
HAL Id: hal-04197558
https://ut3-toulouseinp.hal.science/hal-04197558

Submitted on 6 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Druggable redox pathways against Mycobacterium
abscessus in cystic fibrosis patient-derived airway

organoids
Stephen Adonai Leon-Icaza, Salimata Bagayoko, Romain Vergé, Nino
Iakobachvili, Chloé Ferrand, Talip Aydogan, Célia Bernard, Angelique

Sanchez Dafun, Marlène Murris-Espin, Julien Mazières, et al.

To cite this version:
Stephen Adonai Leon-Icaza, Salimata Bagayoko, Romain Vergé, Nino Iakobachvili, Chloé Ferrand,
et al.. Druggable redox pathways against Mycobacterium abscessus in cystic fibrosis patient-derived
airway organoids. PLoS Pathogens, 2023, 19 (8), pp.e1011559. �10.1371/journal.ppat.1011559�. �hal-
04197558�

https://ut3-toulouseinp.hal.science/hal-04197558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Druggable redox pathways against

Mycobacterium abscessus in cystic fibrosis

patient-derived airway organoids

Stephen Adonai Leon-Icaza1, Salimata Bagayoko1, Romain Vergé1, Nino Iakobachvili2,

Chloé Ferrand1, Talip Aydogan3, Célia Bernard1, Angelique Sanchez Dafun1,

Marlène Murris-Espin4,5, Julien Mazières4, Pierre Jean Bordignon1, Serge Mazères1,
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Abstract

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF)

patients, primarily because of its resistance to chemotherapeutic agents. To date, our

knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung

remains rudimentary. Here, we used human airway organoids (AOs) microinjected with

smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and

new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord ser-

pentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative

stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs

growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is asso-

ciated with better growth and higher virulence of S and R Mabs. Finally, pharmacological

activation of antioxidant pathways inhibited Mabs growth, at least in part through the qui-

none oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line

antibiotic. In conclusion, we have established AOs as a suitable human system to decipher

mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-

NQO1 axis as a potential host-directed strategy to improve Mabs infection control.
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Author summary

Pulmonary infection by Non Tuberculosis Mycobacteria is a rising concern for patients

with cystic fibrosis (CF), especially Mycobacterium abscessus (Mabs). Mabs exists as two

morphotypes. CF patients are generally infected by the S morphotype present in the envi-

ronment, which can switch to the R morphotype displaying higher virulence. Due to its

resistance to antibiotics, treatments againt Mabs often fail, calling for complementary

therapeutical strategies. Here we adapted the human airway organoid technology to

model Mabs infection in the context of CF, decipher mechanisms of host-pathogen inter-

action that can be pharmacologically targeted to improve infection control. We found that

Mabs R induces higher host oxidative stress and cell death, hallmarks of its virulence,

which are enhanced in the CF context. Boosting the host oxidative pathway using antioxi-

dants improves infection control by a frontline antibiotic. Our study provides CF patient-

derived airway organoids as a relevant human-based, animal-free system for CF-driven

Mabs infection and evaluation of innovative therapeutic strategies.

Introduction

Cystic Fibrosis (CF) is a monogenic disease due to mutations in the CF transmembrane con-

ductance regulator (CFTR) gene [1], which regulates ion transport, that impair lung mucocili-

ary clearance and result in pathological triad hallmarks of CF, i.e., chronic airway mucus

build-up, sustained inflammation, and microbe trapping leading to parenchyma epithelial cell

destruction. The major reason CF patients succumbing to this disease is respiratory failure

resulting from chronic lung infection [2].

CF Patients have a greater risk of infection by Non-Tuberculous Mycobacteria (NTM),

mainly by the drug-resistant NTM Mycobacterium abscessus (Mabs) [3–5]. Mabs display two

distinct morphotypes based on the presence or absence of glycopeptidolipids (GPL) in their

cell wall [6]. The smooth (S) GPL-expressing variant forms biofilm and is associated with envi-

ronmental isolates. The Rough (R) variant does not express GPL, forms cording and induces

more aggressive and invasive pulmonary disease, particularly in CF patients [6–8]. Mabs colo-

nization of the CF patient airway is initiated by the infection with the S variant that, over time,

switches to the R morphotype by losing or down-regulating surface GPL [9–11]. Although ani-

mal models like immunocompromised mice [12,13], zebrafish [14–16] and Xenopus laevis
[17] contributed to a significant advance in the understanding of Mabs infection [18], their tis-

sue architecture and cell composition are different from that of humans and do not recapitu-

late the hallmarks of CF [19–21]. Models with anatomical and functional relevance to the

human airway and displaying natural CFTR gene mutations would complement those in vivo
models.

Human airway organoids (AOs), derived from adult stem cells present in lung tissues [22],

are self-organized 3D structures and share important characteristics with adult bronchiolar

part of the human lung [22,23]. Of particular interest, organoids derived from CF patients con-

stitute a unique system to model natural CFTR mutations and the resulting epithelium dys-

functions such as exacerbated mucus secretion, thus recapitulating critical aspects of CF in

human that are not achievable with other cellular or animal models [22,24,25]. AOs have also

been adapted for modelling infectious diseases with bacteria, such as Pseudomonas aeruginosa
[26], with viruses, such as RSV [22] and SARS-CoV-2 [27–29], and with parasites [30]. We

previously showed that M. abscessus thrives in AOs [31], demonstrating that AOs constitute a

suitable human system to model mycobacteria infection.
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Here, we hypothesized that AOs could model Mabs variant virulence and how the CF lung

context influence Mabs infection. In this study, we therefore assessed Mabs variant infectivity

in AOs, and the influence of CFTR dysfunction using CF patient-derived AOs. We report that

both Mabs S and R infect and replicate within AOs and display their specific extracellular fea-

tures, especially biofilm and cording, respectively. Moreover, enhanced reactive oxygen species

(ROS) production during Mabs infection and the CF context favours Mabs growth, which is

reversed by antioxidants that improved antibiotic efficacy.

Results

Human airway organoids support S- and R-Mabs replication and

phenotype

We microinjected bronchial airway organoids with S- and R- Mabs variants (380+94 CFU and

298+44 CFU respectively, mean + SEM, P>0.99, Fig 1A) as previously described [31]. We first

quantified bacterial load in AOs overtime (S1A Fig), and showed that both Mabs S and R prop-

agated over 12 days. Based on these data, we then performed experiments at 4 days post-infec-

tion, corresponding to bacteria exponential growth phase. We observed a low but significant

difference between Mabs S and R, with Mabs S growing better compared to the R morphotype

at 4 days post-infection (Fig 1A). We also showed that other Mabs subspecies also replicated in

AOs, with M. abscessus subspecie bolletii displaying a slightly higher growth than Mabs S or M.

abscessus subspecie massiliense (S1B Fig), while their growth in vitro was similar (S1C Fig).

When analysed microscopically, we showed that Mabs S and R mainly resided in the lumen of

AOs and we did not detect obvious alteration of the architecture of Mabs-infected AOs com-

pared to mock injected AOs (Fig 1B). Interestingly, by light sheet imaging, we observed that S

bacteria formed aggregates in the lumen of the organoids, whereas the R variant formed ser-

pentine cords characterized by the parallel arrangement of the bacteria along their long axis

(Figs 1C and S1D–S1I and S1 and S2 Movies), structures observed both in vitro and in vivo
[32]. To further investigate Mabs behaviour, S- and R-Mabs-infected AOs were analysed by

SEM and then TEM (Fig 1D). As previously described [22], the organoid epithelium is com-

posed of basal, ciliated and goblet cells (Fig 1D, 1st row). Mabs S bacilli formed chaotically

scattered aggregates in the organoid lumen (Fig 1D, 2nd row). We found Mabs S localizing in

close contact with the apical side of the epithelial cells (Fig 1D, 4), particularly in the presence

of cilia (Fig 1D, 5). The same samples observed by TEM revealed that S bacteria in the lumen

were surrounded by what could be an extracellular polymeric substance [33] (Figs 1D, panel

6–6’ and S2A), suggesting that Mabs S variant might form biofilm in the organoid lumen. We

convincingly identified Mabs R forming serpentine cords, characterized by parallel and

aligned bacteria, in the organoid lumen (Figs 1D, panels 7–9 and S2B). Importantly, electron

microscopy confirmed no significant internalization of Mabs by epithelial cells [31]. As forma-

tion of cords constitutes a mycobacterial virulence trait [11,34,35], we next quantified Mabs

cording over time of AO infection. We never observed formation of cords during Mabs S

infection, but quantified an increase in the number of organoids containing cords upon Mabs

R infection over 4 days of infection (Fig 1E). Finally, we evaluated the virulence of S- and

R-Mabs by assessing epithelial cell damage. As shown in Fig 1F and 1G, AOs infected with the

R variant exhibited enhanced cell death compared to those infected with the S variant likely

reflecting the higher virulence of the cord-forming R morphotype.

