
HAL Id: hal-04193791
https://ut3-toulouseinp.hal.science/hal-04193791

Preprint submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoNeTTE: An efficient Audio Captioning system
leveraging multiple datasets with Task Embedding

Etienne Labbé, Thomas Pellegrini, Julien Pinquier

To cite this version:
Etienne Labbé, Thomas Pellegrini, Julien Pinquier. CoNeTTE: An efficient Audio Captioning system
leveraging multiple datasets with Task Embedding. 2023. �hal-04193791�

https://ut3-toulouseinp.hal.science/hal-04193791
https://hal.archives-ouvertes.fr


CoNeTTE: An efficient Audio Captioning system
leveraging multiple datasets with Task Embedding

Étienne Labbé, Thomas Pellegrini, Julien Pinquier
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Abstract—Automated Audio Captioning (AAC) involves gen-
erating natural language descriptions of audio content, using
encoder-decoder architectures. An audio encoder produces audio
embeddings fed to a decoder, usually a Transformer decoder,
for caption generation. In this work, we describe our model,
which novelty, compared to existing models, lies in the use of
a ConvNeXt architecture as audio encoder, adapted from the
vision domain to audio classification. This model, called CNext-
trans, achieved state-of-the-art scores on the AudioCaps (AC)
dataset and performed competitively on Clotho (CL), while using
four to forty times fewer parameters than existing models. We
examine potential biases in the AC dataset due to its origin
from AudioSet by investigating unbiased encoder’s impact on
performance. Using the well-known PANN’s CNN14, for instance,
as an unbiased encoder, we observed a 1.7% absolute reduction in
SPIDEr score (where higher scores indicate better performance).
To improve cross-dataset performance, we conducted experi-
ments by combining multiple AAC datasets (AC, CL, MACS,
WavCaps) for training. Although this strategy enhanced overall
model performance across datasets, it still fell short compared to
models trained specifically on a single target dataset, indicating
the absence of a one-size-fits-all model. To mitigate performance
gaps between datasets, we introduced a Task Embedding (TE)
token, allowing the model to identify the source dataset for each
input sample. We provide insights into the impact of these TEs
on both the form (words) and content (sound event types) of
the generated captions. The resulting model, named CoNeTTE,
an unbiased CNext-trans model enriched with dataset-specific
Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5%
on AC and CL, respectively. For the sake of reproducibility, we
have made our code publicly available1.

Index Terms—Audio-language task, automated audio caption-
ing, dataset biases, task embedding, deep learning

I. INTRODUCTION

IN recent years, natural language processing has gained
significant popularity and emerged as a universal interface
facilitating human-machine interactions, owing to remarkable
advancements in machine learning systems. Unlike prede-
fined class sets, human-generated free text typically contains
more comprehensive information, encompassing relationships
between entities, complex scene descriptions, and object at-
tributes. Initially introduced for image content, the image cap-
tioning task aims to create models capable of describing visual
content using natural language (e.g., [1]). This concept was
extended to audio processing, giving rise to Automated Audio
Captioning (AAC) (e.g., [2]), with the goal of generating text-
based descriptions for audio content.

AAC systems use encoder-decoder architectures, where
an audio encoder provides a sequence of embeddings to a

1https://github.com/Labbeti/conette-audio-captioning

decoder, either a recurrent neural network or a Transformer
decoder, responsible for generating a caption [3], [4]. In
this work, we describe our model referred to as CNext-
trans, in which the audio encoder is a fully convolutional
neural network adapted from the vision domain, the well-
known ConvNeXt architecture [5]. The decoder is a vanilla
Transformer decoder, trained from scratch on the AAC datasets
at hand. As we will report here-after, CNext-trans performed
very favorably on AudioCaps (AC) [6] and Clotho (CL) [7],
two datasets widely used in AAC.

All the existing systems, including ours, use audio encoders
pretrained on at least AudioSet (AS) [8]. This rises a bias issue
when doing experiments on AC, since the AC audio recordings
were selected from the training subset of AS. In this work, we
compare the use of biased and unbiased audio encoders on
AC, and we observe that the difference in AAC performance
between the two is relatively small.

Next, we explore combining four AAC datasets (AC, CL,
MACS [9], WavCaps [10]) for training. This was motivated
by the fact that a model trained on AC performs badly on CL,
and vice versa. We observe that simply combining all these
data enhanced the overall performance across datasets, but it
still fell short compared to models trained on a single target
dataset, indicating the absence of a one-size-fits-all model. To
bridge the performance gap between datasets, we introduce
Task Embedding (TE) tokens at the input of the decoder,
enabling the model to identify the dataset source for each input
sample. We analyze the influence of these TEs on the form
(words) and content (sound event types) of generated captions.
Our final CoNeTTE model, an unbiased CNext-trans with
dataset-specific Task Embeddings, achieved the best cross-
dataset performance trade-off, and is a path towards a one-
size-fits-all model.

After presenting recent AAC works from the literature, we
describe our system in Section III and the datasets used to
train and evaluate it with the different potential bias problems
in Section IV. We detail all the hyperparameters, metrics and
first audio tagging results to study data biases in Section V.
Then, we present our final results on AC and CL, and compare
to state-of-the-art systems. Finally, we report dataset combin-
ing experiments and the introduction of our task embedding
strategy in Section VI-B.

II. RELATED WORK

To address the AAC task, numerous architectures, data
augmentation techniques, and training objectives have been

https://github.com/Labbeti/conette-audio-captioning


proposed in the literature. In this study, we focus on the meth-
ods applied to the two main datasets used in our article: AC
and CL. We exclude works that use a Reinforcement Learning
procedure to artificially boost captioning performance metrics,
as they tend to produce low-quality captions with repetitive
n-grams [11]. Additionally, ensemble learning results, which
combine several model predictions, have also been excluded,
as they are commonly employed in AAC challenges.

All recent systems employ a pretrained audio encoder
network, combined with a Transformer-like architecture [12]
as a word decoder. The authors of [13] employed a test-
time data augmentation technique named MM-TTA [14] to
average the representations of multiple augmented versions of
the same input. Gaussian noise and SpecAugment [15] were
used to produce variants, and the method can average the
representations at different levels in the network. The system
also utilizes mixup [16] data augmentation during training
between audio waveforms and spectrograms and concatenates
the corresponding caption labels. They employed a full Trans-
former architecture with an encoder network named Audio
Captioning Transformer [17], pretrained on AS for Audio
Tagging like most models. Their system currently holds the
state-of-the-art position on AC without external training data.

Some studies have proposed using a pretrained decoder
to improve the language generation part, as seen in [18],
where the authors employed a Transformer decoder named
BART [19] to enhance caption quality. However, the audio
embedding space is usually too different from the sentence
embedding space, leading to the pretrained decoder forgetting
most of its previous knowledge. To overcome this, they
combined two audio encoders. The first one produces sound
event tags detected in the audio file, which are given to the
BART input embedding layer and added to the audio embed-
dings extracted from another audio encoder. This approach
is expected to make the BART inputs closer to the ones
expected by the pretrained weights. The first encoder is a
YAMNet [20] architecture, and the second encoder is the
Wavegram-Logmel-CNN from the Pretrained Audio Neural
Networks study (PANN) [21].

Recently, the authors of [10] introduced a new captioning
dataset named WavCaps. Each caption in this dataset is a raw
description crawled from various websites and processed with
ChatGPT2. Their dataset is an order of magnitude larger than
other AAC datasets. They trained several models for different
audio-language tasks, comparing CNN14 and HTS-AT [22] as
pretrained audio encoders, and BART as a pretrained decoder.
HTS-AT-BART achieved the current state-of-the-art score on
AC with the use of external data.

