positioning systems difficult. In fact,
for outdoor localization, Global Navigation Satellite
Systems (GNSS) can be employed to provide real-time
positioning of an element. These worldwide coverage
systems include GPS (Global Positioning System),
Galileo (Europe’s Global Navigation Satellite System),
Glonass (Russia’s Global Navigation Satellite System)
and BDS (China’s BeiDou Navigation Satellite System).
The limited coverage of these systems in indoor
environments necessitates the development of alternative
solutions.

Therefore, in the literature, several indoor positioning
systems were introduced. They are often classified
as range-based and range-free methods. In range-free
techniques, localization is established between objects
by relying on the neighborhood information. On the
other hand, range-based techniques are based on
measurements taken in the studied environment, such
as Time of Flight (ToF), Angle of Arrival (AoA) or

Received Signal Strength Indicator (RSSI). For example,
Ultra-Wide Band (UWB) ToF measurements provide
high accuracy in the localization systems. Indeed, UWB
[1] is considered as the most promising technology used
in critical applications that require high precision.

Multi-lateration methods, which are the simplest
and most popular techniques, employ the geometric
methods to calculate the estimated positions. However,
these algorithms have certain limitations. In practice,
they provide imperfect measurements, leading to poor
accuracy in the positions of mobile objects that can
be estimated only using large number of fixed anchors.
Therefore, it is interesting to explore the potential
of artificial intelligence, specifically Deep Learning
(DL), in order to estimate mobile object localization.
Furthermore, meta-heuristic optimization is among the
successful paradigms applied in many fields such as
economics, electrical, civil and mechanical engineering.

Therefore, in the present work, a solution for indoor
localization of mobile objects is proposed. It leverages
three advantageous elements: Time of Flight (ToF)
measurement technique based on Ultra-Wide Band
(UWB) communication technology, Deep Learning and
meta-heuristic optimization. Indeed, this work focuses
primarily on a set of contributions related to this
targeted solution. Its main objectives are presented
below:

� Building DL models for indoor localization using
a dataset composed, essentially, of UWB ToF
measurements.

� Modeling the training of a DL model as
an optimization problem by establishing a
correspondence between the training of neural
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layer parameters and an optimization problem
resolution through meta-heuristic algorithm.

� Developing optimizers that can be used for
DL model training. Each optimizer is based
on a recent and widely-used meta-heuristic
optimization algorithm.

� Developing and training the constructed models
and testing them using the proposed optimizers.

� Evaluating the performance of the developed DL
models and select the most performant among
them as the suggested solution.

� Conducting a comparative study by:

– Comparing the results obtained by DL models
trained with those given by the different
developed optimizers and the Gradient
Descent (GD) optimizer.

– Comparing the findings provided using ToF
measurements with those obtained employing
other measurements: RSSI and Range.

– Comparing the results given by the proposed
solution with those obtained by applying a
multi-lateration-based localization solution.

The remaining of this article is divided into the
following sections: Section 2 presents a review of
the recent works that suggested solutions for indoor
IoT localization. Section 3 provides the background
information of this study. Section 4 explains the different
contributions of the introduced proposal and the choices
made to implement the developed models. Section 5
presents the results of the various experimental tests
conducted to evaluate the proposal and provides details
about the conducted comparative study. Section 6
summarizes the study and outlines some future research
directions.

2 Related Works

In the literature, several approaches were proposed to
enhance the accuracy of indoor localization in IoT
networks.

For instance, [2] suggested a solution that uses
LoRaWAN technology and neural networks to predict
positions within a university building. The RSSI and
signal-to-noise ratio (SNR) metrics were employed to
measure the signal strength. A position was estimated
based on the variation of the signal power. Real-world
experiments were carried out to test and evaluate the
developed system. The obtained results demonstrate
that the latter achieved an accuracy of up to 98.8%.
However, the precision rate and the accuracy of
localization given by the proposed approach were not
compared with those provided by other solutions that
use the RSSI and SNR metrics.

Besides, [3] employed Wi-Fi RSSI measurements to
train an ensemble model composed of a DNN model
and two other models built using machine learning
techniques (K-nearest neighbors (KNN) and Random
Forest (RF)). The best model, which yielded the smallest
prediction error for a test data point, was selected by
an intermediate classifier. The results provided by the
proposed ensemble model are better than those given by
each individual base model if used separately. Indeed, the
average error obtained by the introduced model during
testing was 1.10m. However, in [4], a sub-meter level
accuracy was required in indoor positioning systems.
Despite the importance of the developed model, it was
not sufficiently effective to overcome the challenge of
indoor localization.

Another deep learning-based approach for indoor
localization was suggested in [5]. The proposed solution
used RSSI signals from BLE sensors to construct a 2D
image employed to develop a CNN model. Moreover,
an improved version of the PSO optimization algorithm
was applied to enhance the training of the neural
network. Specifically, the weights of the CNN layers
were determined as the best global solutions obtained
by PSO. Real-world experiments were conducted in a
building to evaluate the prediction results provided by
the developed framework. These findings were compared
with those obtained using other machine learning
techniques such as ANN, DNN, KNN, CNN, etc. The
comparison demonstrated that the introduced solution
offered improved localization accuracy for a mobile
object, compared to other techniques, with a localization
accuracy reaching 97.92%. However, it is important to
note that this accuracy is based on the results provided
during the validation stage. Despite their importance,
these results should be confirmed by a testing phase.

Poucet [6] is an indoor localization solution designed
for firefighters and soldiers. It combines Ultra-Wideband
(UWB) and Time of Flight (ToF) technologies with
GPS and LoRa. Trilateration was applied in Poucet
development to estimate the positions of objects. The
simulation results showed an average error of 0.36m.