Altogether, our results showed that S and R Mabs variants thrived in AOs and displayed

respective features observed in in vivo models and in the lung of CF patients.
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Fig 1. Mabs infection in airway organoids. (A) Mabs S (Day 0 n = 7; Day 4 n = 22) and R (Day 0 n = 7; Day 4 n = 22)

growth in healthy AOs (H-AO). (B) Representative images of a mock (PBS) infected AO or AOs infected with

tdTomato-expressing Mabs S or R. (C) Light-sheet fluorescence microscopy of a XY plane at the z = 120μm (left two

images) or z = 80μm (right two images) positions of an AO infected with Mabs S or R, respectively; Zoom-in image of

the yellow square zone. (D) Electron micrographs obtained with a FEI Quanta200 scanning electron microscope set up

in back-scattered mode. Resin blocks were sectioned and imaged at different magnifications showing normal AO

organization and the different cell types typical of lung epithelium (top row, panel 1’: left arrow indicates microvilli,

right arrow indicates cilia; panel 2: arrow indicates a goblet cell; panel 3: arrow indicates a club cell), the biofilm formed

by Mabs S on the luminal face of the epithelial cells (middle row, panel 5: left arrow indicates bacteria; right arrow

indicates cilia; panel 6 & 6’: asterisks indicate the extracellular polymeric substance surrounding Mabs S), and the

bacterial aggregates typical of the cording in the lumen of Mabs R infected AOs (bottom row, panel 9: arrows indicate

electron dense deposit lining Mabs R making cords). Targeted ultrathin sections were made and observed by

transmission electron microscopy (images 5 and 8). (E) Mean percentage of organoids containing Mabs R cords after 0

(n = 8), 2 (n = 8), or 4 (n = 8) days of infection. (F, G) Representative images (F) and Mean Fluorescence Intensity

(MFI) quantification (G) of propidium iodide incorporation (50 μg ml-1) in mock infected AOs (n = 13) or AOs
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ROS production contributes to Mycobacterium abscessus growth

Next, we compared the host epithelial cell response to Mabs S and R infection by measuring

the expression of genes related to inflammatory cytokines, antimicrobial peptides (AMPs),

mucins and redox homeostasis in infected airway organoids. As previously described [31], we

confirmed a tendency towards a decrease in pro-inflammatory cytokine expression, except for

CXCL10 for which expression is significantly induced by both variants (S3A Fig). We also con-

firmed the modulation of AMPs expression, with a significant inhibition of lactoferrin expres-

sion (S3B Fig). Regarding mucin expression, we showed that infection by both S and R Mabs

inhibited MUC5B and MUC4 expression (S3C Fig). As ROS production is an important anti-

microbial process and is enhanced in the CF context [36,37], we finally evaluated the expres-

sion of genes related to the production and detoxification of ROS. While Mabs S did not

significantly modulate the expression of NOX1 and DUOX1 oxidases, we measured a signifi-

cant increase in DUOX1 expression upon Mabs R infection, suggesting enhanced ROS pro-

duction by this variant (Fig 2A). Moreover, we observed a significant increase in the

expression of the transcription factor nuclear factor erythroid-2-related factor 2 (NRF-2), but

only Mabs R induced significantly the expression of the NRF2-regulated gene NQO1, denoting

NRF2 activation with a significant difference between the S and the R variant (Fig 2A). Surpris-

ingly, expression of the NRF2-regulated gene HMOX1 was not modulated upon Mabs infec-

tion (Fig 2A).

To confirm ROS production upon Mabs infection, Mabs-infected AOs were microscopi-

cally analysed after incubation with either MitoSOX or H2DCFDA to detect mitochondrial

ROS and H2O2 production, respectively. As shown in Figs 2B–2D, both S- and R-Mabs infec-

tions enhanced the incorporation of MitoSOX and H2DCFDA, in agreement with the induc-

tion of ROS production. Interestingly, production of mitochondrial ROS and H2O2 was higher

with the R variant, further confirming R-Mabs virulence compared to S-Mabs in AOs.

The contribution of cell protective antioxidant pathways during mycobacterial infection

remains poorly understood [38,39]. We then determined the consequence of boosting antioxi-

dant pathways for Mabs fitness. To assess the role of host-derived oxidative stress, Mabs-

infected AOs were treated with the antioxidants resveratrol or the NRF2 agonist sulforaphane,

which both significantly reduced by 70% S and R variant growth in AOs (Figs 2E and 2F, S3E

and S3F), without affecting Mabs growth in vitro (S3D and S3G Fig). Interestingly, sulforaph-

ane treatment also decreased the number of organoids containing Mabs R cords (Fig 2G).

Altogether, the results showed that the human airway organoids recapitulate features of the

infection by Mabs variants. Moreover, independent of the immune system, airway epithelial

cells mount an oxidative response upon Mabs infection, which contributes to Mabs growth

and virulence.

AOs recapitulate hallmarks of cystic fibrosis, and display enhanced

oxidative stress

In order to evaluate CF lung context on Mabs infection, we next derived AOs from CF patients

displaying Class I and II CFTR mutations (S1 Table). The Class II CF AO lines display the

delF508 CFTR mutation bore by 80% of the CF patients [40]. Characterization of CF versus

healthy AOs showed that CF AOs have impaired swelling in the forskolin assay (Fig 3A)

infected with Wasabi-expressing Mabs S (n = 17) or R (n = 15) for 4 days. The dotted lines delimit the organoids

circumference. Except otherwise stated, graphs represent means ± SD from at least two independent experiments,

indicated by different symbols. Each dot represents one organoid. *P<0.05; **P<0.01; ***P<0.001 by Mann-Whitney

test.

https://doi.org/10.1371/journal.ppat.1011559.g001
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Fig 2. S and R Mabs promote an oxidative environment in airway organoids. (A) Expression patterns of ROS-

related genes in mock-infected H-AOs or H-AOs infected with Mabs S or R for 4 days. Graph represents means ± SEM

from three independent experiments, performed in triplicates. *P<0.05; **P<0.01; ***P<0.001 by unpaired T test. (B,

C) Representative images (B) and MFI quantification (C) of mitochondrial ROS production (5μM MitoSOX) in mock-

infected H-AOs (n = 17) or H-AO infected with Wasabi-labelled Mabs S (n = 13) or R (n = 8) for 3 days. (D) MFI

quantification of H2O2 production (10μM H2DCFDA) in mock-infected AOs (n = 7) or AOs infected with tdTomato-

labelled Mabs S (n = 7) or R (n = 7) for 3 days. (E, F) Bacterial load by CFU assay of H-AOs pre-treated with (+) or

without (-) 10μM sulforaphane for 6hr before infection with Mabs S (E) (n+ = 8; n- = 8) or R (F) (n+ = 9; n- = 9) for 4

days. (G) Mean percentage of H-AOs exhibiting cords after 4 days of infection with Mabs R, in the presence (n+ = 9)

or absence (n- = 8) of 10 μM sulforaphane treatment. Except otherwise stated, graphs represent means ± SD from at

least two independent experiments, indicated by different symbols. Each dot represents one organoid. *P<0.05;

**P<0.01; ***P<0.001, ****P<0.0001 by Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1011559.g002
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Fig 3. Patient-derived airway organoids recapitulate cystic fibrosis-driven oxidative stress. (A) Percentage of area

increase of H-AOs (Donor 1 n = 13, Donor 2 n = 14, Donor 3 n = 13), CF-AOs (Donor 1 n = 13, Donor 2 n = 11,

Donor 3 n = 10), and H-AOs pre-treated with CFTR inhibitors (25μM CFTRinh-172 and GlyH 101 for 4 days)

(CFTR-Inh n = 13) after 2hr stimulation with 5μM forskolin. Data from two independent experiments. (B) The

volcano plot showing the fold-change (x-axis) versus the significance (y-axis) of the proteins identified by LC–MS/MS

in CF-AOs vs in H-AOs. The significance (non-adjusted p-value) and the fold-change are converted to −Log10(p-

value) and Log2(fold-change), respectively. (C, D) Representative images (C) and MFI quantification (D) of mucus

staining (10μM Zinpyr-1) in H-AOs (n = 10) and CF-AOs (n = 8). (E) Gene Ontology enrichment analysis showing

the most enriched Biological Processes and their associated p-values (calculated using the Bonferroni correction for

multiple testing) related to the list of up-regulated proteins in CF patients compared to healthy ones. (F, G)

Representative images (F) and MFI quantification (G) of basal mitochondrial ROS production (5μM MitoSOX) in

H-AOs (Donor 1 n = 6, Donor 2 n = 8, Donor 3 n = 8) and CF-AOs (Donor 1 n = 6, Donor 2 n = 8, Donor 3 n = 8).

Data from two independent experiments. As positive controls for ROS production, two wells of healthy or CF

organoids were treated for 1hr at 37˚C with 20mM tert-Butyl hydroperoxide (tBHP) (H-AOs n = 6; CF-AOs n = 9) or

a mix of 5μM rotenone and 5μM antimycin A (H-AOs n = 26; CF-AOs n = 21). (H) MFI quantification of basal H2O2
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denoting CFTR channel malfunction, similar than pharmacological inhibition of the CFTR.

