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Abstract — Thanks to their excellent performance, lithium-

ion batteries have become increasingly used in terrestrial and 

space applications. Despite the long lifespan, this type of battery 

is subject to inevitable aging dependent on electrochemical 

degradation phenomena. Defining a diagnostic method capable 

of estimating the state of health of a battery and predicting its 

end of life is therefore a priority to ensure proper functioning. 

Although considerable progress has been made in recent years 

in this research topic, most of the effort of the scientific 

community is concentrated in terrestrial applications. Of all the 

various existing approaches, both experimental and numerical, 

few are applicable within the limitations imposed by space 

applications. Hence, the main contribution of this paper is to 

provide an overview of the current state of the diagnostic 

methods adopted to estimate the aging of lithium-ion batteries 

used in satellites. 

Keywords — Lithium-ion battery, Degradation modeling, 

Space applications, State of health estimation. 

I. INTRODUCTION 

 Among all commercially available battery types, lithium-
ion technology stands out for its high energy density, high 
power density, and long lifetime [1]. Lithium-ion batteries 
were first used in space application during the STRV-1 
mission organized in the UK by DERA in 1992 [2]. Another 
example of early successful applications is the Myriade 
platform whose development began in 1998 by CNES [3]. 
Before the adoption of this technology, the battery chemistries 
used in space application were nickel–cadmium (Ni–Cd), 
nickel-hydrogen (Ni–H2) and silver–zinc (Ag–Zn) [4]. Table 
I compares the characteristics of these chemistries and shows 
some examples of NASA applications [5].  

 An electrochemical lithium-ion cell, the elementary unit of 
a battery, consists of two electrodes, a positive one and a 
negative one, an electrolyte and a separator. The negative 
electrode is mainly made of a porous carbon/graphite, the 
positive electrode is mainly composed of transition metal 
oxides and the electrolyte is composed of lithium salt and 
carbonate solvents with good ionic conductivity. Depending 
on the materials used for the positive electrode, it is possible 
to have different cells chemistries. Table II summarizes the 
advantages and disadvantages of the most widely used 
lithium-ion cell types. Nevertheless, the performance of this 
type of battery, i.e., the energy it can store and the power it 
can deliver, inevitably declines with time (calendar aging) and 
use (cycle aging). This aging is generated by the 
electrochemical degradations of the cell components that 
depend on external factors, such as temperature, and battery 
use.  

 Today, lithium-ion batteries are widely used in space 
applications, particularly in Earth orbit satellites. Different 
types of missions correspond to specific operational 
conditions and work profiles. Therefore, the energy storage 
system must be chosen accordingly and its state of health must 
be estimated periodically to assure reliability [6]. Several 
diagnostic methods have been developed recently that can 
qualify and quantify the level of degradation of a battery. 
Although the possible approaches are varied and numerous, 
few of them are suitable for space applications. In fact, the 
inability to have access to a battery on a space mission, 
combined with the characteristic operational conditions and 
work profiles, makes most of these methods ineffective. 

TABLE I.  CELL CHEMISTRIES USED IN SPACE COMPARISON [4] 

Chemistries Characteristics 

Specific 

Energy 

(Wh/kg) 

NASA 

Mission 

Example 

Ni–Cd 
High rate capability, long 

cycle life, high reliability 
<50 

Mariner 7 

(1971) 

Ni–H2 

Long cycle life (>50 000 

cycles), resiliency to 

abusive operating conditions 

~50 
ISS 

(1998) 

Ag–Zn 
Short cycle life (<100 

cycles), high specific energy 
~100 

Apollo 

(1968) 

Li-ion 
Long cycle and operational 

life, high specific energy 
>120 

MER 

(2003) 

 

TABLE II.  LI-ION CHEMISTRIES COMPARISON [4] 

Cathode Chemistries Cost 

Discharge 

Rate 

Capability 

Specific 

Energy 
Safety 

Lithium manganese 

oxide (LMO) 
Low High Low Good 

Lithium manganese 

nickel cobalt (NMC) 
Low Good High Good 

Lithium nickel cobalt 
aluminum oxide (NCA) 

High Low 
Very 
high 

Good 

Lithium cobalt oxide 
(LCO) 

Very 
high 

Low Low Poor 

Lithium iron phosphate 

(LFP) 
Low Very high Low 

Very 

good 

 



 

 

Moreover, most of the research efforts are invested in the 
terrestrial applications, given the growing and wider market 
for electric vehicles. The objective of this paper is therefore to 
understand which of the main diagnostic methods discussed in 
the recent literature are suitable for space applications. 