In [7], the authors used the measurements of Time of
Flight (ToF) obtained from UWB signals to develop a
localization solution. The approach utilized an algorithm
based on ToF measurements and combined it with
the Maximum Likelihood Estimation (MLE) method to
resolve the localization problem. Moreover, real-world
experiments were conducted to test the performance of
the presented system. The average obtained error was
0.2m.

In [8], a framework was presented as an indoor
localization solution. It was formed by collecting data
about CSI signals using WiFi technology. These data
were employed to train a CNN (Convolutional Neural
Network) model. The latter achieved an accuracy of
68.5% and an average distance error of 1.75m. However,
this accuracy remains unsatisfactory for indoor IoT
localization requirements. Additionally, the suggested
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solution did not improve the training algorithm of the
DL model.

In [9], the authors utilized an emulator software
to generate a dataset of RSSI measurements. This
dataset was, then, employed to train and test a MLP
(Multi-Layer Perceptron) deep learning model. The
results of the conducted tests revealed that the accuracy
during the training and the testing phase attained 83%.
However, the results should be experimentally validated
on data collected in a real-world environment.

Deep Learning-Based Cooperative Architecture
(DELTA) was presented in [10]. The dataset used to
train the deep learning model were constructed using
simulation software based on the measured RSSI signals.
The development and training of the DNN (Deep
Neural Network) were performed utilizing Keras. The
performance of the proposed model was compared with
that of two machine learning techniques: Support Vector
Machine (SVM) and K-Nearest Neighbor (KNN). The
obtained results showed that DELTA provided the best
results with an average error of 1.6m. However, the
efficiency of the introduced model should be validated
in real-world environment and in an additional testing
phase. Moreover, the achieved accuracy did not satisfy
the requirements of IoT networks for indoor positioning
as the average distance error should be inferior to 1m
[4].

In [11], the UWB (Ultra-Wideband) technology
was used to develop and present a distributed and
collaborative localization solution. Simulations were
conducted to evaluate the proposed algorithm. The
obtained results revealed that the localization accuracy
improved as the network density increased, and
the average position error was below 1m with the
average connectivity. However, real-world experiments
are needed to validate these results.

In [12], RSSI and CSI measurements were collected
to construct a dataset utilized to develop and test a
deep learning model. The applied approach consists in
developing neural networks implemented with Multi-
Layer Perceptron (MLP) and Convolutional Neural
Network (CNN) architectures to predict the position of
a person in an indoor environment. The prediction was
formulated as a classification problem for localization.
The tests were conducted to compare four localization
methods: MLP-RSS, MLP-CSI, CNN-RSS and CNN-
CSI. The Keras platform [13] was used to apply and
test these methods. The obtained results demonstrated
that the CNN-CSI method outperformed the other
localization techniques by achieving a distance error of
0.92m.

Another indoor positioning solution in an IoT
environment was presented in [14]. It involves training
a CNN model using the measured RSSI signals.
Specifically, the RSSI signals were employed to construct
3D radio images, and the localization problem was
formulated as an image recognition problem using these
constructed images as input data of the developed deep
learning model. Simulations were conducted to test

the proposed model and compare its performance with
those of other approaches that utilize RSSI signals to
predict the positions. The experimental findings showed
that, with an average accuracy of up to 94.13%, the
performance of the introduced model was the best,
compared to those of the other approaches. However, it is
important to note that this accuracy was obtained when
applying the developed approach in a simulated IoT
environment. In other words, it is necessary to evaluate
the performance of the proposed system in a real-world
environment.

In [15], the trilateration technique was applied to
propose a localization method. The proposal used RSSI
measurements to estimate, first, the distances between
objects and anchors and, then, predict the positions of
the objects. Simulations were conducted to evaluate the
performance of the introduced system that provided an
average localization error of 1.37m.

The trilateration technique was also used in [16]
to develop and present a localization algorithm. The
solution is based on Time of Flight (ToF) measurements
captured by UWB technology. It involves two steps. In
the first stage, ToF measurements were used to estimate
the distances between the object to be localized and
a set of anchors. However, the second step consists
in employing the actual positions of the anchors and
the estimated distances to calculate the position of the
object applying a specific trilateration algorithm. The
conducted experiments demonstrated an average error of
around a dozen centimeters.

Moreover, a localization framework relying on Deep
Neural Network (DNN) and CSI signals was introduced
to predict the positions of IoT objects in [17]. The
designed framework was tested in two different indoor
environments. During the tests, the results obtained with
CSI measurements were compared to those provided
by RSSI measurements. It was also obvious that the
accuracy achieved using CSI was higher than that given
by RSSI. Additionally, it was demonstrated that the
proposed framework outperformed the SVM technique
in terms of localization accuracy. The average obtained
error ranged from 0.6 to 0.7 meters for the two tested
environments.

PSO-ANN combines the Artificial Neural Network
(ANN) technique and the Particle Swarm Optimization
(PSO) algorithm. This technique was applied by [18]
to develop an indoor positioning system. In addition
to PSO and ANN, the developed approach used the
”Affinity Propagation (AP)” clustering algorithm to
obtain better position prediction. Initially, RSSI data
was collected from known reference points. Then,
the clustering algorithm was employed to divide the
reference points in the studied environment into clusters.
Subsequently, an ANN model was trained for each
cluster. It was noticed that developing a suitable ANN
model for each cluster helped to estimate more accurate
positions. The proposed system was implemented on
a mobile phone to test the hybrid strategy on a
building floor. The position prediction results were
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compared with those obtained by applying ANN and
KNN with and without clustering. The comparison
demonstrated that the hybrid ANN+PSO+AP strategy
outperformed the other studied techniques in terms
of localization accuracy. Furthermore, it showed that
clustering improved the accuracy of the predicted
positions.