They also displayed a thicker epithelium (S4A and S4B Fig). Mass spectrometry analysis of CF

vs healthy AOs revealed enhanced abundance of mucins MUC5AC and MUC5B (Fig 3B) that

was confirmed at the mRNA level (S4C Fig) and by exacerbated accumulation of mucus in the

CF AO lumen (Figs 3C, 3D and S4D). A gene ontology enrichment study revealed tendency

towards an upregulation of the cellular oxidant detoxification pathway in CF AOs (fold-change

11.6; p-value 3.55e-2; Fig 3E). To further evaluate the oxidative status in the CF context,

healthy and CF AOs were stained with MitoSOX or H2DCFDA. The ROS production was

enhanced in CF AOs compared to healthy ones (Fig 3F–3H), which was further exacerbated

after treatment with the oxidative stress inducer tert-Butyl hydroperoxide (tBHP) [41], and

rotenone and antimycin A, inhibitors of the mitochondrial electron transport, both treatment

inducing higher oxidative stress in CF-AOs than in healthy ones (MFI MitoSOX 142.5+9.4 vs

210.2+8.7 (P<0.001) for tBHP, and 88.8+4.2 vs 117+3.9 (P<0.0001) for rotenone/antimycin

A, in H-AOs compared to CF ones) (Figs 3G, 3H and S4E). Because high ROS levels induce

lipid peroxidation leading to cell death [42–44], we examined and quantified these processes

by microscopy using BODIPY (measuring lipid peroxidation) or propidium iodide (measur-

ing cell death) respectively. We found that level of peroxidized lipids (Figs 3I, 3J and S4F) and

cell death (Figs 3K and S4G) were higher in CF AOs than in healthy AOs. Interestingly, while

the oxidizing agent cumene hydroperoxide enhanced lipid peroxidation in H-AOs, it had no

additional effect in CF-AOs (Figs 3J and S4F).

Altogether, these results showed that organoids derived from CF lung tissue exhibited not

only CFTR dysfunction and exacerbated mucus accumulation but also an increased oxidative

stress, therefore representing a suitable ex vivo model to investigate how the lung CF context

drives Mabs infection.

Mycobacterium abscessus takes advantage of CF-driven oxidative stress to

thrive

As oxidative stress is enhanced in CF-AOs, we hypothesised that the CF context could favour

Mabs growth. To test this hypothesis, we microinjected healthy and CF-AOs with S- or

R-Mabs variants and quantified Mabs proliferation. At 4 days post-infection, we observed an

enhanced replication for both variants in CF-AOs compared to in H-AOs (Fig 4A and 4B),

indicating that the CF environment favours Mabs fitness. Interestingly, we quantified a higher

percentage of organoids containing Mabs R cords in CF AOs (Fig 4C and 4D), suggesting a

higher virulence of Mabs R in the CF context. To support these results, we next used CFTR

inhibitors. First, we showed that treatment of H-AOs with CFTR inhibitors enhanced oxida-

tive stress and cell death, hallmarks of CF-AOs (S5B and S5C). While CFTR inhibitors by

themselves did not modify Mabs growth in vitro (S5D Fig), they enhanced Mabs proliferation

in AOs compared with untreated ones (S5E and S5F Fig), associated with enhanced cording

for Mabs R (S5G and S5H Fig), thus confirming that alteration of CFTR function promoted

Mabs growth.

production (10μM H2DCFDA) in H-AOs (-tBHP n = 12; +tBHP n = 13) and CF-AOs (-tBHP n = 22; +tBHP n = 18).

(I, J) Representative images (I) and MFI quantification (J) of peroxidized lipids (2μM BODIPY) in H-AOs (n = 14) and

CF-AOs (n = 14). As positive control for lipid peroxidation induction, healthy (n = 6) or CF (n = 6) AOs were treated

with 800μM cumene hydroperoxide for 2hr at 37˚C. (K) MFI quantification of the basal plasma membrane

permeabilization (50 μg ml-1 propidium iodide incorporation) in H-AOs (n = 6) and CF-AOs (n = 6). Except

otherwise noted, graphs represent means ± SD from at least two independent experiments indicated by different

symbols. Each dot represents one organoid. *P<0.05; **P<0.01; ***P<0.001, ****P<0.0001 by Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1011559.g003
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Fig 4. Oxidative stress in cystic fibrosis benefits Mabs growth. (A, B) Bacterial load by CFU assay of H-AOs and

CF-AOs infected for 4 days with Mabs S (A) (healthy Donor 1 n = 11, Donor 2 n = 7, Donor 3 n = 7; cystic fibrosis

Donor 1 n = 15, Donor 2 n = 7, Donor 3 n = 7) or R (B) (n healthy = 10; n cystic fibrosis = 13). (C) Representative

images of Wasabi-labelled Mabs S or R 4 days-infected H-AOs and CF-AOs. (D) Mean percentage of H-AOs (n = 12)

and CF-AOs (n = 7) exhibiting Mabs R cords after 4 days of infection. (E) MFI quantification of mitochondrial ROS

production (5μM MitoSOX) in H-AOs and CF-AOs infected with Wasabi-expressing Mabs S (H-AOs n = 13; CF-AOs

n = 11) or Mabs R (H-AOs n = 8; CF-AOs n = 11) for 3 days. Data are normalized to their respective Mock-infected

H-AOs and CF-AOs (H-AOs n = 17; CF-AOs n = 6) control (F, G) MFI quantification (F) and representative images

(G) of propidium iodide incorporation (50 μg ml-1) in H-AOs and CF-AOs infected with Wasabi-expressing Mabs S

(H-AOs n = 6; CF-AOs n = 6) or Mabs R (H-AOs n = 13; CF-AOs n = 12) for 4 days. Data are normalized to their

respective Mock-infected H-AOs and CF-AOs (H-AOs n = 9; CF-AOs n = 10) control. (H) MFI quantification of GFP

in Mock-infected H-AOs and CF-AOs (H-AOs n = 5; CF-AOs n = 5) or H-AOs and CF-AOs infected with

Mrx1-roGFP2-expressing Mabs S (H-AO n = 15; CF-AO n = 20) for 4 days. As a positive control for ROS induction,

H-AOs (n = 15) were exposed to 200μM tBHP for 1 hour prior infection, which was maintained all along the

experiment. (I) MFI quantification of GFP in Mock-infected CF-AOs (n = 6) or CF-AOs infected with

Mrx1-roGFP2-expressing Mabs S (n = 11) or Mabs R (n = 11) for 4 days. Except otherwise noted, graphs represent

means ± SD from at least two independent experiments indicated by different symbols. Each dot represents one

organoid. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001 by Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1011559.g004
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Next, we showed that Mabs-infected CF-AOs exhibited higher oxidative stress and epithe-

lial cell death than Mabs-infected H-AOs, indicating that CF-AOs exhibited higher susceptibil-

ity to Mabs infection, especially the R variant that induced higher cell death than the S one

(Figs 4E–4G, S5I and S5J).

As Mabs infection and CF context are associated with host oxidative stress in airway orga-

noids, we next wondered whether infection is associated with ROS production by the bacteria

themselves. To address this question, we adapted the fluorescent redox biosensor

Mrx1-roGFP2 system, initially developed in M. tuberculosis, to measure mycothiol redox

potential in response to oxidative stress [45]. First, we evaluated ROS production in vitro upon

oxidative agent exposure. Interestingly, at basal level, our results showed that the roGFP2ox/

roGFP2red ratio is higher in Mabs S compared to Mabs R, indicative of a higher oxidized sta-

tus in the S compared to the R variant (S6A Fig). By normalizing basal redox level to 1 in

untreated conditions, we measured a slight increase in the roGFP2ox/roGFP2red ratio for

Mabs S, which was significantly higher for Mabs R, indicating that the R variant displayed

higher redox stress upon exposure to Diamide, tBHP or cumene hydroperoxide (CHP)

(S6B Fig). Moreover, higher induction of ROS production by Mabs R in response to 5mM

Diamide was associated with better bacteria survival, while exposure to 2mM tBHP or 250μM

CHP resulted in bacterial killing (S6C Fig). Finally, Mrx1-roGFP2-expressing strains were

microinjected in H- and CF-AOs, and GFP fluorescence intensity was microscopically quanti-

fied. As shown in Figs 4H and S6D, fluorescence of Mrx1-roGFP2 of Mabs S is enhanced in

CF-AOs compared to healthy ones. Finally, Mrx1-roGFP2 fluorescence is higher in Mabs R

than in Mabs S in CF context (Fig 4I).

Altogether, these results show that the CF context is associated with higher pathogenicity of

Mabs revealed by enhanced bacterial growth and cording, bacterial and host oxidative stress

and cell death.