This paper is organized as follows. Section II introduces 
the degradation phenomena typical of lithium-ion batteries. 
Section III explains the general battery work profiles and 
operational conditions in space application. Section IV lists 
the most common diagnostic methods used for battery 
degradation estimation while section V focuses on current 
examples used in space application. Finally, conclusions and 
outlooks are discussed in Section VI. 

II. LI-ION BATTERY AGING MECHANISMS 

Battery aging is caused by external factors, which can act 
on a physical level, through mechanical and thermal stresses, 
or on a chemical level, through side chemical reactions, i.e., 
different from the main reactions necessary for the operation 
of the cell. The external factors that have an impact on cell 
degradation are as follows: time, high/low temperature, 
high/low cut-off voltage, State Of Charge (SOC) level, 
charge/discharge rate (C-rate), stoichiometry and mechanical 
stress [7]. While the physical meaning of time, temperature, 
voltage and mechanical stress are intuitive, it may be useful to 
introduce the other factors. The C-rate describes the electric 
current flowing in the cell compared to its total capacity. The 
cutoff voltage indicates the voltage at which the Battery 
Management System (BMS) stops the charge/discharge 
process to avoid overcharge/overdischarge phenomena and 
possible side reactions. The SOC is the percentage level of 
charge compared to its total capacity. The stoichiometry 
describes the quantitative relationship between reactants and 
products in a chemical reaction. 

 These external factors are the origin of degradation 
mechanisms, defined as the specific failures that lead to a 
change of the thermodynamic and kinematic behaviors of the 
cell [8]. These mechanisms can be physical or chemical in 

nature, and they can manifest on different scales, both at the 
particle (micro) and cell (macro) level. These degradation 
mechanisms are not easy to identify or isolate experimentally. 
Nevertheless, it is possible to distinguish and categorize the 
consequences of these mechanisms, called degradation 
modes, defined as the measurable effects associated with the 
change of cell state [9]. Multiple external factors may 
contribute to the same degradation mechanism, and at the 
same time, one external factor may lead to several 
mechanisms. Similarly, different mechanisms and 
degradation modes are related in the same way. In addition, 
multiple external factors can simultaneously interact on the 
cell, and multiple mechanisms can interact with each other in 
positive/negative feedback loops [10]. Because of the 
complexity of these phenomena, only those that have the 
greatest impact on cell health are often considered.  

 Finally, on a practical level, these degradation modes have 
as their ultimate causes the loss of capacity and the loss of 
power. Fig. 1 lists the external factors, the degradation 
mechanisms and modes and the final effect on the cell 
thermodynamic. These are the main values that help define the 
battery State Of Health (SOH), defined as the ratio between 
the actual and initial capacity. In applications where power 
matters most, the SOH indicator is calculated from the ratio of 
the actual and initial impedance. 

III. BATTERY USAGE IN SPACE APPLICATIONS 

 During the past 10 years, the lithium-ion battery has been 
used extensively as an energy storage system in satellites 
thanks to its high energy density and long service life [11]. 
Along with the battery, solar panels are the other energy 
source for the system. They provide electricity to the satellite 
and recharge the battery during the windows of time when the 
sun is visible, called sunlight phases. On the other hand, the 
battery provides electricity to the satellite during the windows 
of time when the sun is not visible, called shadow phases or 
eclipses, or when the power system needs power peaks [12]. 
Just as the earth follows its orbit around the sun, so the satellite 

 

Fig. 1. Causes and effects of the main phenomena underlying the degradation of electrochemical cells [7]. SOC: State Of Charge, V: Voltage, SEI: Solid 

Electrolyte Interphase. 



 

 

follows a predetermined orbit around the earth. In fact, 
shadow phases occur when the earth is between the sun and 
the satellite. These periods vary in duration depending on the 
height of the satellite's orbit. 