On CL, the DCASE challenges compile most of the results
obtained over the last years3. The authors of [23] proposed
using a ResNet38 model from PANN as the encoder, with a
standard Transformer decoder model. They also crawled audio
files from the Web and processed uploaders’ raw descriptions

2https://openai.com/blog/chatgpt/
3https://dcase.community/

to create a larger training corpus for their model, obtaining data
from several websites. Additionally, some data augmentation
techniques, such as noise and reverberation, were used to
improve generalization.

The PaSST-trans [24] system proposed using another pre-
trained encoder named PaSST [25]. They used a Transformer
model with the Patchout method, randomly dropping patches
of the spectrograms and flattening the results to obtain shorter
sequences as input. Their models were trained on AC, CL, and
MACS, with the use of mixup and label smoothing.

The authors of [26] presented a simple model based on
CNN14 and a Transformer decoder, trained exclusively on
CL, which makes this system similar to our CNN14-trans
(see below). Three differences compared to our variant may
explain their better results: they employed Stochastic Weight
Averaging [27] to average models over several epochs for
testing (similar to ensembling), they pretrained the word
embeddings, and their decoder has a lower number of trainable
parameters.

Finally, the system that achieved first place in the
most recent DCASE 2023 Challenge Task 6a4 is the
BEATs+Conformer [28] system. It utilizes BEATs [29] as
a pretrained encoder to produce audio features, which ranks
among the current state-of-the-art audio tagging models on
AS. The audio features are then downsampled by a trainable
Conformer network [30] and given to a BART pretrained
decoder to generate the captions. Moreover, they used an
Instructor-XL model [31], based on a T5 Transformer [32], to
generate embeddings from captions and used them as targets
with Conformer outputs and InfoNCE [33] loss. Finally, these
outputs are used to feed a pretrained BART decoder to generate
the captions.

Our AAC system is similar to the ones described above, with
two main differences: i) our encoder is a ConvNeXt model,
ii) our decoder is a vanilla Transformer decoder randomly
initialized. As described in details here-after, this combination
allowed us to achieve high performance, while significantly
reducing model size compared to many existing AAC systems.

III. OUR SYSTEM: CNEXT-TRANS

A. Architecture

Our system is a deep neural network that employs a stan-
dard encoder-decoder architecture. The encoder part produces
frame-level audio embeddings, and the decoder predicts the
next word according to the previous ones and to the audio
representation. Each caption is preceded by a Begin-Of-
Sentence token (<bos>) and followed by an End-Of-Sentence
token (<eos>). We train our model using the teacher forcing
method, which always gives the ground truth previous tokens
to the model, in contrast to scheduled sampling methods which
use the previous predicted tokens as inputs to the decoder. The
model outputs give the probabilities of the next word that are
compared with the ground truth next word using a standard
Cross-Entropy (CE) loss. During inference, we loop on the

4https://dcase.community/challenge2023/

https://openai.com/blog/chatgpt/
https://dcase.community/
https://dcase.community/challenge2023/


Projection

Previous words
"<bos> Rain falls while"

Decoder

Next word
probabilities

"wind": 0.6
"gust": 0.3

"<eos>": 0.02
...Reference

"<bos> Rain falls while wind blows <eos>"

Next word
"wind"

Minimize loss
(Cross Entropy)

Pretrained Encoder
(frozen)

Fig. 1. Overview of our AAC training process. The model is composed by an audio encoder which produces a frame-level audio representation of the audio
and a captioning decoder which produces the next word distribution according to the previous words and to the audio. This process is repeated for each word
in the reference, except for the Begin-Of-Sentence (<bos>) token.

decoder forward method to produce each word of the sentence
sequentially by adding the most probable next word to the
previous words until an EOS token or the maximal number of
words is reached. An illustration of the training procedure is
giving in Fig. 1.

B. Audio encoder: CNN14 and ConvNeXt-Tiny

In our experiments, we considered two types of pretrained
encoders for AAC: the CNN14 model from PANN and Con-
vNeXt [5] (CNext), a computer vision convolutional neural
network that we previously adapted for audio tagging in our
work [34]. We observed that a superior encoder generally
results in better audio representations, which are crucial for
the decoder to produce accurate captions. Both models were
pretrained on AS, the largest audio tagging corpus with
approximately 2 million labeled audio files. The code and
weights of our CNext audio encoder are available5.

CNN14 is a standard vanilla convolutional-based network
consisting of six ConvBlock layers. Each ConvBlock com-
prises two sequences of convolutions, batch normalization, and
ReLU activation, followed by 2-dimensional average pooling.
These layers generate a frame-level sequence of embeddings
with a size of 2048. We removed the pooling, projection, and
classification layers used to predict the AS classes.

The CNext models are based on depthwise separable con-
volutions [35] (DSC) and inverted bottleneck [36] (IB) layers.
DSC involves a sequence of depthwise convolutions that
process feature channels separately, followed by a pointwise
convolution to mix them. This technique aims to produce
results similar to standard convolutional layers while reducing
the number of operations to speed up training and mitigate
overfitting. The IB layer is a sequence of a pointwise convo-
lution layer that increases the number of channels, followed by
a GELU [37] activation, and by another pointwise convolution
layer that reverts the number of channels back to its value at
the bottleneck input. The output is then added to the original
input to create a residual connection, preventing vanishing
gradient issues and reducing the number of parameters com-
pared to a standard residual block. All the hyperparameters and
training details of the ConvNeXt-Tiny model that we used are
described in [34].

5https://github.com/topel/audioset-convnext-inf

We incorporated a small network on top of these encoders to
project the audio frame embeddings onto a subspace with the
same dimension dmodel as that of the decoder network. This
additional network consists of a 0.5 dropout, a linear layer, a
ReLU activation function, and another 0.5 dropout. The linear
layer takes embeddings of size 2048 for CNN14 and 768 for
CNext.

C. Word decoder
The decoder network is a standard Transformer decoder [12]

with 6 layers, 8 attention heads per layer, a global embedding
size dmodel set to 256, a layer norm epsilon set to 10−5, a
global dropout probability of 0.2 and a feedforward dimension
size set to 2048. We used the GELU activation layer in the
decoder. These hyperparameters were obtained after a few tests
on both data sets.

Like almost all AAC systems, we employed the well-known
beam-search algorithm widely used in speech processing [38]
during inference to improve subtitle quality and accuracy. We
implemented a per-batch version of the beam search algorithm
which speeds up the sentence generation by a factor of 10, but
requires more memory to run. This algorithm usually leads
to generic and repetitive content, which can be penalized by
certain metrics. We introduced a constraint during inference to
avoid repeats to words that are in previous tokens. We decided
to allow repeating a pre-defined list of stop-words from the
Natural Language ToolKit (NLTK) [39] package. We found
that it can improve diversity and limit repetition while slightly
decrease n-gram based metrics. This constraint can forbid a lot
of repetitions in the predicted sentences like “a man speaks
while a man speaks”, but we found that the model can still
produce repetitive content with closely related words like in
“children speak and child speaks”. In addition, we limit the
minimal number of tokens predicted to 3 and the maximal
number to 20 or 30 during inference to avoid few cases of
degenerated sentences.

D. Tackling overfitting
We noticed in our first experiments that our model can easily

overfit the training data, even with small networks with less
than 10M parameters. We found that using a large weight
decay value with the AdamW optimizer [40] drastically over-
came this issue [41]. In addition, we searched to apply data

https://github.com/topel/audioset-convnext-inf


augmentation during training. This case is particular for AAC
task since a lot of audio transformations (reverb, background
noise, pitch shifting...) of the audio can be described in the
target captions. We decided to focus on the following three
data-agnostic augmentations.

Mixup [16] is used on the decoder inputs (audio embeddings
and previous token embeddings) as in [24], [42] to improve
the robustness of our model. We also tried to mix target labels,
but it did not bring any improvements. The algorithm is shown
in Eq. 1 and resumes how mixup is used in our system. x1

corresponds to an audio embedding with its label y1 and x2

is another audio embedding from the current batch, with its
label y2. α is a fixed hyperparameter, W denotes the input
word embedding layer and f is the rest of the AAC decoder
network.