The NRF2-NQO1 axis supports a better control of Mabs growth

We next evaluated whether the antioxidant sulforaphane could inhibit Mabs growth. CF-AOs

treated with sulforaphane exhibited mitigated oxidative environment (Figs 5A and S7A), and

expressed higher level of NRF2-regulated NQO1 (Fig 5B). Activation of NRF2 resulted in

reduced bacterial load (Fig 5C), % of organoids containing Mabs R cords (Fig 5D), and epithe-

lial cell death (S7B and S7C), indicating that CF-driven oxidative stress stimulated Mabs

growth and virulence, and host tissue damage. Interestingly, inhibition of NQO1 using dicou-

marol abolished sulforaphane effect on Mabs growth and cording in CF context (Fig 5C and

5D), indicating that NQO1 might play a protective role during Mabs infection.

Finally, we evaluated the potential of sulforaphane combined with cefoxitin, a first line anti-

biotic to treat Mabs-infected patients [46]. First, we evaluated the influence of both treatment

on ROS production upon Mabs S infection, and showed that sulforaphane, alone or in combi-

nation with cefoxitin, significantly inhibited host ROS production in CF-AOs upon Mabs S

infection (Figs 5E and S7D). Moreover, while both cefoxitin and sulforaphane alone signifi-

cantly inhibited Mabs growth in CF-AOs by 92% and 80% respectively, combination of both

compounds was more efficient to reduce bacterial load (99% inhibition, Fig 5F). Of note, nei-

ther sulforaphane nor cefoxitin have any effect of the bacterial redox status (S7E Fig).

Altogether, these results show that pharmacological boost of antioxidant pathways, at least

in part mediated by the NRF2-NQO1 axis, could be a complement strategy to current antibi-

otic therapies.

PLOS PATHOGENS Druggable redox pathways against M. abscessus in cystic fibrosis airway organoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011559 August 24, 2023 10 / 24

https://doi.org/10.1371/journal.ppat.1011559


Discussion

In this study, we used healthy and CF-patient derived airway organoids (AOs), as realistic and

animal testing-free method, to assess Mabs pathogenicity in the context of natural CFTR func-

tional alterations. Indeed, CF AOs carry the patient’s own mutations and recapitulate key fea-

tures of CF disease. We showed that both S- and R-morphotypes of M. abscessus proliferate

and exhibit infection hallmarks in AOs, with the R variant displaying higher virulence in the

CF context characterized by enhanced cording, host oxidative stress and cell death. We also

demonstrated that boosting of antioxidant pathways might be a potential complement thera-

peutic strategy to current antibiotic treatment to better control Mabs infection in CF patients.

Fig 5. The NRF2-NQO1 axis mitigates oxidative stress and Mabs growth in CF-AOs. (A) MFI quantification of

mitochondrial ROS production (5μM MitoSOX) in H-AOs (n = 10) and CF-AOs (n+ = 12; n- = 12) after 4 days of

being treated with (+) or without (-) 10μM sulforaphane. (B) Expression of the NRF-2-regulated gene NQO1 in

H-AOs and CF-AOs after 4 days of being treated with or without 10μM sulforaphane. Graph represents means from at

least three pooled independent experiments, performed in triplicates. *P<0.05 by unpaired T test. (C) Bacterial load by

CFU assay in CF-AOs pre-treated or not with 10μM sulforaphane for 6 hr before infection with Mabs S (treated n = 13;

untreated n = 14) or Mabs R (treated n = 13; not-treated n = 12) for 4 days. When stated, the NQO1 inhibitor was

added (10μM dicoumarol) (Mabs S n = 6; Mabs R n = 6) simultaneously with sulforaphane and maintained all along

the experiment. (D) Mean percentage of CF-AOs untreated (n = 6) or treated with 10μM sulforaphane alone (n = 7) or

in combination with 10μM dicoumarol (n = 7), exhibiting Mabs R cords after 4 days of infection. (E) MFI

quantification of mitochondrial ROS production (5μM MitoSOX) in CF-AOs pre-treated or not with 10μM

sulforaphane for 6 hr before infection with Wasabi-expressing Mabs S (treated n = 11; untreated n = 11) for 3 days.

When stated, at day 2 post-infection, 20μg/ml of cefoxitin was added with (n = 13) or without (n = 9) 10μM

sulforaphane. (F) Bacterial load by CFU assay of CF-AOs pre-treated with (n = 6) or without (n = 6) 10μM

sulforaphane for 6 hr before infection with Mabs S for 4 days. When stated, at day 2 of the infection, 20μg/ml of

cefoxitin was added with (n = 6) or without (n = 6) 10μM sulforaphane. Except otherwise stated, graphs represent

means ± SD from at least two independent experiments indicated by different symbols. Each dot represents one

organoid. *P<0.05; **P<0.01, ***P<0.001, ****P<0.0001 by Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1011559.g005
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The organoid technology has demonstrated its usefulness in developing CFTR corrector/

modulator therapies for CF patients [47–49]. Indeed, CF patient-derived organoids, bearing

natural CFTR mutations, recapitulate ex vivo the spectrum of CFTR dysfunctions and CF dis-

ease severities [24,50]. Extended to the airway, CF patient-derived AOs have been shown to

display epithelium hyperplasia, luminal mucus accumulation and abrogated response to for-

skolin-induced swelling, thus recapitulating CFTR dysfunction and consequences on the air-

way homeostasis [22]. Here, we derived AO lines from three CF patients, carrying class I and

II mutations that reproduce the expected defective response to forskolin-induced swelling, epi-

thelium hyperplasia and mucus accumulation. Moreover, these CF AOs display enhanced oxi-

dative stress and lipid peroxidation, as previously measured in CF patients [36,37] or in vitro
in CFTR mutated cell lines [51], as well as enhanced cell death, recapitulating CF-driven tissue

damage. Therefore, our results demonstrate that CFTR dysfunction in epithelial cells is suffi-

cient to cause an oxidative status imbalance in the airway epithelium, independent of immune

cells and infection.

We and others have already applied the organoid technology to model host-pathogen inter-

actions [22,26,30,31,52,53]. Here, we have reproduced Mabs infection hallmarks in AOs in

healthy and CF contexts. Specifically, we show that both S- and R-Mabs replicate as extracellu-

lar bacteria in AOs, which was further enhanced in CF context, thus recapitulating the suscep-

tibility of CF patients to NTM infection [54,55] and consistent with Mabs localization in the

airway of CF patients [56]. We showed that Mabs S is surrounded by an extracellular substance

resembling a biofilm. Visualizing bacterial biofilm still remains a challenge, especially in in
vivo settings. The formation of biofilm during both acute and chronic infection plays a crucial

role at protecting extracellular bacilli from immune response and antimicrobial agents, leading

to treatment failure [57–59]. Moreover, it is now recognized that biofilms are highly diverse

bacterial communities, which depend on the environmental conditions, hardly reflected by in
vitro cultures in laboratories [60]. Therefore, the detection of biofilm in Mabs S-infected

healthy and CF AOs opens new venues to further dissect how the human airway, in healthy

but also pathological contexts, influences Mabs biofilm formation and consequences on infec-

tion, and for testing antibiofilm activity of novel pharmacological compounds [57,61,62].

We also showed that the R variant forms serpentine cords, structures described to be associ-

ated with mycobacteria virulence [6–8,11,35,63–67]. Interestingly, formation of serpentine

cords by Mabs R in AOs was modulated by the host responses. Indeed, Mabs R cords were

increased over time of infection, enhanced in the CF context, and decreased after antioxidant

treatment, also correlating with reduced levels of host oxidative stress and cell death. How host

pathways can influence mycobacterial cording and virulence has been extensively described in

the zebrafish model infected with M. marinum or M. abscessus, showing that a fine-tuned reg-

ulation of the host inflammatory response is crucial to ensure a proper control of mycobacte-

rial infection [15,63,68–70]. It is interesting to note that mycobacteria cords display their

virulence trait both intracellularly by triggering phagosomal rupture and death of infected cells

[66,71–73], but also extracellularly by escaping phagocytosis and thus contributing to bacterial

persistence and tissue damage [32]. Therefore, AOs constitute a relevant model to decipher

the extracellular lifestyle of Mabs in the bronchial tree where biofilm and cording constitute

key structures of Mabs variant pathobiology [74,75].