The height of the orbit in turn depends on the type of 
mission assigned to the satellite. The most common missions 
for earth-orbiting satellites involve applications in 
meteorology, navigation, remote sensing, 
telecommunications, data transmission, and military defense. 
Each of these has its own optimal orbital height. Three 
categories can be distinguished: Low Earth Orbit (LEO), 
Medium Earth Orbit (MEO) and Geostationary Earth Orbit 
(GEO) [6]. Table III summarizes the mission specifications 
and battery requirements for these satellites. Fig. 2 shows the 
size comparison between LEO, MEO and GEO and computer 
images of examples of satellites on these orbits. 

Thus, batteries in different applications have different 
work profiles. The alternation of sunlight and shadow phases 
defines three processes in the battery: discharge, charge and 
shelve state (period when the battery is not used) [14]. Among 
them, the battery main process is the discharge, since this is 
the one in which the battery is effectively the only satellite 
energy source. This process is partial and variable: partial 

because the satellite battery cannot be fully discharged for 
safety reasons; variable because the duration of the process 
gradually changes with time since it depends on different 
factors. For example, shadow phases for GEO satellites vary 
from about 21 minutes to 72 minutes, according to the solar 
declination angle (the angle made by the sunrays with the 
equator of the earth). The charging process occurs as soon as 
the satellite enter a sunlight phase and lasts according to the 
level of SOC after discharge [15]. The shelve process, requires 
no battery participation and lasts until the sunlight period 
ends. Work profiles are therefore more or less dynamic 
depending on the applications. During each of these three 
processes, characteristic electrochemical reactions occur in 
the battery, which affect differently the degradation.  

In addition to work profiles, operational conditions also 
have a strong impact on battery degradation. In space, the 
main factors are radiations, vacuum, temperature, and 
vibrations [15] [16]. Radiation consists of energetic particles 
capable of damaging the spacecraft at both the electronic and 
atomic structure level. Through the use of shielding layers, it 
is possible to protect the satellite. Vacuum can affect the 
battery through the electrolyte leakage and outgassing 
phenomena. The latter consists in the formation of gas inside 
the battery that can escape and contaminate other sensitive 

TABLE III.  MISSION SPECIFICATIONS AND BATTERY REQUIREMENTS FOR CLASSICAL SATELLITES [13] 

Specifications and Requirements LEO MEO GEO 

M
is

si
o
n

 

sp
ec

if
ic

at
io

n
s Altitude range (km) 250–2000 2000–36,000 36,000 

Orbital period 

90 minutes (60 minutes 
sunlight 30 minutes 

eclipse) 
2-24 hours 

24 hours (coupled with 
the earth's orbital 

rotation) 

B
at

te
ry

 r
eq

u
ir

em
en

ts
 

Lifetime (years) 2–15 up to 14 up to 18 

Cycles per year ~5500 ~180 90 

Charge current (C-rate) C/3 C/10–C/15 C/10–C/20 

Cycle Depth Of Discharge (DOD) (%) 10–40 60–80 60–80 

Discharge current linked to cycle DOD  

(C-rate) 
C/2–C/1.5 C/2–C/1.5 C/2–C/1.5 

Temperature range (°C) 0–40 

10–30 eclipse season    

(due to battery cycling) 

0–30 solstice periods 

10–30 eclipse season 

(due to battery cycling) 

0–30 solstice periods 

Mission Example International Space Station Galileo OneSat 

 

Fig. 2. Size comparison between LEO, MEO and GEO and computer images of examples of satellites used in missions with different orbits [© AIRBUS]. 



 

 

satellite components. To prevent these phenomena during the 
mission, batteries are tested thanks to thermal vacuum 
processes on ground. The battery temperature depends on the 
type of mission and can vary significantly and suddenly. Both 
high and low temperatures can increase the number of side 
chemical reactions that degrade the battery. To regulate the 
temperature, the satellite can expel excess heat or heat the 
battery when necessary. Concerning vibrations, even if they 
occur exclusively during the satellite launch, permanent 
mechanical damage to the battery is possible. As the previous 
cases, specific on ground tests control the stability of the 
battery. 