λ ∼ Beta(α, α)
λ = max(λ, 1− λ)

xmix = λx1 + (1− λ)x2

w1 = W (y1,prev)

w2 = W (y2,prev)

wmix = λw1 + (1− λ)w2

zmix = f(xmix, wmix)

L = CE(zmix, y1,next)

(1)

SpecAugment [15] is applied on the audio frame em-
beddings, outputted by the audio encoder. We found that
using this augmentation on spectrograms or audio embeddings
provides similar improvements, but applying it on embeddings
allowed us to pre-compute the encoder outputs and drastically
accelerate the experiments. We modified the behavior of this
augmentation to mask a proportion of the time and feature axes
instead of using an absolute mask size. Each axis is masked
twice, with a mask size sampled between 0 and 10% of the
total axis size (number of time steps or embedding size).

Label smoothing [43] is employed on target captions to limit
the maximum probability of the model for each token and
reduce overfitting.

IV. DATASETS AND POTENTIAL BIASES

A. Descriptions

In a first series of experiments, we used AC and CL sepa-
rately. In a second setting, we added training data from Multi-
Annotator Captioned Soundscapes (MACS) and WavCaps. We
report statistics about the number of word types, tokens, etc.
about the training subsets in Table I, to show how these
datasets differ in content.

AudioCaps (AC) is the largest human-labeled AAC dataset
of originally 51,308 audio files, taken from a subset of the
(unbalanced) training subset of AudioSet (AS). AC contains
three splits, and because the original YouTube videos are
removed for various reasons, our version contains only 46,213
out of 49,838 files in the training subset, 464 out of 495 in the
validation subset and 912 out of 975 files in the test subset.

The training subset files are described by only one caption per
audio, while the validation and test files are described by five
captions each.

Clotho (CL) is a smaller dataset containing files extracted
from the FreeSound website. The training subset contains 3840
files and the validation and test subsets contain 1045 files each.
Unlike some papers in the literature [44], we did not use the
validation subset to train our model. All subsets contain five
captions per audio and each caption was corrected by a second
set of annotators to remove grammatical, subjectivity, fluency,
or repetition errors.

Multi-Annotator Captioned Soundscapes (MA) is another
AAC dataset containing audio files from the development
subset of the TAU Urban Acoustic Scenes 2019 [45] dataset.
The sound events have been recorded in different acoustic
scenes like airports, public squares, and parks. Each annotator
labeled audio files with a predefined set of sound event classes,
then with a free-text caption.

WavCaps (WC) is the largest audio captioning dataset,
containing 403,050 audio-caption pairs. It is a collection of
audio recordings from the AudioSet Strongly Labeled subset,
FreeSound, SoundBible and BBC Sound Effects. Captions
have been generated by a ChatGPT model, using the audio
event classes for the AudioSet subset or the original human
descriptions for the other subsets. WC features a large diversity
in audio length: from 1 second to 18 hours long.

We used our own source code to download and load
the dataset files, available as a Python package named aac-
datasets6.

TABLE I
STATISTICS FOR AC, CL, MA AND WC SUBSETS USED FOR TRAINING.

AC CL MA WC
Sample rate (Hz) 32000 44100 48000 32000
Audio duration range (s) 0.5-10 15-30 10 1-67109
Nb audio 46,213 3839 3930 403,050
Audio size (h) 126.6 24.0 10.9 7563.3
Vocabulary size 4585 4369 2721 24600
Nb words 401,650 217,360 159,879 3,161,823
Caption length range 2-40 8-20 2-40 2-38
Caption length mean 8.7 11.3 9.3 7.8
Nb captions per audio 1 5 2-5 1

B. Potential training data biases in AAC

We identified two types of potential biases when carrying
out AAC experiments on AC and CL, which concern either the
pretrained audio encoders or the whole AAC systems. These
biases may arise because of overlaps within the data sources,
either between AAC and Audio Tagging (AT) datasets, or
between AAC datasets. We report the overlap proportions
between datasets CL, AC, WC, AS and FSD50K in Table II.

Most AAC systems use audio encoders pretrained to per-
form AT, either on AS or on the audio tagging dataset

6https://github.com/Labbeti/aac-datasets

https://github.com/Labbeti/aac-datasets


FSD50K [46]. However, the whole AC dataset is actually a
subset of the AS training subset, which means that an encoder
pretrained on AS has already seen 100% of the audio files
of AC, even the validation and testing ones. This implies
that the encoder already “knows” the sound events of AC.
This bias concerns all audio-language tasks (audio captioning
and audio retrieval) involving AS and AC in their procedure.
Figure 2 summarizes this data bias (or data leak) that we want
to highlight.

To a much smaller extent, the same problem occurs when
pretraining on FSD50K and running AAC experiments on CL,
since about 5% of the CL files are shared with FSD50K’s
training subset (extracted from the FreeSound Website).

The second type of bias, which may impact whole AAC
systems, involves the WC dataset. WC comprises files from
both FreeSound and AS, which are the data sources of CL
and AC, respectively. One has to take care of removing these
overlaps (18% in common with AC, and 89% in common with
CL), when pretraining an audio encoder (first bias mentioned
above), and when training an AAC system.

There could also be overlaps between FSD50K or WC
with the CL private subsets used in the DCASE challenge
task 6a, which means that the results of the models trained
on these datasets could be overestimated. These potential
overlaps remain unknown to us, since the audio file IDs are
not available.

2nd phase (AAC training)1st phase (AT training)

Transfer
Learning

Encoder

Classifier

Encoder

Decoder

CAPTIONS
("a man is speaking", ...)

AUDIO EVENT CLASSES
("speech", "rain", ...)

AUDIOSET TRAIN AUDIO AUDIOCAPS DEV AUDIO

3rd phase (AAC testing)

Encoder

Decoder

CAPTIONS
("rain falls on a roof", ...)

AC audios come from AS train set

AUDIOCAPS TEST AUDIO

Use weights
for testing

Fig. 2. Illustration of the bias that may occur when using an audio encoder
pretrained on AS for experiments on AC. All the subsets of AC come from
the AS training subset, which means that the encoder part of the AAC systems
were trained on the validation and testing data for audio tagging, a task closely
related to AAC.

TABLE II
OVERLAP PROPORTIONS BETWEEN AAC/AT DATASETS.

Dataset A Dataset B Overlap (%) B labels type
AC AS-train 100.0 Tags
CL FSD50K-train 5.4 Tags
AC WC 17.6 Captions
CL WC 89.0 Captions

C. Task Embedding

After obtaining our results on AC and CL without external
data, we attempted to improve performance by adding more

training data. Surprisingly, we observed a decrease in results.
Previous work [47] noted that the sound events and writing
styles of AC and CL can form distinct domains, which can
perturb models trained on both datasets compared to those
trained separately. Many AAC studies [24], [10], [48] handle
external data by splitting the training into two phases: the first
one involves training on all available captioning datasets, while
the second one entails fine-tuning on the target dataset only
(AC or CL).

However, we believe that a single AAC system should be
capable of leveraging multiple captioning datasets, given a hint
to the model. To achieve this, we introduced a Task Embedding
(TE) tag as input to the decoder, dependent on the audio
dataset source, such as <bos_ac>, <bos_cl>, etc. This tag
replaces the <bos> token used at the sentence’s beginning
and enables the model to generate an output closer to the
desired writing style. We initially employed this method in our
participation in the DCASE Challenge 2023 [49], where our
best system achieved third place. In this study, we expanded
on this approach by using more datasets and TE tokens.
Interestingly, another DCASE participant [50] also utilized a
TE approach to leverage different datasets (CL, AC, and AS),
employing a system based on the speech automatic recognition
system Whisper [51]. However, their system performed worse
and was ranked seventh in the challenge.