ROS production is a part of host antimicrobial defence but requires a fine-tuned balance to

prevent tissue damage. Indeed, the production of ROS is essential to control infection, as

knock-down of NOX2 expressed in immune cells, or inhibition of DUOX2-mediated epithelial

ROS production resulted in uncontrolled bacteria proliferation in zebrafish and mouse models

[15,76,77]. Here, we showed in airway organoids, that Mabs R infection triggers ROS produc-

tion, which was further enhanced in CF context as previously described in zebrafish [15]. This
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enhanced ROS production is associated with enhanced expression of the epithelial cell ROS

production gene DUOX1, concomitantly to the expression of the antioxidant NRF2-NQO1

pathway. Interestingly, boosting the NRF2-NQO1 axis was associated with a better control of

Mabs growth in AOs indicating that oxidative stress favours Mabs fitness. Indeed, activation

of NRF2 with sulforaphane in CF organoids resulted in better control of Mabs, abolished by

NQO1 inhibition using dicoumarol. Only few studies investigated the role of NRF2 in myco-

bacteria infection [78]. In Mtb-infected macrophages, it has been shown that activation of

NRF2 is associated with enhanced bacterial load and cell survival [79], while inhibition of

NRF2 or NQO1 ensured a better control of Mtb or BCG infection and host cell survival

[80,81], suggesting that NRF2-NQO1 axis, by detoxifying ROS, might play a detrimental role

during mycobacteria infection. By contrast, Zhou et al. showed that the activation of

NRF2-NQO1 axis induced better control of Mtb [82]. Regarding Mabs infection, as we

observed in airway organoids, studies showed that antioxidants resulted in better control of

the infection in macrophages and zebrafish [83–85], while a contradictory one showed that

knock-down of NRF2, by enhancing ROS level, is associated with a better control of Mabs

[86]. Here we showed that cumulative oxidative stress due to both the CF context and Mabs

infection might result in a permissive environment for extracellular bacteria growth and the

establishment of chronic infection in the lung of CF patients. Because antioxidants did not

inhibit Mabs growth and bacterial redox status in vitro, our results indicate that ROS produc-

tion by epithelial cells is sufficient to generate a permissive environment for extracellular Mabs

proliferation, which could play a major role in the establishment of Mabs colonization of CF

patient airway. Therefore, even with low bacteria internalization by epithelial cells [31] and in

the absence of immune cells, AOs recapitulate the contribution of the host NRF2-NQO1 axis

on bacteria fitness in the airway, which can be boosted pharmacologically to improve tissue

redox homeostasis and to foster infection control in combination with frontline antibiotic

treatments, as we exemplified here with cefoxitin. Further investigations are now warranted to

integrate ROS production by immune cells, essential to control the intracellular pool of bacte-

ria [15]. Interestingly, treating R Mabs-infected zebrafishes with resveratrol improves fish sur-

vival and reduces bacterial load [84], suggesting that enhancing the global defence against ROS

by antioxidants would improves Mabs infection control in vivo. Nevertheless, it would be

interesting to extend the application of airway organoid by integrating innate immune cells to

advance our understanding of mucosal immune responses, as previously described for NSCLC

lung cancer and the evaluation of anti-tumoral immunotherapies [87,88]. Using a mouse

model of CF, CCR2-mediated lung accumulation of monocyte-derived macrophages has been

shown to drive neutrophil pulmonary inflammation upon LPS challenge [89]. As macrophages

constitute an intracellular replicative niche for Mabs and display microbicidal deficiency in CF

[90,91], the organoid technology constitutes a powerful human system to reconstruct the cellu-

lar framework of the human airway epithelial-immune niche. This will require in the future to

access patient-matched lung biopsy and blood sample in order to co-culture epithelial and

immune cells with matched CFTR mutations. Finally, combination of the CFTR modulators

and correctors Elexacaftor-Tezacaftor-Ivacaftor, recently approved by FDA (Trikafta) and

EMA (Kaftrio) is a game-changer for the treatment of CF. It is a highly effective therapy

designed to correct CFTR folding and function for the treatment of CF patients carrying at

least one CFTR delF508 mutation (70% of the patients) [92]. It is associated with clinically

meaningful improvements in lung function and respiratory-related quality of life. Since its

introduction, clinical observations highlighted that CF patients show a rapid reduction of

infection-related hospital visits and antimicrobial use after starting the therapy [93,94], sug-

gesting that by restoring CFTR function, Kaftrio may improve lung ion homeostasis and/or

restructure microbial niche. Interestingly, Kaftrio therapy eradicated NTM infection in CF
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patients [95]. Interestingly, CF is associated with a defective NRF2 expression, contributing to

the excessive oxidative stress and lung tissue damage, whereas CFTR modulators rescue NRF2

function and therefore improve tissue oxidative status [96]. Therefore, CFTR-targeted thera-

pies, by restoring CFTR function and reducing lung tissue redox status, might confer a better

control of bacterial infection. But how Kaftrio influences CF-driven new or already established

Mabs infection warrants further investigation. By responding to Kaftrio [97], CF AOs consti-

tute the unique model available to further decipher, in a personalized way, the consequences of

Kaftrio therapy on CF-driven respiratory infection.

In conclusion, we have established AOs as a pertinent model of both CF airway dysfunction

and susceptibility to Mabs infection. Moreover, we have identified the cell protective

NRF2-NQO1 axis as a potential therapeutic target to restore CF tissue redox homeostasis and

improve the control of bacteria growth. Therefore, our work opens new venues for deciphering

the CF-associated extracellular lifestyle of Mabs, the role of critical host redox pathways and

identifying innovative therapeutic intervention, as recently exemplified [98].

Materials and methods

Detailed protocols are provided in the supplementary information (S1 Text).

Ethics statements

The collection of patient data and tissue for AOs generation was performed according to the

guidelines of the European Network of Research Ethics Committees following European and

national law. The accredited ethical committee from CHU Toulouse reviewed and approved

the study in accordance with the Medical Research Involving Human Subjects Act. Human

lung tissue was provided by the CHU of Toulouse under protocol agreement (CHU 19 244 C

and Ref CNRS 205782). As the biological materials consist in surgical waste repurposed for

research, all patients participating in this study consented to scientific use of their material by

verbal non-opposition statement; patients can withdraw their statement at any time, leading to

the prompt disposal of their tissue and any derived material.

Airway organoid culture and maintenance

Healthy adjacent tissue from three donors with lung cancer (women, age 65–67), and biopsies

of lung tissue from three cystic fibrosis patients (S1 Table) were used to derive organoids as

previously described with minor changes [22,31]. To prevent risk of microbial contamination,

airway organoid complete media was supplemented with 10 μg ml-1 Normocure (InvivoGen)

and 2.5 μg ml-1 Fungin (InvivoGen) during the first 4 weeks of the cystic fibrosis airway orga-

noid cultures.

Bacteria culture and organoid infection

Mycobacterium abscessus sensu stricto strain CIP104536T (ATCC19977T) morphotype S and

R were grown as previously described [32]. Before infection, AOs were pretreated or no with

10μM Sulforaphane (Selleck Chemicals, Houston, TX, USA) for 6hr. Bacteria were prepared

for microinjection as described before [31,99]. Briefly, bacterial pellets were resuspended in

PBS 1x and disaggregated using a 1ml syringe (Terumo) with a blunt needle (Bio-Rad, Hercu-

les, CA, USA). Bacterial density was adjusted to OD600 = 0.1–0.4. Initial bacterial load is evalu-

ated by microinjecting the same amount of bacteria in 100μl of PBS 1x and colony forming

unit assay. As shown in S5A Fig, this approach gives a representative number of bacteria with

reproducible microinjection between H- and CF-AOs. Infected organoids were individually
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collected, washed in PBS 1x and embedded into fresh matrix (Matrigel (Corning)). Infected

organoids were cultured for 3–4 days if not otherwise stated. Sulforaphane was maintained

throughout the experiment and refreshed every two days. When stated, either prior Mabs

infection or the second day post infection, 10μM dicoumarol (Sigma-Aldrich) or 20μg/ml

cefoxitin (Sigma-Aldrich) were added, with or without sulforaphane.

Microscopy

Live imaging was performed to visualize, quantify and assess cell death with 50 μg ml-1 Propi-

dium Iodide (Thermo Scientific), ROS levels by 10μM H2DCFDA (Invitrogen) or 5μM Mito-

SOX (Thermo Scientific), CFTR function by forskolin-induced organoid swelling assay (2hr

with 5μM Forskolin (Sigma-Aldrich)) as described [100], mucus accumulation with 10μM

Zinpyr-1 (Santa Cruz Biotechnology), and lipid peroxidation by 2μM BODIPY (Thermo Sci-

entific) in non-infected and Mabs-infected organoids. Images were acquired under an EVOS

M7000 Imaging System and analyzed post-acquisition with Fiji/ImageJ.

For Lightsheet imaging, fixed (overnight in 4% paraformaldehyde) airway organoids were

stained with propidium iodide (6μg/ml in PBS) for 30 minutes at room temperature then

rinsed in PBS. Organoids were then embedded in 1% low-melting agarose inside glass capillar-

ies and imaged in PBS using a light-sheet fluorescence microscope (Zeiss Lightsheet Z.1). The

3D reconstructions were performed with Amira software (v2020.2).

For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), orga-

noids were fixed in 2% paraformaldehyde (EMS, Hatfield, PA, USA), 2.5% glutaraldehyde (EMS)

and 0.1 M Sodium Cacodylate (EMS). Samples were embedding in Durcupan ACM resin (Sigma-

Aldrich) then, semi-thin (300nm) serial sections were made using an UC7 ultramicrotome (Leica,

Wetzlar, Germany) and collected on silicon wafers (Ted Pella, Redding, CA, USA). Sections were

imaged on a Quanta FEG 250 SEM microscope in BSE mode. Ultrathin sections were also col-

lected on copper grids formvar coated for TEM analysis on a JEOL 1200 EXE II microscope.