Table 1 summaries the works described in this section
based on the following criteria: (1) The year in which
the studied method was proposed; (2) The technique
applied to resolve the localization problem; (3) Whether
the employed technique was optimized (4) Whether
a meta-heuristic optimization algorithm was applied
(5); Communication technology and (6) Measurement
techniques (the communication technology and the
nature of the signals employed during data collection);
(7) The average distance error (a performance indicator
that calculates the average distance between the actual
position and the estimated one); (8) The accuracy of the
obtained localization results; (9) The time required to
estimate a position, if mentioned; and (10) Experiments
(the nature of the conducted experiments on which the
collected data and the results are based (real experiments
or simulations).

The survey of the above-mentioned works revealed
that the existing methods cannot meet the necessary
localization accuracy in IoT environments. Indeed, the
average distance error they provided between the actual
position and the estimated one is a few tens of
centimeters. Furthermore, no technique that uses UWB
ToF data was introduced to train a Deep Learning model
and predict the position of objects in IoT environments,
despite the fact that UWB is the most promising
technology for indoor localization systems and ToF
values can be accurately measured based on UWB
signals.

On the other hand, it was observed that the use
of the PSO optimization algorithm with Deep Learning
models improved the performance and accuracy of the
localization method. Taking advantage of the success
of the meta-heuristic optimization algorithms and their
high efficiency in solving complex problems, it is
necessary to model a more efficient solution for indoor
IoT localization based on other optimization algorithms
that are more recent and performant than PSO.
Additionally, no proposal that focuses on solving indoor
localization in IoT networks by training DL models
with the Grey Wolf Optimizer (GWO) and Arithmetic
Optimization Algorithm (AOA) was introduced in
the literature. However, GWO and AOA remain the
most recent and promising meta-heuristic optimization
algorithms.

In the present study, UWB Time of Flight
measurements are employed to achieve better accuracy
for the localization of mobile objects in an IoT
environment by combining the advantages of meta-
heuristic optimization algorithms and those of Deep
Learning methods. The following section presents the
context of the current work.

3 Background

This section concentrates on the necessary concepts
utilized to establish the context of this study. It
introduces the most commonly-used techniques for
indoor IoT localization. It, then, lists the most popular
Deep Learning algorithms and the meta-heuristic
optimization algorithms.

3.1 Indoor IoT localization

Generally, the localization techniques can be classified
into two types: range-based and range-free methods.

3.1.1 Range-free localization techniques

Range-free localization techniques often provide an
estimated position without using anchors. They typically
involve collaborative methods as the estimation of
positions relies on the neighborhood information and
the geometric methods. Their main advantage is that
they do not require special hardware support, making
them less costly. The DV-Hop [19] and Centroid [20]
algorithms are among the most popular range-free
techniques.

3.1.2 Range-based localization techniques

Range-based localization techniques are based on
measurements taken in the studied IoT environment to
obtain distance or angle estimations. These techniques
offer high precision, but they require expensive hardware
and more challenging deployment. The most commonly-
applied measurement techniques in the literature [21]
are:

� Received Signal Strength Indicator (RSSI) [22]:
measures the power of the signal received during a
transmission and, therefore, estimates the distance
between the transmitter and the receiver. RSSI
measurements do not require additional hardware
other than a device using wireless communication
technology. Therefore, RSSI is the most widely-
used measurement technique applied to implement
the localization strategies in indoor environments.
However, it is less precise in terms of localization
accuracy because the received power is often
disturbed by obstacles and non-omnidirectional
antennas.

� Channel State Information (CSI): combines
information about the communication channel’s
state and describes how a message propagates
from the transmitter to the receiver. In [23], the
authors proved that CSI provides better detection
accuracy than RSSI. However, this technique is less
performant than the Time of Flight (ToF) radio
technique.

� Angle of arrival (AoA): measures the angle at
which the signal arrives at the receiver. For
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Table 1 Summary of the studied works

Paper Year Technique Optimization
of the
employed
technique

Meta-
heuristic
optimization

Technology Measurement
techniques

Results Estimation
time
(milliseconds)

Experiments

Average distance
error (meter)

Accuracy

[2] 2023 DNN ✗ ✗ LoRaWAN RSSI et SNR - 98.8% - real

[3] 2021 Ensemble
learning
(KNN, DNN
and RF)

✗ ✗ WiFi RSSI 1.10 - - real

[5] 2021 CNN ✓ enhanced
version of
PSO

BLE RSSI - 97.92% - real

[6] 2021 Trilateration ✗ ✗ UWB,
LoRa

ToF 0.36 - - simulations

[7] 2021 MLE
method

✗ ✗ UWB Tof 0.2 - - real

[8] 2020 CNN ✗ ✗ WiFi CSI 1.75 68.5% 1.89 real

[9] 2020 MLP ✗ ✗ WiFi RSSI - 83% - simulations

[10] 2020 DNN ✗ ✗ 5G RSSI 1.6 89% 160 simulations

[11] 2020 Collaborative
localization

✗ ✗ UWB Range-free <1m - - simulations

[12] 2019 MLP and
CNN

✗ ✗ WiFi RSSI et CSI CNN-CSI : 0.92,
MLP-RSS : 1.92

- real

[14] 2019 CNN ✗ ✗ WiFi RSSI - 94.13 % 0.68*10−3 simulations

[15] 2019 Trilateration ✗ ✗ WiFi RSSI 1.37 - - simulations

[16] 2018 Trilateration ✗ ✗ UWB ToF 0.12 - - real

[17] 2018 DNN ✗ ✗ WiFi CSI 0.6-0.7 93.9%-
96%

- real

[18] 2016 ANN ✓ PSO WiFi RSSI 1.893 - 43 real

example, in [24], a method was applied to take AoA
measurements using LoRa (Long-Range Radio)
signals.