 Estimating and predicting the level of battery degradation 
before and during the mission is therefore a key aspect of 
managing satellite operations to ensure stable and safe work 
conditions. 

IV. DIAGNOSTIC METHODS FOR LI-ION BATTERY 

 The diagnostic methods that estimate the degradation level 
of a battery can be divided into 3 categories: disassembly-
based post-mortem analysis, curve-based analysis and model-
based analysis [17]. A brief introduction to these methods is 
given below while Table IV lists their advantages, 
disadvantages and their ability to investigate the causes, 
degradation mechanisms, degradation modes and effects of 
aging. 

A. Post-Mortem Analysis 

 This diagnostic method is based on a Disassembly Post-
mortem Analysis (DPA). It consists of a destructive approach 
that studies the relationship between cell degradation and its 
morphology, crystallographic structure, and chemical 
composition. This approach requires strict disassembly 
protocols and multiple complementary methods, each one 
with its specific instrumentation. Nevertheless, it is the only 
way to directly observe the inside of an electrochemical cell 
[18]. 

B. Curve-Based Analysis 

 It is a non-destructive approach that consists of Open 
Circuit Voltage (OCV) and differential analysis 
measurements.  By interpreting these curves and comparing 
how their key features change with aging it is possible to 
estimate the cell degradation mechanisms. The OCV of a cell 
is the measurement of the voltage between the two electrodes 
(V) in equilibrium condition and can be related to the cell 
capacity (Q), hence its degradation. This method is not 
applicable to real situations, where the battery is subjected to 
dynamic charge/discharge protocols [19]. Differential 
analysis consists of the differentiation of the curves that 
describe the evolution of different types of signals measured 
during the charge/discharge processes. The most frequently 
mentioned methods in the bibliography are Incremental 
Capacity Analysis (ICA), Differential Voltage Analysis 
(DVA), Differential Thermal Voltammetry (DTV) analysis 
and Differential Mechanical Parameter (DMP) analysis [20]. 
ICA and DVA study respectively the capacity gradient dQ/dV 
and the voltage gradient dV/dQ evolution [21]. DTV analysis 
studies the evolution of the temperature (T) gradient dT/dV 
[22] and the DMP analysis studies the evolution of the strain 
(ε, a quantity used to measure deformations) gradient dε/dV 
[23]. Thanks to this differential transformation, it is possible 
to associate the curve peaks with the different electrochemical 
phenomena occurring in the electrodes. Given a cell, if 
measurements taken at different aging stages are superposed, 

the features of the peaks, such as height, width and position, 
can be compared and it is possible to interpret the degradation 
level. In order to properly analyze the degradation modes, ICA 
and DVA have to be based on the pseudo-OCV measured at 
very low current and with a constant temperature. Indeed, 
when the C-rate is increased, the peaks amplitude of the ICA 
are modified [24]. DTV and DMP, on the other hand, need 
specific sensors on the cell surface, which is not always 
possible [20]. 

C. Model-Based Analysis 

 The objective of a model is to define mathematical 
relations that describe the aging of a cell with a non-
destructive approach. Models can have exclusively theoretical 
basis, be built starting from experimental data or be in the 
middle of the spectrum. In the bibliography, the most 
frequently mentioned methods are the electrochemical 
models, the Equivalent Circuit Models (ECM), the empirical 
models and the data-driven models.  

The construction of an electrochemical model is based on 
the understanding of the physicochemical phenomena that 
occurs inside the cell [25]. From the laws of conservation of 
mass and charge that underlie thermodynamic, kinetic, and 
transport phenomena theories, nonlinear and partial 
differential equations are constructed to describe these 
phenomena. The goal is to identify and compare the equations 
parameters, observe their dependence on external parameters 
and finally associate their evolution with aging mechanisms. 
Although it is the ideal approach to physically interpret the 
cell aging, the analytical resolution requires a considerable 
amount of calculation. Moreover, the theoretical knowledge 
to describe certain phenomena may be lacking. Finally, the 
equations and parameters are related to the cell chemistry: an 
electrochemical model is therefore specific. 

