

1/32

MMIPE 2023 - Fraunhofer

Multiphase flow in highly permeable porous media

M. Quintard

DRCE CNRS Emeritus

Institut de Mécanique des Fluides, Allée Prof. C. Soula, 31400 Toulouse cedex – France quintard@imft.fr

http://mguintard.free.fr

M. Quintard

Outline (emphasis on some theoretical aspects)

- Introduction: background, multiple-scale, averaging
- One-Phase Flows
 - Phenomenology: Departure from Darcy's law, Weak inertia regimes, Strong Inertia regimes, Transitions, Turbulence (pore-scale or macroscale?)
 - Macro-scale models?
- Two-Phase Flows:
 - theoretical framework and specificity for HPPM
 - several models for dynamic flows:
 - Models with phase interaction
 - Dynamic PNM

M. Quintard

- Phase splitting: application to structured porous media
- Conclusions

Examples of HPPM:

Structured and Packed bed reactors, nuclear safety, fractured media, karsts, ...

M. Quintard

Gamissage vrac Source MTI $\operatorname{Re} = \frac{\rho_r U_r \sqrt{k}}{\mu_r} > 1$ as well as important Ca and Bo numbers

Financial support from Air Liquide, IFPen, IRSN, TotalEnergies,

Upscaling?

M. Quintard

Separation of scales:

 $l_{\beta}, l_{\sigma} \ll L \text{ or not!}$

- If seeking a macro-scale theory?
 - Smoothing "operator" → macro-scale equations and BCs?
 - Link between micro- and macro-scale?
 - Effective properties?
- Different techniques
- Different types of models: 1-Eq, mixed models, N-Eqs., etc...

Upscaling: different point of views

- Heuristic: Darcy's law (1856)!
- Upscaling with closure: homogenization theory (Sanchez-Palencia, Bensoussans et al.,...), volume averaging (Whitaker, ... and variants),

$$p_{\beta} = \left\langle p_{\beta} \right\rangle^{\beta} + \tilde{p}_{\beta} \qquad \qquad \tilde{p}_{\beta} \stackrel{?}{=} f\left(\left\langle p_{\beta} \right\rangle^{\beta}, \nabla \left\langle p_{\beta} \right\rangle^{\beta}, \ldots\right)$$

- Stochastic theories (Matheron, Dagan, Gelhar, ...), ...
- Mixture theories: volume averaging + irreversible thermodynamics (Marle, Hassanizadeh and Gray, Bowen, ...)
- Other point of views...: dual-phase-lagging heat conduction (Wang et al., 2008; Vadasz, 2005...); mixed models; fractional derivatives (Néel,...); CTRW; ...

Different Model Types

HPPM: a class of largely open problems

\downarrow

This talk: suggestion of possible routes

Mixed or Hybrid Network model (PNM+Darcy-scale)

M. Quintard

One-Phase Flow as an example of highly non-linear problem

• Pore-scale equation $\nabla \cdot \mathbf{v}_{\beta} = 0$

 $\rho_{\beta} \frac{\partial \mathbf{v}_{\beta}}{\partial t} + \rho_{\beta} \mathbf{v}_{\beta} \cdot \nabla \mathbf{v}_{\beta} = -\nabla p_{\beta} + \rho_{\beta} \mathbf{g} + \mu_{\beta} \nabla^{2} \mathbf{v}_{\beta} \qquad \text{B.C.1 } \mathbf{v}_{\beta} = 0 \quad \text{at } A_{\beta\sigma}$ $\text{Re} = \frac{\rho_{\beta} U_{r} \ell_{\beta}}{\mu_{\beta}}; p_{\beta}^{c} = \frac{p_{\beta} \ell_{\beta}}{\mu_{\beta} U_{r}}; \text{Fr} = \frac{U_{r}}{\sqrt{\ell_{\beta}g}} \implies \text{Re} \left(\frac{\partial \mathbf{v}_{l}^{'}}{\partial t^{'}} + \mathbf{v}_{l}^{'} \cdot \nabla^{'} \mathbf{v}_{l}^{'}\right) = -\nabla^{'} p_{l}^{c} + \frac{\text{Re}}{\text{Fr}^{2}} \frac{\mathbf{g}}{g} + \nabla^{'2} \mathbf{v}_{l}^{'}$ $\bullet \text{Pore-Scale regimes as a function of Re}$

$\frac{1}{2} O(C^{-}O$

- Creeping (Re \rightarrow 0): leads to Darcy's law
- Laminar
- Turbulent

M. Quintard

Various regimes and transitions, impact of subcritical and supercritical instabilities \rightarrow which macro-scale model?