� Time of flight (ToF): calculates the time required
for a signal to travel from the source to
the destination and vice versa. Based on this
measurement and the speed of the radio signal
propagation, the distance between two objects can
be estimated. This solution is less affected by
signal attenuation through obstacles or antenna
directivity, compared to other measurement
techniques. Ultra-Wide Band (UWB) signals allow
precise Time of Flight (ToF) measurements,
making UWB ToF measurements suitable for high-
precision localization solutions. For example, in
[25], a platform that can be used to develop
and evaluate new methods proposed for indoor
localization was presented. This platform was
built based on UWB technology and the ToF
measurement technique.

� Time Difference of Arrival (TDoA): is a variant of
Time of Flight (ToF). It measures the difference
between the arrival times of a signal from
a single transmitter to two different receivers
considered as two reference points. By combining
this measurement with the signal transmission
speed, the difference in the distances between the
transmitter and the two receivers can be calculated
[26].

� Range: it is an estimation of the distance between
two objects obtained through a telemetry protocol.
This measurement can be estimated from the
received signal strength or by using Time of Flight
(ToF).

� Signal-to-Noise Ratio (SNR) (expressed in
decibels) [27]: is a measure that evaluates the
quality of a transmission by comparing the level

of a desired signal to that of noise. It is defined as
the ratio between the power of the desired output
signal and the power of the noise.

Once these measurements are performed, localization
algorithms will be implemented. Generally, they are
based on triangulation techniques where the geometry
of triangles is applied to calculate the locations of
IoT objects. Triangulation can be classified into two
techniques: (i) lateration, which is based on the distances
to points with known locations, and (ii) angulation
relying on the angles with respect to points having
known locations in addition to distances. The taken
measurements are used to estimate the positions of the
objects. Trilateration is a technique that calculates the
distances to at least three fixed references in a 2D
environment. In a 3D environment, a minimum of four
references is required. In fact, trilateration algorithms
are the simplest and most common applied to localize the
objects. Other possible localization solutions are those
based on artificial intelligence techniques, specifically
Machine Learning and Deep Learning techniques.
These methods involve using data collected from the
environment and utilizing appropriate algorithms to
predict IoT object positions. The next section introduces
the field of Deep Learning and presents its most common
techniques.

3.2 Deep Learning

Machine Learning (ML) techniques are algorithms that
enable computers to learn from data without being
explicitly programmed. Deep Learning (DL), on the
other hand, is a sub-field of Machine Learning that
focuses on algorithms utilizing artificial neural networks
inspired from the human brain to solve problems in
several domains. In recent years, DL techniques have
been successfully applied by many researches and in
various use cases.

Some of the DL techniques are presented below:
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� Dense layers: They are the most commonly used
layers in neural networks. As a dense layer is deeply
connected to its previous layer, it receives inputs
from all neurons in the previous layer.

� Deep Neural Network (DNN): It is composed of
multiple layers including an input layer, an output
layer and intermediate (hidden) layers. DNNs can
handle nonlinear relationships and are capable of
processing large amounts of data.

� Artificial Neural Network (ANN): They mimic the
functioning of the human brain.

� Convolutional Neural Network (CNN): According
to [28], CNN is the most popular DL architecture
due to its efficiency in processing voluminous data.
CNNs are widely employed in computer vision
tasks.

� Recurrent Neural Network (RNN) [29]: In RNNs,
connections between nodes can be recursive. In
other words, the input of certain nodes depends
on the previous output of the same nodes. This
enables RNNs to process sequential data.

� Long Short-Term Memory (LSTM): LSTM,
proposed in [30], is a type of recurrent neural
network. It was designed to address the vanishing
gradient problem and is largely utilized in tasks
involving sequential data.

� Gated Recurrent Unit network (GRU): GRU is
a variant of RNN characterized by a reduced
number of parameters and fast convergence. It was
introduced in [31].

� Multilayer Perceptron (MLP): MLP is a widely
used type of neural network where connections are
only made from input to output in the network
(single direction). It includes no recurrence,
meaning that the output of a neuron cannot affect
its next input.

� Ensemble learning: This technique involves
combining the outputs of two or more models
to improve the obtained results. For example,
some methods calculate the average of the outputs
provided by multiple DL and ML models.

Indeed, any model among the previously-mentioned
ones is trained by a learning process. In other words, a
DL model has a set of trainable parameters whose values
are modified and optimized during several iterations in
order to minimize a loss function (error) at the training
step. An iteration is called an epoch and the number
of epochs must be predetermined together with the
batch size. Indeed, the training data is divided into
batches (the batch size refers to the number of samples
in each batch). The weights of the model to be trained
are typically initialized with random values. Then, at
the end of processing each batch, these weights are

updated to minimize a loss function generally used to
evaluate the difference between the actual values and the
predicted values of the target outputs. In this process,
an optimization algorithm is utilized. Among the most
commonly-applied optimizers, we can mention:

� Gradient descent (GD): is a technique in ML
and DL used to iteratively minimize a cost/loss
function.

� Stochastic Gradient Descent (SGD): is a variant of
GD. It is an optimization method that accelerates
convergence and steers the weights in the right
directions towards their optimal values [32]. SGD
is one of the most popular optimization algorithms
employed to train DL models due to its easy
implementation and high efficiency [33].

� Batch Gradient Descent (BGD): is a variant of
GD. It is an optimization algorithm where each
iteration considers all training data [34].

� Follow the Regularized Leader (FTR): This
algorithm was described in [35]. It is recommended
to use it particularly with shallow models with a
large number of features.

Another type of optimization algorithms is described
in the following section. The latter introduces the meta-
heuristic optimization and its most recent and widely
used algorithms.