Colony forming unit (CFU) assay

At the indicated time point, organoids infected with Mabs were individually harvested and

lysed in 100μl of 10% Triton X-100 (Euromedex) in cell culture grade water (Corning). Serial

dilutions (factor of 10) were done to yield 10−1 to 10−5 dilutions of the original lysate and then

plated on LB Agar (Invitrogen) in 55mm dishes (Sarstedt). Colonies were counted after an

incubation of 4 days at 37˚C.

RT-qPCR

Organoids were collected at day 4 post-infection or stimulation and processed as reported

[31]. Briefly, total RNA was extracted from organoids (15 AOs per condition) using the

RNeasy mini kit (Qiagen) and retrotranscribed (150ng) with the Verso cDNA Synthesis Kit

(Thermo Scientific). mRNA expression was assessed with an ABI 7500 real-time PCR system

(Applied Biosystems) and the SYBR Select Master Mix (Thermo Scientific). Relative quantifi-

cation was determined using the 2^-ΔΔCt or 2^-ΔCt method, normalized to GAPDH. Primer

sequences are provided in S2 Table.

Statistics

Statistical analyses were performed using Prism 8 and 5 (GraphPad Software). Data were com-

pared by Mann-Whitney or unpaired T test and results reported as mean with SD. Data statis-

tically significant was represented by *P<0.05; **P<0.01; ***P<0.001 and **** P<0.0001.
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Supporting information

S1 Text. Supplementary Information.

(DOCX)

S1 Fig. (A) Kinetics of Mabs S and R growth in H-AO. Graph shows three pooled indepen-

dent experiments. (B) Growth of Mycobacterium abscessus subspecie abscessus (Day 0 n = 3;

Day 4 n = 6), subspecie massiliense (Day 0 n = 3; Day 4 n = 6), and subspecie bolletii (Day 0

n = 3; Day 4 n = 6) in H-AO. Graph shows means ± SEM from two independent experiments.

Each dot represents one organoid. **P<0.01 by Mann-Whitney test. (C) Kinetics of in vitro
growth of Mycobacterium abscessus subspecie abscessus, subspecie massiliense, and subspecie
bolletii. Graph represents means from one experiment performed in triplicates. (D-I) 3D light-

sheet imaging of airway organoids infected with wasabi (green) Mabs S or R. H-AOs were

fixed then stained with propidium iodide to visualize cell nuclei (red) before imaging using

Zeiss Lightsheet 1 microscope. (D) XY planes at the indicated z positions of the 400 μm z-stack

of an H-AO after infection with Mabs S shown in S1 Movie (10X objective). (E) 3D visualiza-

tion using AMIRA software of the z-stack of AO after infection with Mabs S. (F) Corner cut

from two different angles using AMIRA software through a volume rendering of the nuclei

while keeping the Mabs S fluorescent signal. Scale bar: 50 μm. (G) XY planes at the indicated z

positions of the 400 μm z-stack of a H-AO after infection with Mabs R shown in S2 Movie

(10X objective). (H) 3D visualization using AMIRA software of the z-stack of AO after infec-

tion with Mabs R. (I) Corner cut from two different angles using AMIRA software through a

volume rendering of the nuclei while keeping the Mabs R fluorescent signal. Scale bar: 50 μm.

(TIF)

S2 Fig. (A) Rows 1 and 2: Transmission electron micrographs of healthy AO infected with

Mab-S. Bacteria were found dispersed in loose aggregates in the layer close to the luminal side

of the lung epithelium (black asterisk) and excluded from the mucus (white asterisk). Bacteria

were not in direct contact with each other and did not show any preferred orientation. An

accumulation of fibril-granular material was observed around the aggregates. (B) Transmis-

sion electron micrographs of healthy AO infected with Mab-R. Bacteria were found exclusively

in the mucus (white asterisk) organized in bundles showing individual cells oriented and in

close apposition with each other inside the same bundle.

(TIF)

S3 Fig. (A-C) Expression pattern of inflammatory cytokines (A), antimicrobial peptides (B),

and mucins (C) in mock-infected H-AO, or H-AO infected with Mabs S or R for 4 days.

Graphs represent means ± SEM from at least three independent experiments, performed in

triplicates. *P<0.05; ***P<0.001; ****P<0.0001 by unpaired T test. (D) Kinetics of in vitro
Mabs S and R growth in absence or presence of 10μM resveratrol. Graph represents means

from one experiment performed in triplicates. ns = not significative by Mann-Whitney test.

(E-F) Bacterial load by CFU assay of H-AO pre-treated with (+) or without (-) 10μM resvera-

trol for 1hr before infection with Mabs S (E) (n+ = 7; n- = 6) or R (F) (n+ = 8; n- = 6) for 4

days. Graphs represent means ± SD from at two independent experiments, indicated by differ-

ent symbols. Each dot represents one organoid. *P<0.05; **P<0.01 by Mann-Whitney test.

(G) Kinetics of in vitro Mabs S and R growth in absence or presence of 10μM sulforaphane.

Graph represents means from one experiment performed in triplicates. ns = not significative

by Mann-Whitney test.

(TIF)

PLOS PATHOGENS Druggable redox pathways against M. abscessus in cystic fibrosis airway organoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011559 August 24, 2023 16 / 24

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s004
https://doi.org/10.1371/journal.ppat.1011559


S4 Fig. (A, B) Representative bright-field images (A) and quantification (B) of epithelium

thickness in healthy AOs (H-AO n = 32) and cystic fibrosis AOs (CF-AO n = 24). Data from

three independent wells per donor. (C) Basal expression of mucin genes in H-AO and CF-AO.

Graph represents means from three pooled independent experiments, performed in triplicates.

**P<0.01; **** P<0.0001; ns = not significative by unpaired T test. (D) Electron micrographs

of H-AO and CF-AO revealing mucus accumulation in the lumen and longer cilia in the CF

ones. (E) Representative images of mitochondrial ROS production (5μM MitoSOX) in H-AO

and CF-AO after 1hr treatment with 20Mm tBHP or a mix of 5μM rotenone and 5μM antimy-

cin A. (F) Representative images of peroxidized lipids (2μM BODIPY) in H-AO and CF-AO

after 2hr treatment with 800μM cumene hydroperoxide. (G) Representative images of the

basal propidium iodide incorporation (50 μg ml-1) in H-AO and CF-AO.

(TIF)

S5 Fig. (A) Initial bacterial load evaluation by CFU assay of H-AO and CF-AO infected with

Mabs S (H-AO n = 6; CF-AO n = 6) or Mabs R (H-AO n = 6; CF-AO n = 6). (B) MFI quantifi-

cation of mitochondrial ROS production (5μM MitoSOX) in H-AO after 4 days of being

treated with (+ n = 16) or without (- n = 13) 25μM CFTR inhibitors (CFTRinh-172 and GlyH

101). (C) MFI quantification of propidium iodide incorporation (50 μg ml-1) in H-AO after 4

days of being treated with (+ n = 10) or without (- n = 8) 25μM CFTR inhibitors. (D) Kinetics

of Mabs S and R growth in absence or presence of 25μM CFTR inhibitors. Data from one

experiment performed in triplicates. (E, F) Bacterial load by CFU assay of H-AO pre-treated

with (+) or without (-) 25μM CFTR inhibitors for 2 days before infection with Mabs S (E) (n+

= 6; n- = 6) or R (F) (n+ = 8; n- = 6) for 4 days. (G) Representative images of H-AO pre-treated

or not with 25μM CFTR inhibitors for 2 days before infection with Mabs S or R for 4 days. (H)

Mean percentage of H-AO untreated (n = 18) or treated (n = 30) with 25μM CFTR inhibitors

exhibiting cords after 4 days of infection with Mabs R. (I) MFI quantification of propidium

iodide incorporation (50 μg ml-1) in Mock-infected H-AO and CF-AO (H-AO n = 9; CF-AO

n = 10) or H-AO and CF-AO infected with Wasabi-labelled Mabs S (H-AO n = 6; CF-AO

n = 6) or Mabs R (H-AO n = 13; CF-AO n = 12) for 4 days. (J) MFI quantification of mito-

chondrial ROS production (5μM MitoSOX) in Mock-infected CF-AO (CF-AO n = 6) or

CF-AO infected with Wasabi-labelled Mabs S (CF-AO n = 11) or Mabs R (CF-AO n = 11) for

3 days. Except otherwise stated, graphs represent means ± SD from at least two independent

experiments indicated by different symbols. Each dot represents one organoid. *P<0.05;

**P<0.01; ****P<0.0001; ns = not significative by Mann-Whitney test.

(TIF)

S6 Fig. (A) Basal ratiometric sensor response of Mrx1-roGFP2-expressing Mabs S and R mea-

sured. * P< 0.05, paired t test of three independent experiments. (B) Mabs S (red) and R

(green) expressing Mrx1-roGFP2 were either left untreated (Mock) or exposed to different

concentrations of diamide, tert-Butyl hydroperoxide (tBHP) or cumene hydroperoxide

(CHP), and the ratiometric sensor response (405/480 ratio) was measured after 2 h post-expo-

sure. Data represent the Mean± SD of three independent experiments. For S to R comparison,

Mock condition was normalized to 1. S to R comparison: * P<0.05, ** P<0.01, *** P<0.001,

**** P< 0.0001; Mabs variant to their respective Mock control: # P<0.05, ## P< 0.01, ### P<

0.001. (C) Mabs S (red) and R (green) expressing Mrx1-roGFP2 were either left untreated

(Mock) or exposed to different concentrations of diamide, tert-Butyl hydroperoxide (tBHP) or

cumene hydroperoxide (CHP), and bacterial growth in untreated (Mock) or oxidative agent-

treated conditions was measured by the McFarland technique measuring bacterial culture tur-

bidity. (D) Representative images of H-AO and CF-AO treated or not with 200μM tBHP for 1
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hour before infection with roGFP2-expressing Mabs S for 4 days.