The linear (Stokes) problem Re~0

<u>Localized problem</u> \rightarrow nearly constant averaged velocity and gradient of intrinsic pressure over UC/REV (if far from boundaries) Quasi-steady flow, Brinkman terms discarded

$$0 = -\varepsilon_{\beta} \nabla \langle p_{\beta} \rangle^{\beta} + \varepsilon_{\beta} \rho_{\beta} \mathbf{g} + \mu_{\beta} \nabla^{2} \langle \mathbf{v}_{\beta} \rangle = \mu_{\beta} \nabla \varepsilon_{\beta} \cdot \nabla \langle \mathbf{v}_{\beta} \rangle^{\beta} + \frac{1}{\mathcal{V}} \int_{A_{\beta\sigma}} \mathbf{n}_{\beta\sigma} \cdot \left(-\tilde{p}_{\beta} \mathbf{I} + \mu_{\beta} \nabla \tilde{\mathbf{v}}_{\beta}\right) dA = O\left(\frac{\langle v_{\beta} \rangle^{\beta}}{\ell^{2}}\right) = O\left(\frac{\langle v_{\beta} \rangle^{\beta}}{L^{2}}\right)$$

M. Quintard

Closure and Macro-Scale Equation (Darcy regime) $\nabla \mathbf{B} = 0$ thanks to linearity: $-\nabla \mathbf{b} + \nabla^2 \mathbf{B} = \varepsilon_{\beta}^{-1} \frac{1}{\mathcal{V}} \int \mathbf{n}_{\beta\sigma} \cdot (-\mathbf{I}\mathbf{b} + \nabla \mathbf{B}) \ dA$ $\begin{aligned} \tilde{p}_{\beta} &= & \mu_{\beta} \mathbf{b}. \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + .. \\ \tilde{\mathbf{v}} &= & \mathbf{B}. \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + .. \end{aligned}$ $\mathbf{B}=-\mathbf{I}$ at $A_{eta\sigma}$, $\left< \mathbf{b} \right>^{eta}=0$ $\mathbf{b}(\mathbf{r} + \ell_i) = \mathbf{b}(\mathbf{r})$ $\mathbf{B}(\mathbf{r} + \ell_i) = \mathbf{B}(\mathbf{r})$ $\left\langle \mathbf{v}_{\beta} \right\rangle = -\frac{1}{\mu_{\beta}} \mathbf{K} \cdot \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right) \qquad \mathbf{K}^{-1} = -\varepsilon_{\beta}^{-2} \frac{1}{\mathcal{V}} \int \mathbf{n}_{\beta\sigma} \cdot \left(-\mathbf{I}\mathbf{b} + \nabla \mathbf{B} \right) \, dA$

K intrinsic permeability

See Sanchez-Palencia (homogenization), Whitaker, ...

M. Quintard

Laminar Inertial

$$\rho_{\beta} \frac{\partial \mathbf{v}_{\beta}}{\partial t} + \rho_{\beta} \mathbf{v}_{\beta} \cdot \nabla \mathbf{v}_{\beta} = -\nabla \tilde{p}_{\beta} - \mathbf{h} + \mu_{\beta} \nabla^2 \mathbf{v}_{\beta}$$

Still localized flow
pattern?