3.3 Meta-heuristic Optimization

The objective of an optimization problem is to find an
optimal solution in a search space containing domains
of possible values of decision variables. Such problem
is resolved by reducing the search space to only the
values that optimize a number of objective functions
and satisfy a set of constraints. The problem including
only one objective function is known as a single-objective
optimization problem. Optimization problems are solved
by meta-heuristic algorithms. The most recent and
widely employed algorithms are depicted below:

� Grey Wolf Optimizer (GWO) [36]: is a meta-
heuristic algorithm inspired from the social
hierarchy and hunting behavior of grey wolves.
[37] recommended using this algorithm to solve
real-world optimization problems and proved its
efficiency by describing various research works
that use GWO and its different variants. For
example, in [38], the multi-objective version of
GWO (MOGWO) was utilized to model routing in
an IoT environment. Experimental results showed
the ability of MOGWO to overcome routing
challenges in IoT data collection networks.

� Arithmetic Optimization Algorithm (AOA): is a
meta-heuristic method based on the distribution
behavior of the fundamental arithmetic operators
in mathematics. Its performance was validated and
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justified by the experimental results presented in
[39].

� Whale Optimization Algorithm (WOA) [40]:
is a nature-inspired meta-heuristic optimization
algorithm relying on the behavior of whales
and their hunting strategy. It is characterized
by a reduced number of parameters, easy
implementation and fast convergence. Therefore, it
has gained wide popularity and has been applied
to various problem domains. Authors, in [41],
summarized the research works in which solutions
based on WOA were proposed.

� Particle Swarm Optimization (PSO) [42]: is an
optimization algorithm that emulates the social
behavior of birds through algorithmic operations.
It has been largely employed in several studies
due to its simplicity and the reduced number of
parameters it utilizes. Different variants of PSO
and recent works that have used this algorithm
were described in [43].

4 Methodology

The approach introduced in the current work consists
in developing a Deep Learning model optimized by a
meta-heuristic algorithm and trained on UWB Time of
Flight data in order to estimate the positions of mobile
objects in an IoT environment. This section presents
first the developed approach. It introduces the proposed
algorithms applied to model the training of the DL model
using meta-heuristic optimization. Then, it describes the
localization process based on the trained and optimized
model.

4.1 Parameter Optimization with Meta-heuristic
Algorithms

A Deep Learning model composed of dense layers is
suggested and the learning of their weights is optimized
using meta-heuristic algorithms. As mentioned in Sub-
section 3.2, during the training phase, multiple learning
iterations are performed to find the values of the weights
that help formulate the correct function mapping inputs
x to outputs y. In other words, these weights are learned
and improved during training. Equation 1 simplifies and
generalizes the output equation of a layer utilized in a
neural network.

ytj = f(
∑
i

Wjix
t
i) (1)

where xt
i and ytj represent, respectively, the input and

output of a layer at time t. Wji are the trainable weights
during the learning phase. The values of the weights are
updated by applying an optimizer algorithm in order to
reduce the prediction error over the epochs.

The performance of the optimizer used during the
training phase greatly affects the convergence speed of

the DL model and the quality of the predicted results it
provides. Moreover, IoT applications require accurately-
calculated positions and fast processing to leverage
their full potential. To overcome these challenges, it
is important to improve the performance of the DL
model utilized for localization by applying an enhanced
optimizer. Therefore and to deal with these issues,
optimization meta-heuristics are used in the present
work. By treating the DL model weight training as a
meta-heuristic optimization problem and solving it with
an algorithm among those dedicated in this paradigm,
solutions can be generated and employed to update the
weight values during different iterations.

Relying on this definition of the learning step, the
weights of a DL model are optimized, in this study,
by applying meta-heuristic algorithms. The weight
learning is translated into a single-objective optimization
problem. The objective function to minimize is the
prediction error function and the variables, which
constitute the population of the optimization problem,
are the weights of the DL model. In other words, during
the different iterations, the new values of the weights are
the best values selected by the meta-heuristic algorithms
(Figure 1).

The modeling of weight optimization with a meta-
heuristic method is summarized in Figure 2 and detailed
in Algorithms 1, 2 and 3.

At the beginning of the training phase, the weights
were initialized, and a maximum number of epochs was
defined. The initial weights were used to initialize the
population of the meta-heuristic optimization algorithm.
Then, a new iteration was executed until reaching the
maximum number of epochs. During each epoch, all
the training data were employed. These data were
divided into batches. At the end of processing each
batch, the loss function value was calculated. Then,
it was proven whether the meta-heuristic optimization
population had been fully constructed or updated with
the latest iterations. In this case, the mathematical
equations of the meta-heuristic optimization would
be applied to calculate new weight values, and the
algorithm’s population was updated with the newly-
computed weights. If it was not the case, the weights
would be updated using the equations of Gradient
Descent (GD). Once the maximum number of epochs
was exceeded, the weights obtained at the last iteration
would be considered optimal, showing the end of the
training phase.

Algorithm 1 details the training phase of the
developed model. First, the DL weights were initialized
with random values together with the parameters of the
meta-heuristic algorithm to be applied. Among these
parameters, pop size, the size of the population to
be considered, was specified. Afterwards, a number of
epochs were executed to train the model. Each epoch
consists of a number of iterations equal to the size of
the input data divided by the batch size to be taken
into account. Algorithms 2 and 3 describe the processing
performed during each iteration.
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Figure 1 Weight optimization by applying a meta-heuristic algorithm

Figure 2 Flowchart of training neural layer weigths by
applying a meta-heuristic algorithm

Algorithm 1: train()

Input: input data, pop size, nb generations,
nb epochs

Output: parameters

1 weights← random weights
2 metaheuristic parameters←

initializeMetaheuristicParameters()
3 it← 0
4 c pop write← 0
5 c pop read← 1
6 apply metaheuristic algo← False
7 first pop← True
8 pop← ∅
9 foreach epoch ∈ nb epochs do

10 foreach step ∈ nb iterations do
11 if apply metaheuristic algo is False then
12 constructOrUsePop(input data,weights,pop,

first pop, pop size, c pop write,
c pop read, apply metaheuristic algo)

13 else
14 weights←

trainWithMetaheuristicAlgo(pop,
nb generations, it,
metaheuristic parameters)

During the various epochs, the meta-heuristic was
applied after every pop size iterations. In other words,
the training phase was divided into stages of length
pop size iterations. During the first stage, the weight
values were used to initialize the population. At the
end of this stage, the meta-heuristic algorithm was
applied to update the weights. During the subsequent
stages, the weights generated by the previous stage were
first used. At the end of each stage, the weights were
optimized using the equations of the employed meta-
heuristic algorithm.