To test this method, we attempted to add all publicly avail-
able AAC datasets: AC, CL, MA, and WC. We excluded over-
lapping data between AC and WC and between CL and WC to
avoid biases. Additionally, we removed audio files lasting for
more than 30 seconds in WC, as this is the maximum length
of the test audio files of CL. As WC contains four different
sources, we added a task embedding tag for each of them,
resulting in seven tasks for all datasets. The concatenation of
all the audio captioning datasets (CL+AC+MA+WC) yielded
316,122 training audio files. Moreover, we decided to balance
data with the target dataset (AC or CL). For example, on CL,
we took the 3,840 files of CL and randomly selected another
3,840 files from the other datasets, resulting in 7,680 audio
training seen files per epoch. For AC, we used their 46,213
files and an equal number from other datasets to train with
92,426 files per epoch. We tested other balancing strategies,
but this approach yielded the best results.

V. EXPERIMENTAL SETUP

A. Data pre-processing

All the captions are written in lowercase, and all punctu-
ation characters are removed. Sentences are tokenized using
spaCy [52]. For CL and MA, we resample all audio files from
44.1 kHz and 48 kHz to 32 kHz to match the input sampling
rates of the encoders. During training, for CL, we randomly
select one of the five captions for each audio file at each epoch
in the training subset.

As for AC, we manually corrected a portion of the training
captions. This subset contains various mistakes, such as typo-
graphic errors (e.g., “Continous” corrected to “Continuous”),
named entities (e.g., “Michael Jackson”), invalid descriptions



(e.g., “Video is unplayable”), speech content (e.g., “A large
crowd of people chanting “USA” [...]”), or grammar errors
(e.g., “A engine” corrected to “An engine”). Additionally, we
excluded captions containing more than 40 words. To create a
second version of the AC training subset, we manually fixed
968 captions and deleted 28 files.

B. Metrics

Evaluating AAC system outputs is a challenging task, as the
predicted candidates should contain the same audio events as
the references (ground truth), but not necessarily described in
the exact same way. Historically, machine translation metrics
were used for system comparison, but they primarily rely on
n-gram overlapping, which diminishes their correlation with
human judgments in captioning evaluation.

The CIDEr-D [53] metric was developed for image cap-
tioning and takes word frequency into account. It calculates
the cosine similarity of the TF-IDF scores for common n-
grams in both candidates and references. SPICE [54] proposes
a comparison of scene graphs containing semantic propositions
extracted from sentences using a parser, handcrafted grammar,
and custom rules. However, CIDEr-D tends to overvalue candi-
dates containing infrequent n-grams, even if they lack syntactic
correctness [11], while SPICE tends to give zero scores when
the extracted propositions do not match [55]. SPIDEr [56]
was introduced to consider both metrics by averaging their
scores. Nevertheless, as CIDEr-D values range from 0 to 10
and SPICE values range from 0 to 1, CIDEr-D has a more
significant influence on the SPIDEr score.

In several recent studies, SPIDEr has faced criticism, for
example for its lack of sensitivity to repetitions [57], [58],
[59]. To establish a more robust evaluation of AAC systems,
the authors of [55] created FENSE, a metric based on two
pretrained models for comparing sentence embeddings rather
than n-grams. FENSE employs two models: a Sentence-BERT
(SBERT) model and a Fluency Error Detector model. The
SBERT model is trained to generate fixed-size embeddings
that can be compared using cosine similarity (referred to as
SBERT-sim). The Fluency Error Detector model is trained
to detect common mistakes made by AAC systems, such as
repetitive n-grams, incomplete sentences, repetitive adverbs,
missing conjunctions, and missing verbs. The FENSE score is
equal to SBERT-sim when no error is detected by the Fluency
Error Detector model; otherwise, the score is divided by 10.

In this work, we report SPIDEr, FENSE and the number of
unique words used (named #Words or sometimes Uniq. in the
literature). We have regrouped all the code needed to compute
these metrics into our package aac-metrics7, which is publicly
available online.

C. Hyperparameters

We provide a detailed account of all the training hyperpa-
rameter values in Table III. Throughout our experiments, we
validate and select our models using the FENSE score on the

7https://github.com/Labbeti/aac-metrics

TABLE III
TRAINING AND DECODING HYPERPARAMETERS PER DATASET.

Name
Value

AC CL
Batch size 512
Optimizer AdamW
Initial learning rate (lr0) 5 · 10−4

β1 0.9

β2 0.999

ϵ 10−8

Weight decay 2

Gradient clip norm type ℓ2

mixup param. (α) 0.4

Min prediction size 3

Nb. Epochs (K) 100 400
Gradient clip norm value 10 1
Label smoothing 0.1 0.2
Max prediction size 30 20

Beam size 2 3

validation subset. Unlike the validation likelihood loss, this
metric evaluates the sentence generation of our models, and
we have found it to be more stable than the loss or SPIDEr
values. The latter tends to vary drastically among different
seeds due to its sensitivity to predicted n-grams [59].

The weight decay is not applied to the bias weights of the
networks. To prevent models from collapsing, we used gradi-
ent clipping [60]. During the AAC training phase, we freeze
the encoder, enabling us to pre-compute audio embeddings
and significantly reducing the training time. On a single GPU
V100 with 32 GB of memory, AAC experiments take only
one hour on AC and three hours on CL. The learning rate is
decreased during training at the end of each epoch k using a
cosine scheduler rule 2:

lrk =
1

2

(
1 + cos

(
kπ

K

))
lr0 (2)

D. Audio tagging results on AudioCaps with and w/o bias

In this subsection, we evaluate the impact of the training
data bias on AC first in terms of audio tagging. We pretrained
CNN14 and CNext encoders on AS with and without the
AC training, validation, and testing files. Table IV reports the
mean Average Precision (mAP) scores of these classifiers on
the AS evaluation subset, as well as on the validation and
testing subset files of AC. We compare the CNN14 original
weights from PANN with our own trained weights (denoted
as CNN14*), as well as with our own encoder CNext.

The audio tagging results show that, as expected, models
trained on the full AS (with bias) achieved significantly
higher mAP scores than without bias (lines denoted AS-AC
in the table). CNext’s mAP on AC-test decreased from 0.749
to 0.585, representing a relative decrease of -21.9%. This
suggests that the model already possesses good knowledge of
the sound events in AC-val and AC-test subsets. However, the

https://github.com/Labbeti/aac-metrics


TABLE IV
TAGGING MAP SCORES ON AS EVAL, AC VAL AND AC TEST.

Encoder Train data AS-eval AC-val AC-test
CNN14 [21] AS .431 .717 .647
CNN14* AS .441 .755 .727
CNext AS .471 .774 .749
CNN14* AS-AC .434 .642 .537
CNext AS-AC .465 .669 .585

score on AS-eval remains stable, with only a slight decrease
from 0.471 to 0.465 (-1.3% relative drop). Similar trends are
observed with CNN14*, indicating the potential importance
of considering this bias when evaluating AAC systems. In the
next section, we report AAC results, and we will see that the
impact of this specific bias on AC is somehow smaller than in
audio tagging, with SPIDEr score relative reductions of about
-5%.

VI. AUDIO CAPTIONING RESULTS ON AC AND CL

In this section, we discuss the results of our systems with
and without bias, and the impact of using external data in
the first subsection. We then explore the effect of adding
new training data using TEs or not in the second subsection.
Finally, we study the impact of TEs on the generated captions.

A. Results without external data

Table V presents results on the AC and CL datasets.
“Human” top-line scores are computed by randomly excluding
one of the five references for each audio file and using it as a
candidate. This provides an inter-agreement score (also called
cross-referencing score) between the ground truth references,
which is repeated five times and averaged for each subset.
These scores offer an idea of the upper bound for each metric.
We also report results obtained by state-of-the-art methods
presented in section II, and our own results. All of our results
are averaged over the same five initialization seeds.