If yes, non-linear relationship between average velocity and pressure drop!

$$\begin{aligned} \tilde{p}_{\beta} &= \mu_{\beta} \mathbf{b}. \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + .. \\ \tilde{\mathbf{v}} &= \mathbf{B}. \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + .. \end{aligned}$$

M. Quintard

$$\Rightarrow$$

$$\left\langle \mathbf{v}_{\beta}\right\rangle = -\frac{1}{\mu_{\beta}}\mathbf{K}_{app}.\left(\nabla\left\langle p_{\beta}\right\rangle^{\beta} - \rho_{\beta}\mathbf{g}\right)$$

$$\mathbf{K}_{app} = rac{1}{1+f} \mathbf{P} \cdot \mathbf{K}$$

where
$$f$$
, **P**(rotation matrix) depend on
 $\left| \nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right\|, \left(\nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right) / \left\| \nabla \left\langle p_{\beta} \right\rangle^{\beta} - \rho_{\beta} \mathbf{g} \right\|$

Models for all Non Darcean regimes

Re definition? Still a heated debate!

- Heuristic: Forchheimer, Ergun, …
- Upscaling? If localized flow!

generalized Forchheimer eq.

 $0 = -\nabla \langle p_{\beta} \rangle^{\beta} + \rho_{\beta} \mathbf{g} - \mu_{\beta} \mathbf{K}_{app}^{-1} \cdot \langle \mathbf{v}_{\beta} \rangle \implies 0 = -\nabla \langle p_{\beta} \rangle^{\beta} + \rho_{\beta} \mathbf{g} - \mu_{\beta} \mathbf{K}^{-1} \cdot \langle \mathbf{v}_{\beta} \rangle - \mathbf{F} \left(\langle \mathbf{v}_{\beta} \rangle \right)^{\flat} \cdot \langle \mathbf{v}_{\beta} \rangle$ (variants: modified Navier-Stokes equations)

- How to check for localization? DNS, stability analysis...
 - Bifurcations depends on Re and number of UC (Agnaou et al., 2016)...and topology! \rightarrow REV size= $f(\langle \mathbf{v}_{\beta} \rangle^{\beta})$
 - Localized turbulence (nearly periodic over N-UC) up to large Re numbers (Jin et al., 2015) need spatial & time average $\langle v_{\beta} \rangle$
 - − Not necessarily true in entrance regions (D'Hueppe et al., ...) \rightarrow macro-scale turbulence models?

M. Quintard

Transport in Porous Media

14/32

Summary of Models for Non Darcean regimes (Re>1)

- Re \rightarrow 0: Darcy, F=0, linear closure
- Re ~ 0: weak inertia, F.(v_β) ~ (v_β)³ (Levy, Mei & Auriault, Firdaouss, Pauthenet et al., ...), perturbation solution with respect to Re, not quantitatively significant most of the time
- Re > 0 (before macro-scale turbulence)
 - strong inertia, $F_{\cdot}\langle v_{\beta}\rangle \sim \langle v_{\beta}\rangle^2$ (Lasseux et al., 2011;...), mostly if disordered media, but after *transition regimes*
 - anisotropic effect (Pauthenet et al., 2018; Qinjun et al., 2023...), necessary for structured packings, nuclear reactors, ...
- Estimating K_{app} requires heavy computations, building correlations for anisotropic effects may be complex (analytic correlations, machine learning, ...)

Turbulent flows in porous media (Re>>1)

see Pedras & De Lemos, Masuoka & Takatsu (1996), Nakayama & Kuwahara (1999), ...

Turbulence: time and spatial averaging (book De Lemos, 2006; …)

- Time and spatial averaging commute!
- Not necessarily the same result if sequential closure because of involved approximations!? I. $\mathbf{v}_{\beta} \rightarrow \langle \mathbf{v}_{\beta} \rangle \rightarrow \overline{\langle \mathbf{v}_{\beta} \rangle}$

II.
$$\mathbf{v}_{\beta} \rightarrow \overline{\mathbf{v}_{\beta}} \left(RANS, \ldots \right) \rightarrow \left\langle \overline{\mathbf{v}_{\beta}} \right\rangle$$

- Scheme "II" seems preferable: contrary to Antohe & Lage (1997), Getachew et al. (2000), see discussion in Nakayama & Kuwahara (1999), Pedras and de Lemos (2001), etc...
- In general leads to a macro-scale turbulence model
- However: If localized RANS simulation, scheme II leads to a generalized Forchheimer law...