4.2 Localization with the optimized DL model and
Time of Flight (ToF)

The localization approach involves two phases (Figure
3):
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Algorithm 2: constructOrUsePop()

Input: pop, first pop, pop size, c pop write,
c pop read, apply metaheuristic algo

Output: parameters

15 if first pop is True then
16 parameters←

getParametersWithTraditionalMethod()
17 pop← pop ∪ parameters
18 c pop write← c pop write+ 1
19 if c pop write = pop size then
20 first pop← False
21 apply metaheuristic algo← True

22 else
23 parameters← pop[c pop read]
24 c pop read← c pop read+ 1
25 if c pop read > pop size then
26 apply metaheuristic algo← True

Algorithm 3: trainWithMetaheuristicAlgo()

Input: pop, nb generations,
apply metaheuristic algo,
metaheuristic parameters

Output: new pop

27 updatePopWithMetaheuristicAlgo(pop,
metaheuristic parameters)

28 it← it+ 1
29 metaheuristic parameters←

updateParametersOfMetaheuristicAlgo(nb generations,
it)

30 apply metaheuristic algo← False
31 parameters← pop[1]
32 c pop read← 2
33 return pop

� Offline phase: The first step is to use the dataset
presented in sub-section 5.1.1 to train the model.
The data, primarily including UWB Time of Flight
(ToF) measurements, serves as the input for the
DL model to be trained. The coordinates of the
mobile object represent the target results to be
predicted, and the other columns are the data
based on which the prediction will be made.
The weights of the model were learned and
optimized by applying meta-heuristic optimization
algorithms. The objective function to minimize is
the average distance between the actual positions
and the estimated ones. During training, a portion
of the data was utilized for validation. The result
provided in this phase is a trained and optimized
model.

� Online phase: The second phase represents a
scenario where a mobile object needs to localize
itself. In this case, after exchanging messages with
the anchors, this object selects the necessary data
(primarily including UWB ToF measurements) to
be used for prediction. By giving these data to the
model, resulting from the first phase, as input, the
object can estimate its own position (coordinates).

5 Experimental Results and Discussion

In order to evaluate the performance of the developed
and proposed model, a set of tests were conducted. This
section presents first the experimental setup. Then, the
obtained results are analyzed.

5.1 Experimental Setup

This section describes the experimental details including
the used dataset, the employed evaluation criteria,
the experimental parameters and the implementation
choices.

5.1.1 The Dataset

The dataset utilized to apply the proposed solution was
generated by the real-world platform LocURa4IoT [44]
designed to develop and test approaches applied to solve
the problem of indoor localization in IoT environments
based on Time of Flight (ToF). Additionally, it can be
employed to test and evaluate the ranging protocols in
IoT networks.

The platform primarily uses Ultra-Wide Band
(UWB) technology, which offers the highest precision
and incorporates Bluetooth Low Energy (BLE) as
well as LoRa transceivers. To construct the dataset,
a set of anchors were installed in the considered IoT
environment. A mobile object was moved within the
environment to collect measurements regarding the
signals exchanged between the object and the anchors.
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Figure 3 Localization by applying an optimized DL model and using UWB Time of Flight

The Two-Way Ranging (TWR) protocol [45] was
applied during the message exchange between the mobile
object (TWR client) and the anchors (TWR servers).
The dataset includes several measurements such as ToF,
anchor positions, real positions of the mobile object,
RSSI measurements, range measurements, etc. The ToF
and range measurements were calculated using the
TWR protocol [45]. The time difference between the
TWR server clock and the TWR client clock can lead
to inaccurate Range measurements. To deal with this
problem, the Range measurements in the LocURa4IoT
dataset were optimized. The dataset is available online
at [46].

To apply the localization solution, the lines of the
dataset were rearranged to separate the pairs of lines
and avoid overfitting. Some data from the LocURa4IoT
dataset were eliminated. They include:

� Columns with unique values such as object
identifiers and the used protocol.

� Columns that do not provide useful information
that can be relied on to localize objects.

Moreover, the dataset was reorganized such that each
row would contain information about the interactions
with the same 5 anchors. Then, the dataset was divided
into three parts: for training, test and validation.
Authors, in [47], considered the ratio (p :

√
p : (

√
p+ 1))

as the optimal distribution ratio for the mentioned data
parts. p =

√
N , N is the number of unique rows in the

used data.
The new content of the dataset consists of 3947

unique rows. Therefore, p = 63 and the distribution ratio
became 63 : 8 : 9. In other words, the dataset was divided
as follows:

� 78.75% of the data were used as training data

� 10% of the data were utilized as validation data

� 11.25% of the data were employed as test data

5.1.2 The evaluation criteria

Among the existing evaluation criteria, the two following
criteria were used in the performed experiments:

� Mean Absolute Error (MAE): It calculates the
average of the absolute differences between the
actual target output values (the test data) and
the predictions obtained by applying the model
(Equation 2). A smaller MAE value indicates
better prediction accuracy. As MAE is the most
commonly-used criterion applied to evaluate the
localization solutions, it is utilized in the present
study.