 It is possible to build an equivalent circuit model to 
simulate the static and dynamic behavior of the cell. This 
ECM represents a good compromise between complexity, 
precision and physical meaning [26]. It is composed of 
electrical components (i.e, voltage source, second-order RC 
network) and, sometimes, it is coupled with an aging model in 
order to take into account the influence of aging mechanisms 
on these components. The values of these components are 
usually identified and calculated thank to the Electrochemical 
Impedance Spectroscopy (EIS) method. By interpreting the 
EIS results in the frequency domain, it is possible to 
distinguish specific electrochemical phenomena thanks to 
their different time constants. Given a cell at different times of 
its life, it is possible to identify the degradation modes by 
monitoring the value of the cell impedance computed at 
different stages of aging [27]. This type of modeling is 
intuitive, flexible and accurate. However, its simplicity cannot 
answer for all the phenomena and interactions that take place 
in the battery. 

 The empirical models aim to identify and evaluate 
parameters correlations starting from the analysis of data 
obtained from experiments [28]. To build the model, it is 
initially necessary to identify internal parameters, called 
Health Indicators (HI), which are assumed to depend on health 
ageing, and study their evolution with respect to defined 
external parameters. Through the application of regression 
methods, empirical relationships that correlate HIs and 
external parameters are obtained [29]. Empirical models are 
easy to perform and provide basic information on the 
degradation behaviors, provided that the number of external 



 

 

parameters considered is limited. Nonetheless they are not 
linked to the physical meaning of the electrochemical 
phenomena. Moreover, changes in the cell chemistries or 
external parameters, such as different environmental 
conditions, makes the model obsolete and requires a new set 
of measurements. Finally, if it is not possible to apply nominal 
conditions, it is necessary to refer to laboratory aging tests, 
which cannot always reproduce the real aging of the battery. 

 Data-driven methods use historical data to estimate and 
predict degradation behavior using numerical resolution 
methods [30]. Concerning battery ageing, one of the most 
investigated data-driven approach is Machine Learning (ML). 
ML allows to fit the nonlinear behavior of battery aging by 
finding correlations between the degradation levels and 
different HIs. The functioning of an ML algorithm can be 
summarized in the following steps: training and testing. 
Training, in particular, consists of data collection, features 
extraction and correlations definition [20]. If the model is self-
adaptive, once new data is received, periodic updates and 
retraining are possible [31]. Some examples of ML methods 
cited in the bibliography are: Artificial Neural Network 
(ANN), Support Vector Machine (SVM), Relevance Vector 
Machine (RVM), Gaussian Process Regression (GPR) and 

Auto-Regressive Integrated Moving Average (ARIMA) [20]. 
Pure data-driven models do not provide interpretations of the 
degradation mechanisms and the amount of data needed for 
them to work is fundamental to get accurate results. Also, the 
computational load is considerable, and this could be a 
limiting factor when integrating these models into a battery 
management system. Nonetheless, these methods can provide 
precise estimation, are versatile and can be used in parallel 
with other models, via hybridization, in a complementary 
way. 

 Based on what was presented in this section, Table IV also 
identifies which methods are suitable for space applications. 
DPA is not possible since satellite batteries are recovered only 
rarely. Curve-based analysis, instead, requires specific sensors 
and battery work profiles that do not correspond to nominal 
conditions. The model-based analysis is therefore the 
approach most suitable for space applications. 

V. BATTERY DEGRADATION ASSESSMENT FOR SPACE 

APPLICATIONS 

The operational conditions and work profiles to which a 
battery is subjected are thus key factors influencing 
degradation phenomena and the methods by which these are 

TABLE IV.  ADVANTAGES AND DISADVANTAGES OF THE PRESENTED METHODS AND THEIR ABILITY TO INVESTIGATE THE CAUSES, DEGRADATION 

MECHANISMS, DEGRADATION MODES AND EFFECTS OF AGING, SPACE APPLICABILITY IS ALSO PRESENTED 

Methods Advantages Disadvantages 
Cau-

ses 

Deg.

Mec.a 

Deg. 

Mod. 

Eff-

ects 

Space 

Appl. 