Example: structured packings (Soulaine & Quintard, 2014) $K_{yy}^* = \frac{K_0}{1 + \gamma_l \sqrt{Re}}$ (laminar) ; $K_{yy}^* = \frac{K_1}{1 + \beta_t Re}$ (turbulent)

M. Quintard

Two-Phase Flow

Pore-scale

$$\nabla \cdot \mathbf{v}_{\alpha} = 0$$

$$\frac{\partial \rho_{\alpha} \mathbf{v}_{\alpha}}{\partial t} + \nabla \cdot (\rho_{\alpha} \mathbf{v}_{\alpha} \mathbf{v}_{\alpha}) =$$

$$-\nabla p_{\alpha} + \rho_{\alpha} \mathbf{g} + \mu_{\alpha} \nabla^{2} \mathbf{v}_{\alpha} \text{ in } V_{\alpha} \qquad \alpha = \beta, \gamma$$
B.C. 1 $\mathbf{v}_{\beta} = 0$ at $A_{\beta \mathbf{v}}(t)$
B.C. 2 $\mathbf{v}_{\gamma} = 0$ at $A_{\gamma \sigma}(t)$
B.C. 3 $\mathbf{v}_{\beta} = \mathbf{v}_{\gamma}$ at $A_{\beta \gamma}(t)$
B.C. 4
$$-\mathbf{n}_{\beta \gamma} p_{\beta} + \mu_{\beta} \mathbf{n}_{\beta \gamma} \cdot (\nabla \mathbf{v}_{\beta} + (\nabla \mathbf{v}_{\beta})^{T}) =$$

$$-\mathbf{n}_{\beta \gamma} p_{\gamma} + \mu_{\gamma} \mathbf{n}_{\beta \gamma} \cdot (\nabla \mathbf{v}_{\gamma} + (\nabla \mathbf{v}_{\gamma})^{T}) + 2\sigma H_{\beta \gamma} \mathbf{n}_{\beta \gamma} \text{ at } A_{\beta \gamma}(t)$$

M. Quintard

Phenomenology for HPPM: potentially unsteady flows

- Front position is in general time dependent!
- Specific features: Haines jumps, snap-off, ...
- Boiling, turbulence, ...

• Common practice: quasi-static approximation... $\langle \phi \rangle$ and not $\overline{\langle \phi \rangle}$ Justification: Ergodicity (not validated)?

M. Quintard

Horgue et al.

See paper Gourbil et al.

Sapin et al., 2016

Upscaling: quasi-static theory

Whitaker, 1986; Auriault, 1987; Lasseux et al., 1996; ...

- $A_{\beta\gamma}(t) \rightarrow$ known steady-state position
- Momentum eqs ~ 2 flow problems

M. Quintard

Interaction between phases: Case of B.C. 4

$$\mathbf{n}_{\beta\gamma} \left(\left. P_{\gamma} \right|_{\mathbf{x}} - \left. P_{\beta} \right|_{\mathbf{x}} \right) + \mathbf{n}_{\beta\gamma} \mathbf{y} \cdot \left(\left(\left. \nabla P_{\gamma} \right|_{\mathbf{x}} - \rho_{\gamma} \mathbf{g} \right) - \left(\left. \nabla P_{\beta} \right|_{\mathbf{x}} - \rho_{\beta} \mathbf{g} \right) \right) + \mathbf{n}_{\beta\gamma} \mathbf{y} \cdot \left(\rho_{\gamma} - \rho_{\beta} \right) \mathbf{g} + \dots = -\mathbf{n}_{\beta\gamma} \left(\tilde{p}_{\gamma} - \tilde{p}_{\beta} \right) + \mu_{\gamma} \mathbf{n}_{\beta\gamma} \cdot \left(\nabla \mathbf{v}_{\gamma} + \left(\nabla \mathbf{v}_{\gamma} \right)^{T} \right) - \mu_{\beta} \mathbf{n}_{\beta\gamma} \cdot \left(\nabla \mathbf{v}_{\beta} + \left(\nabla \mathbf{v}_{\beta} \right)^{T} \right) + 2\sigma H_{\beta\gamma} \mathbf{n}_{\beta\gamma} \mathbf{at} A_{\beta\gamma}$$