MAE = 1/n

n∑
i

|yi − ŷi| (2)

yi : actual value, ŷi : predicted value

� Mean Squared Error (MSE): It computes the
squared difference between the actual target
output values (the test data) and the predictions
obtained by applying the model. Then, it takes
the average of these errors (Equation 3). A smaller
MSE value indicates better prediction accuracy.
It represents the simplest and most common loss
function. [48] recommended using this type of loss
to solve prediction problems.

MSE = 1/n

n∑
i

(yi − ŷi)
2 (3)

yi : actual value, ŷi : predicted value

5.1.3 Experimental Parameters

Table 2 contains the hyper-parameters utilized to
configure the trained and tested DL models during the
conducted experiments.

Table 2 Hyper-parameters of DL models

Hyper-parameter Value

Number of epochs 2000

Batch size 32

Learning rate 0.001

Number of hidden layers 2
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5.1.4 Implementation

The experiments were conducted on a computer
equipped with an Intel i7 processor and 16 gigabytes of
RAM. To implement the approach, the following choices
were made:

� Python as the programming language

� Jupyterlab 3.5.1 IDE

� Keras [13], a Python library for Deep Learning. It
provides a high-level Python interface with a high
level of abstraction and offers simple and consistent
high-level APIs, making it easier to develop and
test Deep Learning models.

� Developing two optimizers to train the weights of
a Deep Learning model. They are based on the
following meta-heuristic algorithms:

– GWO [36] : is utilized in the current work as
it is one of the recent meta-heuristics that has
recently gained significant interest in various
domains [49].

– AOA [39] : It was chosen because it
is one of the most recent meta-heuristic
methods proposed in 2021. Additionally,
according to [39], it outperforms other well-
known optimization algorithms and provides
promising results in solving challenging
optimization problems.

5.2 Results

In order to prove the good performance of the
introduced approach, experiments were conducted, and
the developed models were compared in terms of MAE
and MSE. In addition, the best developed model was
compared to a multi-lateration solution. This section
presents the obtained results.

5.2.1 Comparison of the Optimization Methods

The training of 3 DL developed models was tested with
the same hyper-parameters (Table 2), primarily based on
the ToF measurements from the LocURa4IoT dataset.
The used data includes anchor coordinates and ToF
measurements. Two models were trained by applying the
proposed method (Sub-section 4.1) and employing GWO
and AOA, respectively. The third model was trained
using the existing optimization method (GD).

Figure 4 shows the learning curves of the 3 employed
models. It presents the variation of MAE values during
the training epochs using the three optimizers. Each
two curves were plotted together to facilitate the
comparison of the models. It should be noted that,
during the training epochs, the parameters were updated
to find the optimal values that yielded lower MAEs.
This figure demonstrates that optimizing the trainable
parameters with the developed approach using GWO

Table 3 Comparison of training times

Optimization algorithm Training time (seconds)

GWO 328.302
AOA 393.162
GD 281.52

resulted in the fastest convergence, compared to the
other two optimizers. In other words, the MAE errors
were smaller and decreased more rapidly when the GWO
equations were used to update the weight values during
the learning iterations. This figure also reveals that
optimization employing the AOA meta-heuristic is less
effective than that made utilizing GD.

Thus, we can conclude, from these curves, that
our proposal applied with GWO outperforms the other
two methods, followed by the GD optimizer. However,
optimization with AOA is the least effective. This
conclusion is further supported by Figure 5. In the
latter, the average values of MAE and MSE errors
across all epochs during the training phase are compared.
This comparison confirms that training with GWO
surpasses that done by the other two optimizers (GD
and AOA) and that our proposal relying on GWO
accelerates convergence towards the optimal parameters
and enhances the learning of the DL model.

The learning times of the three models are compared.
The provided results are presented in Table 3. In terms
of the training time, optimization with GD is the
fastest, followed by that with GWO and that with AOA.
However, the learning time criterion is not crucial as it
pertained to the off-line phase (training). Indeed, during
the execution of IoT applications (on-line phase), objects
used a pre-trained model to self-locate themselves.

Based on these results, the optimization relying
on the proposed approach applied with GWO was
considered to conduct the remaining tests presented in
the rest of this section.

5.2.2 Comparison of the Measurement Techniques

The initial performed tests showed that training based
on the developed approach applied with GWO yielded
the best results. For this reason, this optimization
method was utilized to train three DL models with
the same hyper-parameters, but with different data
selected from the measurements taken in LocURa4IoT.
In addition to the anchor positions, the used data
included, respectively, UWB Time of Flight (ToF),
Received Signal Strength Indicator (RSSI) and Range
measurements. The tests were performed during this
stage to compare the performance of the three developed
models in terms of the accuracy of position prediction.
This comparison was made by training the three
developed models and using them to predict positions
employing the test data (11.25% of the dataset).
The predicted x and y coordinates obtained from the
tested models were also compared. Additionally, these
predictions were considered to calculate the distance
between the actual position of the mobile object and its
estimated position. Figure 6 represents a comparative
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Figure 4 Learning curves for the DL models optimized with the proposed solution (employing GWO and AOA) and GD
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Figure 5 Comparison of the overall average values of MAE and MSE errors across all training epochs

study of the results obtained by the three models. It
displays the error variation curves obtained from the
predictions given by applying the three tested models
for x and y coordinates as well as the distance between
the actual and the predicted positions. The curves
indicate that the errors obtained from UWB ToF are
generally lower than those provided by RSSI and Range
measurements.

Figure 7 confirms that the positions predicted using
UWB ToF measurements are more accurate than those
obtained with RSSI and Range. Indeed, Figure 7
compares the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) values of the predictions obtained
in terms of x and y coordinates and positions (distances
between the actual and estimated positions). It is noticed
that ToF measurements yielded the lowest values of
both MAE and MSE criteria. It is also obvious that
predictions with Range resulted in smaller MAE and
MSE values than RSSI for the x coordinate and position.
However, for the y coordinate, Range provided a lower
MAE value and a slightly higher MSE value, compared
to RSSI.