On AC, we report results from recent systems from the
literature, in which we identified a presumable bias due to
their pretrained encoders, since they did not mention that the
AC files were removed from AS during the AT pretraining of
their encoders. Regarding our systems, the CNext-trans model
outperformed CNN14-trans in all contexts, as we expected
given its higher performance in audio tagging. Our biased
CNext-trans model outperformed the previous state-of-the-art
method by 1.0% absolute, without using any external data
and with an order of magnitude fewer trainable parameters.
However, the unbiased CNext-trans model, which did not use
the AC audio files in pretraining (AS-AC), experienced a
2.9% absolute points drop, representing only a -5.9% relative
decrease. This indicates that the data bias in this pretrained
model still had an impact on performance for the AAC task,
related to the AT performance reduction of the model (which
was a -21.9% relative drop). The FENSE scores seem to be
correlated with the SPIDEr values and demonstrate that the
CNext encoder provided better representations to the decoder

part, both with and without data bias. The number of words
used varies from 353 to 396 words, but this is not always
correlated with SPIDEr.

On CL, the CNext-trans model continues to outperform
other models and achieves a performance close to CNN14-
BART, despite having fewer parameters and training data.
We have attained the state-of-the-art score for models that
do not use any external data. We also observe that the
richer representation provided by CNext allows the decoder to
produce captions with higher word diversity (545 word types
with CNN14-trans compared to 636 with CNext-trans).

Furthermore, we note that our SPIDEr score on AC is
close to the cross-reference one with only 6.4% absolute
difference, but the SPIDEr scores on CL remains much
lower than the cross-reference score, with a 26.2% absolute
difference. However, the FENSE scores are both close (3.7%
and 5.7%), indicating that the model produces captions that
are semantically close to the references but struggle to find
the correct n-grams or propositions. AC is much less diverse
than CL in terms of vocabulary (944 and 1818 word types,
respectively), and the SPIDEr score is mostly influenced by
several predictions that almost fully match the references,
resulting in a higher SPIDEr score.

B. Improved results with Task Embedding

To create a general-purpose AAC system, we evaluated
different training methods for our CNext-trans model on the
two evaluation sets, as shown in Table VI. The first approach
involved training our model separately on each dataset. Then,
we attempted to add other datasets and balance the target
dataset. Finally, we introduced the TE method to improve
overall performance.

When we added all the external data described in IV-C
without TE, the results of our system decreased on both
datasets, primarily due to the different writing styles present
in the combined data. It became evident that a model trained
on one specific dataset performed poorly on the other. For
example, a model trained on AC achieved only a 14.6%
SPIDEr score on CL. Similarly, a model trained on all the
datasets without TE also performed inadequately, with a 19.1%
SPIDEr score.

However, when we introduced TE, the results of CoNeTTE
improved slightly, depending on the balanced dataset. More
notably, when examining the performance on the non-balanced
datasets, the performance showed significant improvement
with TE, indicating that the model made better use of external
data. As a result, the best global model performance was
achieved when using CoNeTTE trained with CL balanced data.

C. Does Task Embedding change form or content, or both?

To assess the ability of CoNeTTE to produce captions
in different writing styles, we tested its ability to generate
captions on the CL testing subset with two TE tokens: the CL
and the AC ones. Specifically, Tables VII and VIII present
various outputs from our model with these two different
TEs. These examples demonstrate that the model generates



TABLE V
AAC RESULTS ON AC AND CL TESTING SUBSETS. ENC∗ MEANS THAT THERE IS A POTENTIAL BIAS IN THE ENCODER. CNN14 INDICATES THAT WE
USED THE ORIGINAL WEIGHTS FROM PANN, WHILE CNN14* DENOTES OUR OWN TRAINED WEIGHTS. WC-AC REFERS TO THE WAVCAPS DATASET
WITHOUT SOURCES OVERLAPPING WITH EITHER THE AC VALIDATION OR TESTING SUBSETS. WC-CL DENOTES THE WAVCAPS DATASET WITHOUT

SOURCES OVERLAPPING WITH CL VALIDATION AND TESTING SUBSETS.

Test
System

Pretraining Training
Biased SPIDEr FENSE #Words

Trainable Frozen
data data data params params

AC

Cross-referencing ∅ ∅ N/A .559 .680 944.0 0 0
HTSAT-BART [10] AS AC+WC-AC Enc∗ .485 N/A N/A 171M 0
Multi-TTA [13] AS AC Enc∗ .475 N/A N/A 108M 0
PYB [18] AS AC Enc∗ .465 N/A N/A 400M 0
CNN14-trans (ours) AS AC Enc .443 .615 383.2 12.3M 75.5M
CNN14*-trans (ours) AS AC Enc .456 .625 390.4 12.3M 75.5M
CNext-trans (ours) AS AC Enc .495 .643 393.0 12.0M 28.2M
CNN14*-trans (ours) AS-AC AC No .439 .607 354.0 12.3M 75.5M
CNext-trans (ours) AS-AC AC No .466 .633 396.4 12.0M 28.2M

CL

Cross-referencing ∅ ∅ N/A .567 .574 1818.2 0 0
BEATs+Conformer [28] AS CL+AC No .326 N/A N/A 127M 1.5B
CNN14-BART [10] AS CL+WC-CL No .310 N/A N/A 219M 0
ResNet38-trans [23] AS CL+AC+4 others N/A .308 N/A N/A 81M 0
PaSST-trans [24] AS CL+AC+MA No .296 .511 N/A 119M 441M
CNN14-trans [26] AS CL No .285 N/A N/A 8M 75.5M
CNN14-trans (ours) AS CL No .265 .482 500.2 12.2M 75.5M
CNN14*-trans (ours) AS CL No .274 .491 545.2 12.2M 75.5M
CNext-trans (ours) AS CL No .299 .512 636.8 11.9M 28.2M
CNN14*-trans (ours) AS-AC CL No .259 .477 522.6 12.2M 75.5M
CNext-trans (ours) AS-AC CL No .301 .516 628.2 11.9M 28.2M

TABLE VI
AAC RESULTS ON AC AND CL TESTING SUBSETS. A BALANCED DATASET REPRESENTS 50% OF THE EXAMPLES SEEN DURING AN EPOCH TO FOCUS

TRAINING ON THAT SPECIFIC DATASET. WC* DENOTES THE WAVCAPS DATASET WITHOUT OVERLAPPING SOURCES WITH AC AND CL TRAINING,
VALIDATION AND TESTING SUBSETS, AND WITHOUT AUDIO LASTING FOR MORE THAN 30 SECONDS.

System TE Training data Balanced data
AC-test CL-test

SPIDEr FENSE #Words SPIDEr FENSE #Words
CNext-trans No AC N/A .466 .633 396.4 .146 .465 401.4
CNext-trans No AC+CL+MA+WC* AC .456 .627 396.8 .191 .484 472.4
CoNeTTE Yes AC+CL+MA+WC* AC .468 .630 379.8 .252 .498 467.4

CNext-trans No CL N/A .231 .521 525.2 .301 .516 628.2
CNext-trans No AC+CL+MA+WC* CL .364 .591 376.0 .295 .510 589.2
CoNeTTE Yes AC+CL+MA+WC* CL .441 .609 331.2 .305 .517 639.0

different captions depending on the TE provided. Additionally,
we report the SPIDEr, FENSE, vocabulary size, and average
sentence length in Table IX for both TEs and testing subsets.
For instance, on the CL test subset, the sentence length
decreased from 10.8 to 7.2, and the vocabulary size dropped
from 639.0 to 412.2 words when using the CL TE versus the
AC TE. As shown by the decrease in the SPIDEr score from
.305 to .227 when using the AC TE, there was a slight drop in
performance when using the wrong TE for a dataset. However,
despite these changes, we calculated the SPIDEr between the
two different outputs and found it to be relatively high at 1.148,
indicating that the sentences still contain similar content.