Disassembly-based                  

post-mortem analysis 

[18]  

- The only way to directly 

observe the inside of a cell 
- Destructive 

- Strict disassembly protocols 

- Multiple complementary methods necessary 

to characterize the cell 

- Each method requires specific 

instrumentation and expertise 

🗸 🗸 🗸 🗸 

 

C
u

rv
e-

b
as

ed
 a

n
al

y
si

s 

OCV [19] 

- Effective for qualifying 
and quantifying degradation 

modes through capacity 

- Not applicable to real situations 

🗸  🗸 🗸 
 

ICA / DVA 

[20] 

- Works for partial 
charging/discharging 

conditions 

- Limited to low current rates 

- Noise handling problems (requires filtering) 

- Sensitive to operational temperature 

🗸  🗸 🗸 
 

DTV / DMP 

[20] 

- Not limited by current 

rates 

- Need additional specific sensors 

- Sensitive to external temperature variations 

(DTV) 

- Not applicable to all cell designs (DMP) 

🗸  🗸 🗸 

 

M
o
d

el
-b

as
ed

 a
n
al

y
si

s 

Electrochemical 

[25] 

- Can physically interpret 
the battery behavior and 

degradation phenomena 

- High number of equations and parameters 

increases complexity 

- High computation cost 

- Requires a good understanding of  the 

electrochemical phenomena 

- Specific to the cell chemistry 

🗸 🗸 🗸 🗸 🗸 

Equivalent 

circuit [27] 

- Intuitive and flexible 

modeling 

- Cannot interpret all battery behaviors 
🗸  🗸 🗸 🗸 

Empirical [28] 

- Easy to perform 

- Provide basic practical 

information 

 

- Extensive laboratory tests 

- Not linked to degradation mechanisms 

- Specific to the cell and tests conditions 

- Not always possible to apply nominal 

conditions 

🗸   🗸 🗸 

Data-driven 

[20] 

- Very versatile 

- Possibility of hybridization 

with other methods 

- High computation cost 

- Not linked to degradation mechanisms 

- Requires high amount of data 

🗸   🗸 🗸 

a. Deg. Mec.: Degradation Mechanisms, Deg. Mod.: Degradation Modes, Space Appl.: Space Applicability  

 



 

 

qualified and quantified. In the case of satellites, both 
operational conditions and work profiles are strongly 
conditioned by the space applications specificity. Once the 
satellite has been launched into space, one of the most 
impactful limitations in battery degradation assessment is that 
only voltage, current and temperature measurements can be 
made through telemetry [32]. Moreover, the classic methods 
that need specific experimental tests to measure the capacity 
or internal resistance, such as a total discharge, cannot be 
made as this would result in the loss of the satellite [33]. For 
the remaining methods, however, indirect estimation of these 
values is complex given the dynamic battery work profile and 
operational conditions. The range of methods that can be 
applied is therefore reduced. Given these limitations, to date 
the approach used to evaluate the aging of a battery on a 
mission consists in correlating the evolution of the battery 
telemetry data with a preexisting model. However, this 
approach shows significant uncertainties since the defined and 
limited Depth Of Discharge DOD (which refers to the size of 
the range usually used for discharge) prevents to observe the 
whole profile of voltage with respect to the SOC [33]. Below 
are a few recent examples of degradation estimation in 
satellite batteries. 

L. Gajewski et al. developed a non-intrusive battery health 
monitoring method based on the impedance spectroscopy 
principles [33]. During nominal battery operation, the current 
is randomly perturbed by sources inside the satellite, such as 
on-board thermal control for example. The battery voltage 
response to these current perturbations can be studied on the 
frequency domain and the impedance is then calculated 
indirectly through current and voltage telemetry. The result is 
then compared with an on ground reference, which consists of 
an identical battery to which the same work profiles are 
applied. Since the degradation levels of the reference battery 
in the laboratory are known, it is possible to make assumptions 
about the SOH of the battery on the mission. This study is a 
good example of how methods used in the terrestrial domain 
are adapted to space applications, where it is not possible to 
integrate onboard components that perform specific 
measurements such as EIS. Being an on-ground reference 
necessary to estimate aging, the application of this method to 
satellites with different batteries and work profiles requires as 
many references, which is not always possible. 