Based on these results, the optimization relying
on the proposed approach applied with GWO and
employing UWB ToF measurements was considered
as the proposed indoor localization solution by this
study, since it gives the best results compared to other
developed and tested solutions. Therefore, it is compared
to a conventional multi-lateration solution in the next
sub-sub-section.

5.2.3 Comparison of the performance of the
proposed solution with Multi-lateration
Method

The objective of this test section is to demonstrate that
the performance of the proposed approach is better than
that of a conventional multi-lateration method presented
in [50]. The position estimation capabilities of both
solutions were tested using the same test data. The
estimation results are compared in Figures 8 and 9.

Figure 8 compares the predicted values and the actual
values of the x and y coordinates for the two compared
solutions. The curves demonstrate that the predictions
made by the introduced approach are more accurate than
those of the multi-lateration method. Figure 9 presents

Figure 6 The error variation curves obtained from the
predictions given by using ToF, RSSI and Range
measurements in terms of x and y coordinates as
well as the distance between real and predicted
positions
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Figure 7 Comparison of the overall mean values of MAE and MSE errors for predictions of x and y coordinates as well as
positions (distances between real and estimated positions)

Figure 8 Comparison of the real coordinates and the estimated ones given by applying the suggested solution and the
multilateration method
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Figure 9 Comparison of the overall mean values of MAE and MSE errors for predictions of x and y coordinates as well as
positions (distances between real and estimated positions)

a comparative study of the Mean Absolute Error (MAE)
and Mean Squared Error (MSE) values calculated from
the predictions of the coordinates and the distances
between the actual and the estimated positions obtained
by the two solutions.

These results reveal that the developed approach
provided lower MAE and MSE errors for all three
considered measurements (x, y and position). In fact,
the rate at which the suggested localization solution
achieved the minimum distance between the actual and
the estimated positions is 93.54%.

Furthermore, the presented approach provided an
average error between the actual and the predicted
positions of 0.057m. These results also demonstrate
that the proposed method surpassed the state-of-the-art
solutions, described in Section 2, where the best average
distance error was a few tens of centimeters.

The localization accuracy and the times required to
apply the two localization solutions were also compared
in table 4. The suggested solution outperformed the
multi-lateration one by achieving a localization accuracy
of 98.92%, whereas the latter achieved an accuracy of
89.24% (threshold = 0.5m). The time taken for position
prediction using the introduced approach was 0.155
seconds, whereas the multi-lateration solution required
1.982 seconds to estimate the coordinates. Although
the developed solution outperformed the other method
in terms of the estimation time, it is worth to note
that the proposed DL solution required an off-line step
that necessitated 328.302 seconds to train the prediction
model. On the other hand, the multi-lateration method
did not require any additional phase apart from real-time
position estimation.

5.2.4 Summary

Several conclusions can be drawn from the conducted
tests and obtained results:

� Training the DL model parameters based on
GWO, as proposed in this work, outperforms
the other two optimization methods (AOA and
GD). The approach applied with GWO accelerates
convergence towards the optimal parameters and
enhances the learning process for the DL model.

� Positions predicted using UWB ToF measurements
are more accurate than those obtained with RSSI
and Range.

� The introduced localization solution provided an
average error between the actual and the predicted
positions of 0.057m. It outperformed the tested
multi-lateration solution that yielded an average
distance error of 0.167m.

� The proposed technique surpassed the state-of-the-
art solutions where the best results achieved an
average distance error of few tens of centimeters.

6 Conclusion and Future Perspectives

In this article, a Deep Learning (DL) model trained
with the Grey Wolf Optimization (GWO) algorithm and
based on UWB Time of Flight (ToF) measurements
was designed as a solution for indoor localization in an
IoT environment. We conducted experiments using the
LocURa4IoT dataset, constructed with measurements
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Table 4 Comparison of the time required for applying the suggested solution and the multi-lateration method

Solution Localization accuracy Training time (seconds) Estimation time (seconds)

GWO-ToF (proposed) 98.92% 328.302 0.155
Multi-lateration 89.24% - 1.982

taken in a real IoT environment. A comparative
study was conducted and presented to prove the high
performance of the proposed model. Firstly, three Deep
Learning models were trained employing the meta-
heuristic optimization algorithms GWO and AOA as well
as the GD algorithm, respectively. Their performance
was evaluated during the training phase. It was
demonstrated that GWO allowed better optimization
of the trainable parameters by accelerating convergence
towards the optimal values and outperformed the two
other algorithms. Secondly, the capabilities of three
DL models trained with GWO to predict positions
based, respectively, on UWB ToF, RSSI and Range
measurements were assessed. The obtained results
showed that, compared to RSSI and Range, UWB
ToF measurements provided more accurate positions, as
indicated by lower Mean Absolute Error (MAE) and
Mean Squared Error (MSE) values in the predictions.
Thirdly, the predicted positions obtained using the
suggested solution was compared with those calculated
using an existing conventional multi-lateration solution.
The experimental findings proved that the introduced
model outperforms the existing one in terms of MAE
and MSE. It was also proven that the suggested
solution achieved an average distance error of 0.057m,
demonstrating its best superior performance, compared
to state-of-the-art solutions where the best average
distance error was a few tens of centimeters. Indeed,
the proposed solution achieved a localization accuracy
of 98.92%. However, the proposed solution took 328.302
seconds to train the DL model. As a continuation of
this work, we plan to improve the training process to
reduce the required learning time. Additionally, it will
be beneficial to explore a dynamic solution that enables
regular learning when the environment evolves over
time. Furthermore, we will use the proposed localization
solution to develop a geographic routing approach in a
large-scale mesh IoT network.
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