$$Ca = \frac{\mu_r U_r}{\sigma}$$

$$Bo = \frac{|(\rho_\beta - \rho_\gamma) g| r_0^2}{\sigma}$$

$$+ Re, (We = Re \times Ca) numbers$$

$$+ Dynamic Bond number$$

$$H_{\beta\gamma} = Constant over REV$$
i.e., the classical capillary pressure theory!

Macro-Scale Models : Quasi-Static

$$\mathbf{V}_{\alpha} = \langle \mathbf{v}_{\alpha} \rangle \; ; \; P_{\alpha} = \langle p_{\alpha} \rangle^{\alpha} \; ; \; \varepsilon_{\alpha} = \varepsilon S_{\alpha} \qquad \alpha = \beta, \gamma$$

Heuristic (Muskat): generalized Darcy's laws

M. Quintard

Macro-Scale Models : Quasi-Static, viscous coupling

Model with viscous coupling (upscaling with heuristic parts ③,...)

(Ex. : Whitaker, 1986; ...) ♣ no real closure, quasi-static with known interface position, mapping legitimacy?

M. Quintard

$$\tilde{\mathbf{v}}_{\alpha} = \mathbf{B}_{\alpha\beta} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + \mathbf{B}_{\alpha\gamma} \cdot \left\langle \mathbf{v}_{\gamma} \right\rangle^{\gamma} \qquad \alpha = \beta, \gamma$$
$$\tilde{p}_{\alpha} = \mu_{\alpha} \left(\mathbf{b}_{\alpha} \cdot \left\langle \mathbf{v}_{\beta} \right\rangle^{\beta} + \mathbf{b}_{\alpha\gamma} \cdot \left\langle \mathbf{v}_{\gamma} \right\rangle^{\gamma} \right)$$

$$\mathbf{V}_{\alpha} = -\frac{1}{\mu_{\alpha}} \mathbf{K}_{\alpha} . (\nabla P_{\alpha} - \rho_{\alpha} \mathbf{g}) + \mathbf{K}_{\alpha\kappa} . \mathbf{V}_{\kappa} \qquad \alpha, \kappa = \beta, \gamma \qquad \alpha \neq \kappa$$
Phase interaction

Ex. : Two-Phase Poiseuille Flow (often used for identification)

$$K_{lg} \approx \frac{\mu_g}{\mu_l} \frac{(1-\alpha)^2}{\alpha}$$
 $\frac{\mu_g}{\mu_l} \rightarrow 0$
 $K_{ll} \approx K\alpha^2$
 $K_{gg} \approx K\alpha^2$
 $K_{gl} \approx \frac{\alpha}{1-\alpha}$
 $\alpha = S_{\gamma}$

Estimation of coupling terms: from DNS, or possibly experiments

 FoP: Identification through the Force Perturbation technique (Li et al., 2005; Cochennec et al., 2022)

 Discussion about discrepancies with original "closure problems"

 proposed correction for BCs in "closure" problems

Inertia Effects and Phase Coupling in Macro-scale models

Ergun (Heuristic): no-phase interaction terms

$$0 = -\nabla P_{\beta} + \rho_{\beta} \mathbf{g} - \mu_{\beta} \frac{1}{K(k_{r\beta})} \mathbf{V}_{\beta} - \frac{\rho_{\beta}}{\eta_{\beta}} \| \mathbf{V}_{\beta} \| \mathbf{V}_{\beta} \|$$

Schulenberg and Muler (1987) (Heuristic and <a>)

Similar to theory for fluidized beds

M. Quintard

$$0 = -\nabla P_{\beta} + \rho_{\beta} \mathbf{g} - \mu_{\beta} \frac{1}{K k_{r\beta}} \mathbf{V}_{\beta} - \frac{\rho_{\beta}}{\eta \eta_{\beta}} \left\| \mathbf{V}_{\beta} \right\| \mathbf{V}_{\beta} + \frac{\mathbf{F}_{\beta\gamma}^{S}}{S_{\beta}}$$