J. Yang et al. proposed a novel health indicator for the 
SOH estimation of satellite batteries based on the discharge 
curves [34]. Thanks to extensive experimental measurements, 
it was possible to investigate the effects of the DOD, discharge 
rate and temperature on the voltage discharge profile. From 
these results, a model was built and a hypothesis of HI was 
extracted. Finally, the SOHs of batteries with different aging 
were characterized according to this new HI and a correlation 
was derived. The batteries studied for this empirical model are 
of the LCO type, the HIs obtained may therefore not be valid 
for other types of cell, such as NMC. 

Y. Song et al. proposed an iterative updated approach to 
improve the RVM long-term prediction performance of a 
satellite battery Remaining Useful Life (RUL) [35]. It is a 
hybrid approach based on the RVM method, the Kalman filter 
and a physical degradation model. The outputs of the RVM 
method were optimized by the Kalman filter based on a 
degradation model. These optimized outputs were then added 
to the training set used by the RVM method to make its 
predictions. Thanks to RVM iterative re-training it was 

therefore possible to dynamically adjust the outputs of the 
algorithm to obtain more accurate RUL predictions. Although 
supported by a physical model, this method does not provide 
an understanding of the real events occurring in the cell. 

F. Bard et al. provided with their work a quantitative study 
on the in-orbit batteries performance of the Galileo 
constellation satellites (MEO) [36]. Their objective was to 
compare the past and present telemetry voltage profiles to the 
predictions made by the simulation tools provided by the 
batteries manufacturers: SAFT and ABSL. In particular, 
SAFT's tool SLIM (Saft Li-Ion Model), consists of a 
macroscopic electrochemical model. This model was built 
from extensive experimental measurements based on the DPA 
method applied to batteries with different levels of aging 
(fresh, calendar, GEO/LEO cycling). This way, correlations 
between the parameters that most influence aging and the 
chemical changes that take place at the electrode level were 
found. Given a defined mission and a specific SAFT battery, 
SLIM can provide reliable RUL prediction [37]. Since this 
model is specifically for SAFT products, it cannot be applied 
to satellites with different batteries. Given the fast and 
competitive development of the lithium-ion cells industry, a 
more versatile model may be preferable. 

VI. CONCLUSIONS AND CHALLENGES 

Based on recent scientific literature, this article 
summarizes the basics of lithium-ion battery degradation 
phenomena and associated diagnostic methods. The 
specificities of space applications, such as operational 
conditions and work profiles, were introduced in order to 
understand how they affect aging and its quantification.  

To sum up, DPA methods by definition are only applicable 
in laboratory and, unfortunately, it is not always possible to 
recover batteries at the end of the satellite mission. The 
ICA/DVA methods are not easily applicable to space 
applications due to the battery nominal work profiles, the 
DTV and DMP analysis instead require specific sensors that 
cannot be integrated in real batteries. Nevertheless, both DPA 
and curve-based methods are essential to understand, through 
laboratory testing, the aging phenomena inside the cell. 
Regarding the different types of models, each of them has 
interesting properties for spatial applications. In fact, since 
only the measurements of voltage, current and temperature are 
possible through telemetry, the approaches most used by the 
scientific literature consist of comparing this data with 
models, both experimental and numerical. In particular, the 
application of data-driven methods looks promising due to 
their versatility, accuracy and hybridization possibilities. 
Alongside numerical models, which have seen significant 
uptake thanks to their effectiveness, the electrochemical 
approach seems necessary for a deep understanding of the 
degradation phenomena. The construction of an 
electrochemical model based on a precise cell characterization 
associated with periodic parameter updates through telemetry, 
seems a promising approach. Finally, the identification of new 
HIs and the adaptation of the many methods existing for 
terrestrial application are areas of research that need to be 
explored further. 

In conclusion, there is no single method that can provide a 
complete estimation of the battery degradation. Nevertheless, 
the variety of approaches, each with its advantages and 
disadvantages, allows for a hybrid approach to the problem. 
The understanding of space battery aging is thus an open 



 

 

research field whose challenges require a wise use of the 
existing methods and an innovative vision to develop new 
ones.  
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