(TIF)

S7 Fig. (A) Representative images of mitochondrial ROS production (5μM MitoSOX) in H-AO

and CF-AO after 4 days of being treated or not with 10μM sulforaphane. (B, C) Representative

images (B) and MFI quantification (C) of propidium iodide incorporation (50 μg ml-1) in CF-AO

pre-treated with (+) or without (-) 10μM sulforaphane for 6 hr before infection with Wasabi-

labelled Mabs S (n+ = 6; n- = 6) for 4 days. (D) Representative images of MitoSOX staining in

Mock- or Mabs-infected CF organoids treated or not with sulforaphane and cefoxitin, alone or in

combination. (E) Mabs S expressing Mrx1-roGFP2 was either left untreated (Mock) or exposed

to 5mM diamide, then left untreated or treated with 10μM sulforaphane and/or 20μg/ml cefoxi-

tin, and the ratiometric sensor response (405/480 ratio) was measured after 2 h post-exposure.

Data represent the Mean± SD of three independent experiments. * P<0.05, by Two-way

ANOVA. Except otherwise stated, graphs represent means ± SD from at least two independent

experiments, indicate them by different symbols. Each dot represents one organoid. **P<0.01;

***P<0.001 by Mann-Whitney test.

(TIF)

S1 Movie. Representative 3D reconstruction of an S Mabs-infected human airway organoid

showing green wasabi-expressing bacteria aggregates in the lumen. Nuclei are revealed by

staining with propidium iodide (red). Images were acquired on a Zeiss lightsheet 1 micro-

scope, and combined for 3D visualization using the AMIRA software.

(MP4)

S2 Movie. Representative 3D reconstruction of an R Mabs-infected human airway orga-

noid showing green wasabi-expressing bacteria forming cords in the lumen. Nuclei are

revealed by staining with propidium iodide (red). Images were acquired on a Zeiss lightsheet 1

microscope, and combined for 3D visualization using the AMIRA software.

(MP4)

S1 Table. Clinical data from CF patients who underwent lung transplantation and from

who a lung biopsy was obtained to derive airway organoids.

(DOCX)

S2 Table. For each gene analyzed, list of forward and reverse primers and related bibliogra-

phy.

(DOCX)
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PLOS PATHOGENS Druggable redox pathways against M. abscessus in cystic fibrosis airway organoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011559 August 24, 2023 18 / 24

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s008
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s009
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s010
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s011
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1011559.s012
https://doi.org/10.1371/journal.ppat.1011559


Marlène Murris-Espin, Julien Mazières, Pierre Jean Bordignon, Pascale Bernes-Lasserre,
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44. Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species

(ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and

Induced Pathologies. Int J Mol Sci. 2021; 22: 4642. https://doi.org/10.3390/ijms22094642 PMID:

33924958

45. Bhaskar A, Chawla M, Mehta M, Parikh P, Chandra P, Bhave D, et al. Reengineering redox sensitive

GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection. PLoS

Pathog. 2014;10. https://doi.org/10.1371/journal.ppat.1003902 PMID: 24497832

46. Kurz SG, Zha BS, Herman DD, Holt MR, Daley CL, Ruminjo JK, et al. Summary for clinicians: 2020

clinical practice guideline summary for the treatment of nontuberculous mycobacterial pulmonary dis-

ease. Ann Am Thorac Soc. 2020; 17: 1033–1039. https://doi.org/10.1513/AnnalsATS.202003-

222CME PMID: 32870060

47. Graeber SY, van Mourik P, Vonk AM, Kruisselbrink E, Hirtz S, van der Ent CK, et al. Comparison of

Organoid Swelling and In Vivo Biomarkers of CFTR Function to Determine Effects of Lumacaftor-Iva-

caftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation. Am J Respir Crit Care

Med. 2020; 202: 1589–1592. https://doi.org/10.1164/rccm.202004-1200LE PMID: 32687398

48. Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modu-

lators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol. 2021; 321: L119–

L129. https://doi.org/10.1152/ajplung.00639.2020 PMID: 34009038

PLOS PATHOGENS Druggable redox pathways against M. abscessus in cystic fibrosis airway organoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011559 August 24, 2023 21 / 24

https://doi.org/10.1038/s41564-018-0177-8
https://doi.org/10.1038/s41564-018-0177-8
http://www.ncbi.nlm.nih.gov/pubmed/29946163
https://doi.org/10.1111/mmi.14824
https://doi.org/10.1111/mmi.14824
http://www.ncbi.nlm.nih.gov/pubmed/34605588
https://doi.org/10.1073/pnas.1321390111
http://www.ncbi.nlm.nih.gov/pubmed/24567393
https://doi.org/10.1016/j.chemgeo.2018.09.016
https://doi.org/10.1371/journal.ppat.1011318
http://www.ncbi.nlm.nih.gov/pubmed/37200238
https://doi.org/10.1128/JB.01485-09
http://www.ncbi.nlm.nih.gov/pubmed/20097851
https://doi.org/10.1111/j.1651-2227.1994.tb13229.x
https://doi.org/10.1111/j.1651-2227.1994.tb13229.x
http://www.ncbi.nlm.nih.gov/pubmed/8025360
https://doi.org/10.1016/j.redox.2020.101436
http://www.ncbi.nlm.nih.gov/pubmed/32044291
https://doi.org/10.1126/sciimmunol.aaw6693
http://www.ncbi.nlm.nih.gov/pubmed/31350281
https://doi.org/10.1128/mBio.01947-20
http://www.ncbi.nlm.nih.gov/pubmed/33563837
https://doi.org/10.1016/J.JCF.2013.12.003
https://doi.org/10.1016/J.JCF.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24440181
https://doi.org/10.1111/1365-2435.12664/SUPPINFO
https://doi.org/10.1515/CCLM.1999.082
https://doi.org/10.1515/CCLM.1999.082
http://www.ncbi.nlm.nih.gov/pubmed/10418740
https://doi.org/10.1155/2019/5080843
https://doi.org/10.1155/2019/5080843
http://www.ncbi.nlm.nih.gov/pubmed/31737171
https://doi.org/10.3390/ijms22094642
http://www.ncbi.nlm.nih.gov/pubmed/33924958
https://doi.org/10.1371/journal.ppat.1003902
http://www.ncbi.nlm.nih.gov/pubmed/24497832
https://doi.org/10.1513/AnnalsATS.202003-222CME
https://doi.org/10.1513/AnnalsATS.202003-222CME
http://www.ncbi.nlm.nih.gov/pubmed/32870060
https://doi.org/10.1164/rccm.202004-1200LE
http://www.ncbi.nlm.nih.gov/pubmed/32687398
https://doi.org/10.1152/ajplung.00639.2020
http://www.ncbi.nlm.nih.gov/pubmed/34009038
https://doi.org/10.1371/journal.ppat.1011559


49. Aalbers BL, Brunsveld JE, van der Ent CK, van den Eijnden JC, Beekman JM, Heijerman HGM. For-

skolin induced swelling (FIS) assay in intestinal organoids to guide eligibility for compassionate use

treatment in a CF patient with a rare genotype. J Cyst Fibros. 2022; 21: 254–257. https://doi.org/10.

1016/j.jcf.2022.01.008 PMID: 35110005

50. de Winter-De Groot KM, Janssens HM, van Uum RT, Dekkers JF, Berkers G, Vonk A, et al. Stratifying

infants with cystic fibrosis for disease severity using intestinal organoid swelling as a biomarker of

CFTR function. Eur Respir J. 2018;52. https://doi.org/10.1183/13993003.02529-2017 PMID:

30166324

51. de Bari L, Favia M, Bobba A, Lassandro R, Guerra L, Atlante A. Aberrant GSH reductase and NOX

activities concur with defective CFTR to pro-oxidative imbalance in cystic fibrosis airways. J Bioenerg

Biomembr. 2018; 50: 117–129. https://doi.org/10.1007/s10863-018-9748-x PMID: 29524019

52. Lamers MM, van der Vaart J, evin Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, et al. An orga-

noid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells.