Upscaling (Lasseux et al., 2008; ...)

$$\mathbf{V}_{\alpha} = -\frac{1}{\mu_{\alpha}} \mathbf{K}_{\alpha} \cdot (\nabla P_{\alpha} - \rho_{\alpha} \mathbf{g}) - \mathbf{F}_{\alpha\alpha} \cdot \mathbf{V}_{\alpha} + \mathbf{K}_{\alpha\kappa} \cdot \mathbf{V}_{\kappa} - \mathbf{F}_{\alpha\kappa} \cdot \mathbf{V}_{\kappa} \qquad \alpha, \kappa = \beta, \gamma \qquad \alpha \neq \kappa$$

Transfert de chaleur

5

Importance of Cross-Terms, and Non-Linear Effects

IRSN: context of nuclear reactor severe accident

See also Taherzadeh & Saidi (2015)

M. Quintard

Transfert de chaleur

Importance of Cross-Terms, and Non-Linear Effects $t \to \infty$

Models without cross-terms

M. Quintard

$$\begin{split} \left(\frac{\partial P_{\beta}}{\partial z} - \rho_{\beta} \mathbf{g}.\mathbf{e}_{z}\right) &= -\mu_{\beta} K_{\beta}^{-1} \left(1 + F_{\beta\beta}\right) V_{\beta} \\ &+ \mu_{\beta} K_{\beta}^{-1} K_{\beta\gamma} \left(1 - K_{\beta\gamma}^{-1} F_{\beta\gamma}\right) V_{\gamma} \\ \left(\frac{\partial P_{\gamma}}{\partial z} - \rho_{\gamma} \mathbf{g}.\mathbf{e}_{z}\right) &= -\mu_{\gamma} K_{\gamma}^{-1} \left(1 + F_{\gamma\gamma}\right) V_{\gamma} \\ &+ \mu_{\gamma} K_{\gamma}^{-1} K_{\gamma\beta} \left(1 - K_{\gamma\beta}^{-1} F_{\gamma\beta}\right) V_{\beta} \end{split}$$
$$\begin{aligned} \mathbf{Case} \ V_{\beta} &= \mathbf{0}: \\ \left(\frac{\partial P_{\beta}}{\partial z} - \rho_{\beta} \mathbf{g}.\mathbf{e}_{z}\right) &= + \mu_{\beta} K_{\beta}^{-1} K_{\beta\gamma} \left(1 - K_{\beta\gamma}^{-1} F_{\beta\gamma}\right) V_{\gamma} \end{split}$$

from Clavier et al. (2015), Chikhi et al. (2016)

see also Taherzadeh & Saidi (2015) using Tutu et al. experiments

Transfert de chaleur

More: Dynamic Models

- impact of $\partial S / \partial t$, V_{α} , a_{v} ...:
 - Quintard & Whitaker (1990, from large-scale heterogeneity effects and multi-zone)
 - Hilfer (1998, multi-zone)

M. Quintard

- Panfilov & Panfilova (2005, meniscus)
- Hassanizadeh and Gray (Irr. Therm., a_v as state variable, 1993), also Kalaydjian (1987)...
- Phase field, Cahn-Hilliard (Cueto-Felgueroso & Juanes, 2009)...

Examples of dynamic equations

 Quintard & Whitaker, 1990

$$\mathbf{V}_{\beta} = -\frac{1}{\mu_{\beta}} \mathbf{K}_{\beta}^{*} \cdot \left(\nabla P_{\beta} - \rho_{\beta} \mathbf{g}\right) - \mathbf{u}_{\beta} \frac{\partial \varepsilon S_{\beta}}{\partial t} - \mathbf{U}_{\beta} \cdot \nabla \frac{\partial \varepsilon S_{\beta}}{\partial t} - \frac{1}{\mu_{\beta}} \mathbf{M}_{\beta} : \nabla \nabla P_{\beta} - \frac{1}{\mu_{\beta}} \mathbf{\Phi}_{\beta} - \frac{1}{\mu_{\beta}} \mathbf{R}_{\beta} : \nabla \mathbf{\Phi}_{\beta}$$

$$p_{c} = \mathcal{F}\left(S_{\beta}, \left(\rho_{\gamma} - \rho_{\beta}\right) \mathbf{g}, \nabla P_{\beta}, \frac{\partial \varepsilon S_{\beta}}{\partial t}, \ldots\right)$$