To further explore the difference between the different TE,
we reported as supplementary material the distributions of
unigrams and trigrams of stemmed words, and of pos-tags

in the candidates and references of AC and CL. We observed
that the number of prepositions and conjunctions was twice
as high when using the CL TE compared to the AC TE on
AC and CL test subsets, suggesting that the captions adopt
different formulations. The TE also appears to imitate some
specific trigrams like “followed by a” from AC and “in the
background” from CL. Moreover, the trigrams corresponding
to audio events are not always in the same ranking order when
using different TEs, indicating that TEs also have an impact
on the nature of the sound events described in the captions.

VII. CONCLUSIONS

In this article, we introduced our novel CNext-trans model
and its refined version, CoNeTTE, which demonstrated state-
of-the-art results on AudioCaps with 49.5% SPIDEr and



TABLE VII
CAPTIONS GENERATED WITH TWO DIFFERENT TES WITH THEIR

CORRESPONDING REFERENCES ON THE AUDIO FILE ID “35b9BSmN5JM”.

Task Candidates SPIDEr FENSE
AC A vehicle engine idling and revving .283 .592

CL
An engine is idling and revving up

.249 .577
and down

References
Loud vibrating followed by revving
Truck in idle mode, door closing, engine revving and accelerating
A wooden thud as an idle car engine runs then accelerates
A motor vehicle accelerates and revs
An engine running

TABLE VIII
CAPTIONS GENERATED WITH TWO DIFFERENT TES WITH THEIR

CORRESPONDING REFERENCES ON THE AUDIO FILE “Diving Bell
1.wav”.

Task Candidates SPIDEr FENSE
AC A musical instrument is playing a note .037 .325

CL
A gong is struck and echoes in a steady

.198 .588
rhythm

References
A bell is struck by a mallet, and the noise resonates for some time.
A heavy chime is struck and rings loudly at an even tone.
A mallet strikes a bell and the sound resonates for a time.
A single bell is sounded and its reverberations felt all around.
single bell sound followed by its vibration sound

closely approached the state-of-the-art on Clotho with 30.1%
SPIDEr, all while utilizing fewer parameters than existing
models. Additionally, we shed light on potential biases when
using AudioCaps and showcased that employing an unbiased
pretrained audio encoder has an adverse impact on perfor-
mance, with 46.6% SPIDEr.

Notably, in CoNeTTE, we introduced Task Embedding (TE)
tags as input to the model, allowing for the combination of
several AAC datasets during training. The utilization of TEs
effectively addresses the performance gaps observed across
AAC datasets by efficiently merging data rather than relying
solely on simple concatenation. However, we also uncovered
that dataset balancing during training significantly influences
the final performance, implying that the one-size-fits-all model
still retains some dependency on a specific dataset.

TABLE IX
VOCABULARY AND SENTENCE AVERAGE SIZES ON AC AND CL TEST

SUBSETS, WITH AC AND CL TES AND THE CONETTE MODEL TRAINED
WITH CL BALANCED DATA.

Test Task SPIDEr FENSE #Words #Sent
AC AC .441 .609 331.2 7.5
AC CL .307 .576 517.2 10.8

CL AC .227 .493 412.2 7.2
CL CL .305 .517 639.0 10.8

To provide a comprehensive analysis, we presented exam-
ples and insights into the impact of TEs on the generated
captions, supplemented by word stem and POS tag distri-
butions in the supplementary material. Nevertheless, further
investigation in this area would be valuable and intriguing. The
combination of AAC datasets warrants additional exploration,
either through discovering an optimal balancing policy across
datasets or by extending the application of TEs beyond what
was used in this study.

ACKNOWLEDGMENTS

This work was partially supported by the Agence Nationale
de la Recherche the LUDAU (Lightly-supervised and Un-
supervised Discovery of Audio Units using Deep Learning)
project (ANR-18-CE23-0005-01) and the ANR-3IA Artificial
and Natural Intelligence Toulouse Institute. This work was
granted access to the HPC resources of IDRIS under the
allocation 2022-AD011013739 made by GENCI.

REFERENCES

[1] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” in 2015 IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer
Society, jun 2015, pp. 3156–3164.

[2] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio captioning
with recurrent neural networks,” in 2017 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), 2017, pp. 374–
378.

[3] X. Mei, X. Liu, M. D. Plumbley, and W. Wang, “Automated audio cap-
tioning: an overview of recent progress and new challenges,” EURASIP
Journal on Audio, Speech, and Music Processing, vol. 2022, no. 1, p. 26,
Oct 2022.

[4] X. Xu, M. Wu, and K. Yu, “A comprehensive survey of automated audio
captioning,” ArXiv, vol. abs/2205.05357, 2022.

[5] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in 2022 IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022, pp. 11 966–11 976.

[6] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Generating
captions for audios in the wild,” in Proc. of the 2019 Conf. of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics,
Jun. 2019, pp. 119–132.

[7] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an audio captioning
dataset,” in 2020 IEEE International Conf. on Acoustics, Speech and
Signal Processing, ICASSP 2020, Barcelona, Spain, May 4-8, 2020.
IEEE, 2020, pp. 736–740.

[8] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter, “Audio Set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE International
Conf. on Acoustics, Speech and Signal Processing (ICASSP). New
Orleans, LA: IEEE, Mar. 2017, pp. 776–780.

[9] I. Martin and A. Mesaros, “Diversity and bias in audio captioning
datasets,” in Proc. of the 6th Detection and Classification of Acoustic
Scenes and Events 2021 Workshop (DCASE2021), Barcelona, Spain,
November 2021, pp. 90–94.

[10] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. Plumbley,
Y. Zou, and W. Wang, “WavCaps: A ChatGPT-assisted weakly-labelled
audio captioning dataset for audio-language multimodal research,” arXiv
preprint arXiv:2303.17395v1, 2023.

[11] X. Mei, Q. Huang, X. Liu, G. Chen, J. Wu, Y. Wu, J. Zhao, S. Li, T. Ko,
H. L. Tang, X. Shao, M. D. Plumbley, and W. Wang, “An encoder-
decoder based audio captioning system with transfer and reinforcement
learning,” 2021.



[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[13] E. Kim, J. Kim, Y. Oh, K. Kim, M. Park, J. Sim, J. Lee, and K. Lee,
“Improving audio-language learning with mixgen and multi-level test-
time augmentation,” 2022.

[14] I. Shin, Y.-H. Tsai, B. Zhuang, S. Schulter, B. Liu, S. Garg, I. S. Kweon,
and K.-J. Yoon, “MM-TTA: Multi-modal test-time adaptation for 3d
semantic segmentation,” in CVPR, 2022.

[15] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A simple data augmentation method for
automatic speech recognition,” in Interspeech 2019. ISCA, sep 2019.

[16] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in 6th International Conf. on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conf. Track Proc. OpenReview.net, 2018.

[17] X. Mei, X. Liu, Q. Huang, M. D. Plumbley, and W. Wang, “Audio cap-
tioning transformer,” in Proc. of the 6th Detection and Classification of
Acoustic Scenes and Events 2021 Workshop (DCASE2021), Barcelona,
Spain, November 2021, pp. 211–215.

[18] F. Gontier, R. Serizel, and C. Cerisara, “Automated audio captioning by
fine-tuning bart with audioset tags,” in Proceedings of the 6th Detec-
tion and Classification of Acoustic Scenes and Events 2021 Workshop
(DCASE2021), Barcelona, Spain, November 2021, pp. 170–174.

[19] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” in Proc. of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 7871–7880.

[20] M. Plakal and D. Ellis, “YAMNet.”
[21] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, and M. Plumbley, “PANNs: Large-

Scale Pretrained Audio Neural Networks for Audio Pattern Recog-
nition,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 2880–2894, 01 2020.