EMBO J. 2021; 40: e105912. https://doi.org/10.15252/embj.2020105912 PMID: 33283287

53. Zhou J, Li C, Sachs N, Chiu MC, Wong BHY, Chu H, et al. Differentiated human airway organoids to

assess infectivity of emerging influenza virus. Proc Natl Acad Sci U S A. 2018; 115: 6822–6827.

https://doi.org/10.1073/pnas.1806308115 PMID: 29891677

54. Furukawa BS, Flume PA. Nontuberculous Mycobacteria in Cystic Fibrosis. Semin Respir Crit Care

Med. 2018; 39: 383–391. https://doi.org/10.1055/s-0038-1651495 PMID: 30071553

55. Qvist T, Taylor-Robinson D, Waldmann E, Olesen HV, Hansen CR, Mathiesen IH, et al. Comparing

the harmful effects of nontuberculous mycobacteria and Gram negative bacteria on lung function in

patients with cystic fibrosis. J Cyst Fibros. 2016; 15: 380–385. https://doi.org/10.1016/j.jcf.2015.09.

007 PMID: 26482717

56. Qvist T, Eickhardt S, Kragh KN, Andersen CB, Iversen M, Høiby N, et al. Chronic pulmonary disease

with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J. 2015; 46: 1823–1826.

https://doi.org/10.1183/13993003.01102-2015 PMID: 26493807

57. Chakraborty P, Bajeli S, Kaushal D, Radotra BD, Kumar A. Biofilm formation in the lung contributes to

virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun. 2021;12. https://doi.org/

10.1038/S41467-021-21748-6 PMID: 33707445

58. Esteban J, Garcı́a-Coca M. Mycobacterium Biofilms. Front Microbiol. 2018;8. https://doi.org/10.3389/

FMICB.2017.02651 PMID: 29403446

59. Kolpen M, Kragh KN, Enciso JB, Faurholt-Jepsen D, Lindegaard B, Egelund GB, et al. Bacterial bio-

films predominate in both acute and chronic human lung infections. Thorax. 2022; 77: 1015–1022.

https://doi.org/10.1136/thoraxjnl-2021-217576 PMID: 35017313

60. Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, et al. The biofilm life

cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20. https://doi.

org/10.1038/S41579-022-00767-0 PMID: 35922483

61. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; 1–51. https://doi.

org/10.1111/apm.12099 PMID: 23635385

62. Wu B (Catherine), Haney EF, Akhoundsadegh N, Pletzer D, Trimble MJ, Adriaans AE, et al. Human

organoid biofilm model for assessing antibiofilm activity of novel agents. npj Biofilms and Microbiomes

2021 7:1. 2021; 7: 1–13. https://doi.org/10.1038/s41522-020-00182-4 PMID: 33495449

63. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, et al. Host genotype-specific therapies

can optimize the inflammatory response to mycobacterial infections. Cell. 2012; 148: 434. https://doi.

org/10.1016/j.cell.2011.12.023 PMID: 22304914

64. Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, et al. The distinct fate of smooth and

rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016;6. https://doi.org/10.

1098/rsob.160185 PMID: 27906132

65. Ufimtseva EG, Eremeeva NI, Petrunina EM, Umpeleva T V., Bayborodin SI, Vakhrusheva D V., et al.

Mycobacterium tuberculosis cording in alveolar macrophages of patients with pulmonary tuberculosis

is likely associated with increased mycobacterial virulence. Tuberculosis. 2018; 112: 1–10. https://doi.

org/10.1016/j.tube.2018.07.001 PMID: 30205961

66. Lerner TR, Queval CJ, Lai RP, Russell MRG, Fearns A, Greenwood DJ, et al. Mycobacterium tubercu-

losis cords within lymphatic endothelial cells to evade host immunity. JCI Insight. 2020;5. https://doi.

org/10.1172/jci.insight.136937 PMID: 32369443

67. Kam JY, Hortle E, Krogman E, Warner SE, Wright K, Luo K, et al. Rough and smooth variants of Myco-

bacterium abscessus are differentially controlled by host immunity during chronic infection of adult

zebrafish. Nat Commun. 2022;13. https://doi.org/10.1038/S41467-022-28638-5 PMID: 35177649

PLOS PATHOGENS Druggable redox pathways against M. abscessus in cystic fibrosis airway organoids

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011559 August 24, 2023 22 / 24

https://doi.org/10.1016/j.jcf.2022.01.008
https://doi.org/10.1016/j.jcf.2022.01.008
http://www.ncbi.nlm.nih.gov/pubmed/35110005
https://doi.org/10.1183/13993003.02529-2017
http://www.ncbi.nlm.nih.gov/pubmed/30166324
https://doi.org/10.1007/s10863-018-9748-x
http://www.ncbi.nlm.nih.gov/pubmed/29524019
https://doi.org/10.15252/embj.2020105912
http://www.ncbi.nlm.nih.gov/pubmed/33283287
https://doi.org/10.1073/pnas.1806308115
http://www.ncbi.nlm.nih.gov/pubmed/29891677
https://doi.org/10.1055/s-0038-1651495
http://www.ncbi.nlm.nih.gov/pubmed/30071553
https://doi.org/10.1016/j.jcf.2015.09.007
https://doi.org/10.1016/j.jcf.2015.09.007
http://www.ncbi.nlm.nih.gov/pubmed/26482717
https://doi.org/10.1183/13993003.01102-2015
http://www.ncbi.nlm.nih.gov/pubmed/26493807
https://doi.org/10.1038/S41467-021-21748-6
https://doi.org/10.1038/S41467-021-21748-6
http://www.ncbi.nlm.nih.gov/pubmed/33707445
https://doi.org/10.3389/FMICB.2017.02651
https://doi.org/10.3389/FMICB.2017.02651
http://www.ncbi.nlm.nih.gov/pubmed/29403446
https://doi.org/10.1136/thoraxjnl-2021-217576
http://www.ncbi.nlm.nih.gov/pubmed/35017313
https://doi.org/10.1038/S41579-022-00767-0
https://doi.org/10.1038/S41579-022-00767-0
http://www.ncbi.nlm.nih.gov/pubmed/35922483
https://doi.org/10.1111/apm.12099
https://doi.org/10.1111/apm.12099
http://www.ncbi.nlm.nih.gov/pubmed/23635385
https://doi.org/10.1038/s41522-020-00182-4
http://www.ncbi.nlm.nih.gov/pubmed/33495449
https://doi.org/10.1016/j.cell.2011.12.023
https://doi.org/10.1016/j.cell.2011.12.023
http://www.ncbi.nlm.nih.gov/pubmed/22304914
https://doi.org/10.1098/rsob.160185
https://doi.org/10.1098/rsob.160185
http://www.ncbi.nlm.nih.gov/pubmed/27906132
https://doi.org/10.1016/j.tube.2018.07.001
https://doi.org/10.1016/j.tube.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/30205961
https://doi.org/10.1172/jci.insight.136937
https://doi.org/10.1172/jci.insight.136937
http://www.ncbi.nlm.nih.gov/pubmed/32369443
https://doi.org/10.1038/S41467-022-28638-5
http://www.ncbi.nlm.nih.gov/pubmed/35177649
https://doi.org/10.1371/journal.ppat.1011559


68. Roca FJ, Ramakrishnan L. TNF Dually Mediates Resistance and Susceptibility to Mycobacteria

Through Mitochondrial Reactive Oxygen Species. Cell. 2013; 153: 521. https://doi.org/10.1016/J.

CELL.2013.03.022 PMID: 23582643

69. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. TNF induces pathogenic mitochon-

drial ROS in tuberculosis through reverse electron transport. Science. 2022; 376: eabh2841. https://

doi.org/10.1126/SCIENCE.ABH2841 PMID: 35737799

70. Berg RD, Levitte S, O’Sullivan MP, O’Leary SM, Cambier CJ, Cameron J, et al. Lysosomal Disorders

Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell. 2016; 165: 139.

https://doi.org/10.1016/j.cell.2016.02.034 PMID: 27015311

71. Cambier CJ, Falkow S, Ramakrishnan L. Host Evasion and Exploitation Schemes of Mycobacterium

tuberculosis. Cell. 2014; 159: 1497–1509. https://doi.org/10.1016/j.cell.2014.11.024 PMID: 25525872

72. Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, et al. Mycobacterial ESX-1

secretion system mediates host cell lysis through bacterium contact-dependent gross membrane dis-

ruptions. Proc Natl Acad Sci U S A. 2017; 114: 1371–1376. https://doi.org/10.1073/pnas.1620133114

PMID: 28119503

73. Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L. Phenolic Glycolipid Facilitates

Mycobacterial Escape from Microbicidal Tissue-Resident Macrophages. Immunity. 2017; 47: 552.

https://doi.org/10.1016/j.immuni.2017.08.003 PMID: 28844797

74. Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium

abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int J Mol Sci.

2019;20. https://doi.org/10.3390/IJMS20235868 PMID: 31766758
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