M. Quintard

Kalaydjian, Hassanizadeh & Gray,

$$P_{\gamma} - P_{\beta} = p_c - L_1 \frac{\partial \varepsilon S_{\beta}}{\partial t}$$

- ...see also Petroleum engng literature on pseudo-functions!
- Is it useful for highly permeable media?

Dynamic Pore Network Models

- Network models → a mesoscale representation!
- If low Re, Ca, Bo → percolation theory

M. Quintard

 Otherwise: Coupling network model and Dynamic rules (which may come from local VOF simulations in a hybrid formulation)

Melli & Scriven, 1991; Horgue et al., 2013

Trickle Bed (X-ray, IFP)

Micromodel experiments + VOF

-

Dynamic Pore Network Models

 Mass and momentum balance for the network links
 Dynamic rules coming from local VOF simulations (or from experiments) to connect links

M. Quintard

Transfert de chaleur

Macro-Scale Models with Phase "Splitting"

 Example: Flow through Structured Media

Mahr and Mewes (2007)

MellaPak (Sulzer Chemtech)

M. Quintard

Transfert de chaleur

The Fundamental Idea Behind Models with Phase "Splitting"

- Same interest as N-equation models (Davit et al., 2019)
- Example: flow in a tube with spatially distributed BCs and ICs
 - 1 Eq. → complex PDE, need ~ DNS for estimating effective properties for a single set of BCs and ICs
 - Phase splitting: simple closure for large enough *t*, independent of BCs and ICs
 - Convergence through N/
 - Need to control entropy production (Bellerajoul et al., 2019)

6 X 8

10

12

M. Quintard

Transfert de chaleur

12

14

10

8

0.0

14

Macro-Scale Models with Phase "Splitting" for Structured Packings

$$\varepsilon \frac{\partial S_{\gamma}}{\partial t} + \nabla \mathbf{U}_{\gamma} = 0,$$

$$\varepsilon \frac{\partial S_{\beta_1}}{\partial t} + \nabla \mathbf{U}_{\beta_1} = \dot{m},$$

$$\varepsilon \frac{\partial S_{\beta_2}}{\partial t} + \nabla \mathbf{U}_{\beta_2} = -\dot{m}$$

M. Quintard

+ 3 momentum equations (e.g., generalized Darcy's laws with cross terms) Model with liquid phase splitting:

Case with no-exchange

(b) t = 1 s

Case with exchange

 Comparison with Fourati et al. (2012) experiments (Soulaine et al. 2014) → calibration of exchange term on the 1st stack

Macro-Scale Models with Phase "Splitting": Open Problems

- Definition of the phase separation (splitting)?
- Estimation of Effective properties?
- Effective Boundary Conditions?
 - Lateral walls
 - -Between packs

Is it possible to extend theories on effective BCs

(Achdou, Pironneau, Valentin, Mikelic, Aspa, Veran, Introïni, Duval, Guo, Quintard, Pasquier, Davit, ..., or strategies like Ochoa-Tapia, Goyeau, etc...) to 2-phase flows?

Conclusions

- One-Phase Flows:
 - Generalized Forchheimer equations → a practical model for laminar inertia regimes or localized turbulence
 - Porous Media Turbulence models?
- Two-Phase Flows:
 - Importance of cross-terms, Experimental determination?
 - Extensions to more dynamic flows:
 - Extended generalized Darcy's laws
 - Models with phase splitting
 - Hybrid models
 - Highly transient effects, complex time and space averaging?
- Coupling with other transport mechanisms (dispersion, heat transfer, ...)?