[22] K. Chen, X. Du, B. Zhu, Z. Ma, T. Berg-Kirkpatrick, and S. Dubnov,
“Hts-at: A hierarchical token-semantic audio transformer for sound
classification and detection,” in ICASSP 2022 - 2022 IEEE International
Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp.
646–650.

[23] Q. Han, W. Yuan, D. Liu, X. Li, and Z. Yang, “Automated audio
captioning with weakly supervised pre-training and word selection
methods,” in Proc. of the 6th Detection and Classification of Acoustic
Scenes and Events 2021 Workshop (DCASE2021), Barcelona, Spain,
November 2021, pp. 6–10.

[24] T. Kouzelis, G. Bastas, A. Katsamanis, and A. Potamianos, “Effi-
cient audio captioning transformer with patchout and text guidance,”
DCASE2022 Challenge, Tech. Rep., July 2022.

[25] K. Koutini, J. Schlüter, H. Eghbal-zadeh, and G. Widmer, “Efficient
Training of Audio Transformers with Patchout,” in Proc. Interspeech
2022, 2022, pp. 2753–2757.

[26] H. Won, B. Kim, I.-Y. Kwak, and C. Lim, “CAU submission to
DCASE 2021 task6: Transformer followed by transfer learning for audio
captioning,” DCASE2021 Challenge, Tech. Rep., July 2021.

[27] P. Izmailov, D. Podoprikhin, T. Garipov, D. P. Vetrov, and A. G. Wilson,
“Averaging weights leads to wider optima and better generalization,” in
Conf. on Uncertainty in Artificial Intelligence, 2018.

[28] S.-L. Wu, X. Chang, G. Wichern, J.-w. Jung, F. Germain, J. L. Roux, and
S. Watanabe, “BEATs-based audio captioning model with INSTRUC-
TOR embedding supervision and ChatGPT mix-up,” DCASE2023 Chal-
lenge, Tech. Rep., May 2023.

[29] S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen, and F. Wei,
“BEATs: Audio pre-training with acoustic tokenizers,” 2022.

[30] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-
augmented transformer for speech recognition,” 2020.

[31] H. Su, W. Shi, J. Kasai, Y. Wang, Y. Hu, M. Ostendorf, W. tau Yih, N. A.
Smith, L. Zettlemoyer, and T. Yu, “One embedder, any task: Instruction-
finetuned text embeddings,” 2023.

[32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning

with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, jan 2020.

[33] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018.

[34] T. Pellegrini, I. Khalfaoui-Hassani, E. Labbé, and T. Masquelier, “Adapt-
ing a ConvNeXt model to audio classification on AudioSet,” in Accepted
to Interspeech. ISCA, sep 2023.

[35] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

[37] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2016.
[38] B. T. Lowerre, “The harpy speech recognition system.” Ph.D. disserta-

tion, Carnegie Mellon University, USA, 1976.
[39] S. Bird, E. Klein, and E. Loper, Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

[40] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
7th International Conf. on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[41] E. Labbé, J. Pinquier, and T. Pellegrini, “Multitask learning in audio
captioning: a sentence embedding regression loss acts as a regularizer,”
2023.

[42] D. Takeuchi, Y. Koizumi, Y. Ohishi, N. Harada, and K. Kashino,
“Effects of word-frequency based pre- and post- processings for audio
captioning,” 2020.

[43] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–
2826.

[44] X. Mei, X. Liu, J. Sun, M. D. Plumbley, and W. Wang, “Diverse audio
captioning via adversarial training,” 2022.

[45] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device dataset for
urban acoustic scene classification,” in Proc. of the Detection and Clas-
sification of Acoustic Scenes and Events 2018 Workshop (DCASE2018),
November 2018, pp. 9–13.

[46] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “Fsd50k: An
open dataset of human-labeled sound events,” IEEE/ACM Trans. Audio,
Speech and Lang. Proc., vol. 30, p. 829–852, dec 2021.

[47] J. Berg and K. Drossos, “Continual learning for automated audio
captioning using the learning without forgetting approach,” in Proc. of
the 6th Detection and Classification of Acoustic Scenes and Events 2021
Workshop (DCASE2021), Barcelona, Spain, November 2021, pp. 140–
144.

[48] W. Yuan, Q. Han, D. Liu, X. Li, and Z. Yang, “The DCASE 2021
challenge task 6 system: Automated audio captioning with weakly super-
vised pre-traing and word selection methods,” DCASE2021 Challenge,
Tech. Rep., July 2021.

[49] E. Labbé, T. Pellegrini, and J. Pinquier, “Irit-ups dcase 2023 audio
captioning and retrieval system,” DCASE2023 Challenge, Tech. Rep.,
May 2023.

[50] M. Kadlčı́k, A. Hájek, J. Kieslich, and R. Winiecki, “A whisper
transformer for audio captioning trained with synthetic captions and
transfer learning,” DCASE2023 Challenge, Tech. Rep., May 2023.

[51] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” in Proc. ICML. PMLR, 2023, pp. 28 492–28 518.

[52] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy:
Industrial-strength Natural Language Processing in Python,” 2020.

[53] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider: Consensus-based
image description evaluation,” in 2015 IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 4566–4575.

[54] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in Computer Vision – ECCV
2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 382–398.

[55] Z. Zhou, Z. Zhang, X. Xu, Z. Xie, M. Wu, and K. Q. Zhu, “Can
audio captions be evaluated with image caption metrics?” in ICASSP
2022 - 2022 IEEE International Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2022, pp. 981–985.



a is and
speak

man
run engin

by woman

vehicl
follow

are in the an
0

0.05

0.1

0.15

0.2
D

e
n
si

ty

.173

.106

.088

.060
.051

.024 .024
.018 .016 .014 .014 .013 .012 .012 .010

(a) Distribution of the unigrams in the candidate captions on AC-test with AC TE.

a is and
the in background

speak
while

man
are run peopl

talk
it then

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

.129

.110

.055 .052
.045

.036
.031 .030 .027 .024

.010 .010 .010 .010 .010

(b) Distribution of the unigrams in the candidate captions on AC-test with CL TE.

a and
speak

is man
by the follow

in engin
talk

with
an then

as
0

0.05

0.1

0.15

0.2

D
e
n
si

ty

.110

.065

.032
.024 .023 .022 .020 .018 .016 .016 .015 .015 .014 .012 .012

(c) Distribution of the unigrams in the reference captions on AC-train.

a and
by follow

speak
man

as the talk
in with

then
engin

is an
0

0.05

0.1

0.15

0.2

D
e
n
si

ty

.113

.057

.032 .028 .027 .025 .023 .020 .018 .018 .017 .016 .015 .014 .014

(d) Distribution of references unigrams on AC-test.

Fig. 3. Distributions of unigrams on AC-test and AC-train.

[56] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved
image captioning via policy gradient optimization of spider,” in IEEE
International Conf. on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017. IEEE Computer Society, 2017, pp. 873–881.

[57] I. Martı́n-Morató, M. Harju, and A. Mesaros, “A summarization ap-
proach to evaluating audio captioning,” in Proc. of the 7th Detection
and Classification of Acoustic Scenes and Events 2022 Workshop
(DCASE2022), Nancy, France, November 2022.

[58] F. Gontier, R. Serizel, and C. Cerisara, “SPICE+: Evaluation of Auto-
matic Audio Captioning Systems with Pre-Trained Language Models,”
in ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[59] E. Labbé, T. Pellegrini, and J. Pinquier, “Is my Automatic Audio
Captioning System so Bad? SPIDEr-max: A Metric to Consider Several
Caption Candidates,” in Proc. of the 7th Detection and Classification
of Acoustic Scenes and Events 2022 Workshop (DCASE2022), Nancy,
France, November 2022.

[60] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. of the 30th International Conf. on
International Conf. on Machine Learning - Volume 28, ser. ICML’13.
JMLR.org, 2013, p. III–1310–III–1318.



a is and
are run chirp

the engin
by in bird

vehicl
water

on background

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

.128

.102

.082

.033
.026

.021 .020 .020 .019 .019 .018 .017 .017 .015 .015

(a) Distribution of candidates unigrams on CL-eval with AC TE.

a is the and
in are background

on chirp
peopl

of talk
bird

while
by

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

.122

.085

.058

.045 .043
.036 .032

.019 .015 .013 .013 .013 .013 .012 .012

(b) Distribution of candidates unigrams on CL-eval with CL TE.

a the and
is in of are as on with

while
bird

background

water
then

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

.090

.047 .044
.034

.026
.018 .015 .012 .012 .011 .011 .011 .010 .010 .009

(c) Distribution of references unigrams on CL-dev.

a the and
is in of are with

on as bird
while

background

water
chirp

0

0.05

0.1

0.15

0.2

D
e
n
s
it
y

.090

.047 .044
.034

.027
.018 .014 .012 .012 .012 .011 .011 .010 .009 .009

(d) Distribution of references unigrams on CL-eval.

Fig. 4. Distributions of unigrams on CL-eval and CL-dev.

a-man-is

man-is-speak

is-speak-and

a-man-speak

and-a-man

engin-is-run

follow-by-a

is-run-and

speak-and-a

in-the-background

vehicl-engin-is

a-vehicl-engin

a-woman-is

run-and-a

speak-follow-by

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.045

.040

.028

.024
.022

.018
.016 .016

.013 .013 .012 .012 .011 .011 .011

(a) Distribution of candidates trigrams on AC-test with AC TE.

in-the-background

a-man-is

man-is-speak

is-speak-while

a-woman-is

a-person-is

peopl-are-talk

is-speak-and

chirp-in-the

speak-while-a

bird-are-chirp

machin-is-run

talk-in-the

woman-is-speak

a-machin-is

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.045

.033

.028

.019

.009 .009 .008 .008 .008 .007 .007 .007 .007 .007 .006

(b) Distribution of candidates trigrams on AC-test with CL TE.

follow-by-a

in-the-background

a-man-speak

a-man-talk

in-the-distanc

into-a-microphon

by-a-man

blow-into-a

a-woman-speak

talk-in-the

speak-follow-by

talk-follow-by

wind-blow-into

as-a-man

a-man-is

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.018

.013
.011

.009

.005 .005 .004 .004 .004 .004 .004 .003 .003 .003 .003

(c) Distribution of references trigrams on AC-train.

a-man-speak

follow-by-a

in-the-background

a-woman-speak

a-man-talk

in-the-distanc

and-a-man

a-man-is

an-adult-male

speak-follow-by

by-a-man

man-speak-and

give-a-speech

speak-and-a

adult-male-speak

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.012
.011 .010

.005 .005 .004 .003 .003 .003 .003 .002 .002 .002 .002 .002

(d) Distribution of references trigrams on AC-test.

Fig. 5. Distributions of trigrams on AC-test and AC-train.



engin-is-run

in-the-background

is-run-and

bird-are-chirp

peopl-are-talk

vehicl-engin-is

a-vehicl-engin

a-person-is

are-chirp-and

a-hard-surfac

a-man-is

run-and-a

man-is-speak

open-and-close

on-a-hard

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.023
.020 .020

.018 .017 .016
.015 .014 .014

.012 .012 .011 .011 .011 .010

(a) Distribution of candidates trigrams on CL-eval with AC TE.

in-the-background

a-person-is

peopl-are-talk

are-talk-in

talk-in-the

bird-are-chirp

chirp-in-the

a-machin-is

machin-is-run

wind-is-blow

the-wind-is

at-a-constant

person-is-walk

a-hard-surfac

are-chirp-in

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.039

.014 .014
.012 .012 .012

.010
.008 .008 .008 .007 .007 .007 .007 .007

(b) Distribution of candidates trigrams on CL-eval with CL TE.

in-the-background

in-the-distanc

a-person-is

bird-are-chirp

chirp-in-the

peopl-are-talk

talk-in-the

bird-chirp-in

open-and-close

back-and-forth

to-each-other

a-group-of

a-machin-is

in-the-foreground

a-hard-surfac

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.011

.003 .003 .002 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001

(c) Distribution of references trigrams on CL-dev.

in-the-background

a-person-is

in-the-distanc

bird-are-chirp

chirp-in-the

peopl-are-talk

talk-in-the

in-the-foreground

open-and-close

a-person-walk

a-group-of

are-chirp-and

a-machin-is

back-and-forth

wind-is-blow

0

0.01

0.02

0.03

0.04

0.05

D
e
n
si

ty

.011

.003 .003 .003 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001

(d) Distribution of references trigrams on CL-eval.

Fig. 6. Distributions of trigrams on CL-eval and CL-dev.

NN DT VBG
VBZ

CC NNS
IN VBN

VBP
JJ RB VB PRP$

VBD
RP

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.307

.195

.147

.110

.088

.054
.040

.024 .016 .011
.003 .002 .002 .001 .001

(a) Distribution of candidates POS-TAGs on AC-test with AC TE.

NN DT VBG
VBZ

IN CC NNS
VBP

RB JJ VBN
RP PRP$

PRP
VB

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.227

.188

.143

.119 .117

.055
.040

.026 .023 .016 .014 .009 .009 .005 .004

(b) Distribution of candidates POS-TAGs on AC-test with CL TE.

NN DT IN VBG
NNS

CC JJ VBZ
RB VBN

VBP
RP VB CD PRP

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.293

.150

.103
.092 .088

.065
.055 .050

.038
.026

.018
.005 .004 .003 .002

(c) Distribution of references POS-TAGs on AC-train.

NN DT IN VBG
NNS

CC JJ VBN
VBZ

RB VBP
RP VB CD VBD

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.303

.153
.134

.099
.082

.057 .051
.033 .032 .029

.013
.003 .003 .002 .001

(d) Distribution of references POS-TAGs on AC-test.

Fig. 7. Distributions of POS-TAGs on AC-test and AC-train.



NN VBG
DT VBZ

CC IN NNS
VBP

JJ VBN
VBD

RB RP PRP$
WRB

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.260

.166 .158

.104

.082
.073 .066

.034
.026 .022

.005 .002 .001 .000 .000

(a) Distribution of candidates POS-TAGs on CL-eval with AC TE.

NN DT IN VBG
VBZ

NNS
CC VBP

JJ VBN
RB RP PRP

VB VBD

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.226

.185

.142
.127

.091

.056
.045 .038 .036

.016 .014 .012
.003 .003 .002

(b) Distribution of candidates POS-TAGs on CL-eval with CL TE.

NN DT IN VBG
NNS

JJ VBZ
CC RB VBP

VBN
RP PRP

TO VBD

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.232

.154
.137

.081 .081
.064 .061

.047 .042
.025 .018 .012 .009 .008 .007

(c) Distribution of references POS-TAGs on CL-dev.

NN DT IN VBG
NNS

JJ VBZ
CC RB VBP

VBN
RP PRP

TO VBD

0

0.05

0.1

0.15

0.2

0.25

0.3

D
e
n
si

ty

.234

.154
.138

.082 .082
.064 .060

.046 .040
.024 .018 .011 .009 .008 .007

(d) Distribution of references POS-TAGs on CL-eval.

Fig. 8. Distributions of POS-TAGs on CL-eval and CL-dev.


	Introduction
	Related Work
	Our system: CNext-trans
	Architecture
	Audio encoder: CNN14 and ConvNeXt-Tiny
	Word decoder
	Tackling overfitting

	Datasets and potential biases
	Descriptions
	Potential training data biases in AAC
	Task Embedding

	Experimental setup
	Data pre-processing
	Metrics
	Hyperparameters
	Audio tagging results on AudioCaps with and w/o bias

	Audio captioning results on AC and CL
	Results without external data
	Improved results with Task Embedding
	Does Task Embedding change form or content, or both?

	Conclusions
	References

