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Résumé
Le problème de vérification en argumentation abstraite
consiste à déterminer si un ensemble est acceptable sous
une sémantique donnée dans un graphe d’argumentation
donné. Cet article s’attache à expliquer la réponse retour-
née. Des explications visuelles en termes de sous-graphes
du cadre d’argumentation initial sont définies. Ces expli-
cations sont regroupées en classes, ce qui permet de sélec-
tionner l’explication qui convient le mieux dans un contexte
donné parmi l’ensemble des possibilités offertes. Des résul-
tats montrent comment utiliser les aspects visuels de ces
explications pour soutenir l’acceptabilité d’un ensemble
d’arguments sous une sémantique. Les aspects computa-
tionnels d’explications spécifiques sont également étudiés.

Mots-clés
Systèmes multi-agents, XAI, explications visuelles, argu-
mentation formelle.

Abstract
The Verification Problem in abstract argumentation
consists in checking whether a set is acceptable under a
given semantics in a given argumentation graph. Explai-
ning why the answer is so is the challenge tackled by this
paper. Visual explanations in the form of subgraphs of the
initial argumentation framework are defined. These expla-
nations are grouped into classes, allowing one to select the
explanation that suits them best among the several offered
possibilities. Results are provided on how to use the visual
aspects of these explanations to support the acceptability
of a set of arguments under a semantics. Computational as-
pects of specific explanations are also investigated.

Keywords
Multi-Agents Systems, XAI, Visual Explanations, Formal
Argumentation.

1 Introduction
Abstract Argumentation is increasingly studied as a formal
tool to provide explanations in the context of eXplainable
Artificial Intelligence (XAI). The term argumentative XAI
has emerged, with a number of application domains, ran-
ging from machine learning, to decision, medicine or secu-

rity (see [19] for an overview). [7] presents the current ap-
proaches of argumentative XAI and their open challenges,
and underlines that explanations for the argumentative pro-
cess itself are necessary too.
The basic argumentation process relies on an abstract struc-
ture which takes the form of a directed graph, whose nodes
are arguments and edges represent attacks between argu-
ments [10]. Characterising the acceptability of arguments
can take the form of extension-based semantics : they de-
fine sets (extensions) of arguments which are collectively
acceptable according to the semantics. The main questions
which have been addressed so far in this context concern the
global acceptability status of an argument or of a set of ar-
guments, that is, why, under a given semantics, they belong
to at least one extension (credulous acceptance) or to every
extension (skeptical acceptance). The most common expla-
nation approach consists in identifying set(s) of arguments
which act as explanation(s), as in [12, 4, 5, 18, 13, 1]. Ho-
wever, since the argumentative process of Abstract Argu-
mentation already provides ways for selecting arguments,
explaining this process by more selection of arguments (al-
though different ones) may not be fully helpful. Moreover,
this set approach does not highlight the attacks which are
involved in the explanations.
Another question regarding the argumentation process
concerns the Verification Problem Ver, defined as follows :
given an Argumentation Framework A, a set of arguments
S and an extension-based semantics σ, “Is S an extension
under σ in A?”. The answer to this problem is “yes” or
“no”. In order to explain why the answer is so, the eXpla-
nation Verification Problem XVer can be defined using the
question Qσ : “Why is S (not) an extension under σ inA?”.
[2] is one of the only approaches which has addressed this
problem and which has provided answers for some accep-
tability semantics of [10] in the form of relevant subgraphs,
as in [17, 15, 16]. Such a visual approach is particularly
of interest for human agents, graphs having been shown to
be helpful for humans to comply with argumentation rea-
soning principles [20]. This graph-based approach not only
highlights arguments, but also attacks. In [2], properties that
these answers satisfy have been established, depending on
whether the answer to the corresponding verification pro-
blem is “yes” or “no”. This methodology follows the line



of [6] in that an explanation for a set S satisfying a seman-
tic σ is a (set of) subgraph(s) G of A such that G satisfies a
given graph property C. Another interesting point in [2] is
that the considered semantics are based on a modular defi-
nition, which allows the explanations to be decomposed.
A limitation of [2] is however that, for each semantic prin-
ciple, a single explanation subgraph is defined. It could be
more realistic to consider classes (sets) of explanations. In-
deed such classes would be particularly meaningful and
useful when several agents, human or artificial, are invol-
ved around the explanation of a same problem, in that they
offer a variety of answers, which all follow a same schema,
but which may differ on their exact content. Any agent can
choose or can be presented an explanation that suits them
best, and any agent can understand an explanation given by
another agent, different from theirs. Classes of explanations
adapt to a wide set of agents.
As in [2], the approach that will be presented in this paper
goes further, by considering the possibility that the answer
to the Verification Problem is not known before an explana-
tion be asked and given. In this case, the explanation graph
and its interpretation offer at a same time the answer to the
problem and a justification to this answer.
Only few related works can be found concerning this no-
tion of classes of explanation. Such classes have already
been proposed in [1] for the problem of credulous accep-
tance of an argument, where the authors consider explana-
tion schemes made of several elements, one of them being
fixed, the other ones varying from one explanation to ano-
ther. Another related work is [4] in which the authors de-
fine a parametric computation of explanations. As such, it is
more the computation processes that are grouped in classes,
rather than the explanations (i.e. results of the processes)
themselves.
Thus, our aim in the current paper is to define classes of
explanations following a generic methodology, applied to
classical semantics (conflict-free, admissible, stable, com-
plete), by building up on the approach of [2]. Additional
properties (emptyness, uniqueness, maximality, minimality,
computation) of explanations on these new classes will be
defined and investigated.
Sec. 2 recalls background notions relative to abstract argu-
mentation, graph theory, and presents the explanation ap-
proach defined in [2]. Classes of explanations are defined
in Sec. 3, Sec. 4 studies their properties ; Sec. 5 shows
how to compute their maximal and minimal explanations
and illustrates the whole approach on an example. Sec. 6
concludes and presents some future works. Proofs of all the
results can be found in [8]

2 Background notions
2.1 Argumentation and Graph Theory
We begin by recalling basic notions on Abstract Argumen-
tation.

Definition 1 ([10]) A Dung’s argumentation framework
(AF) is an ordered pair (A,R) such that R ⊆ A×A.

Each element a ∈ A is called an argument and aRb means
that a attacks b. For S ⊆ A, we say that S attacks a ∈ A iff
bRa for some b ∈ S. Any argumentation framework can be
represented as a directed graph (the nodes are the arguments
and the edges correspond to the attack relation).

Example 1 Let consider A = (A = {a, b, c, d, e}, R =
{(a, b), (d, b), (b, c), (c, e)}).A is depicted by the following
figure :

A
a

b c

d

e

The main asset of Dung’s approach is the definition of se-
mantics using some basic properties in order to define sets
of acceptable arguments, as follows.

Definition 2 ([10]) LetA = (A,R). An argument a ∈ A is
acceptable wrt S ⊆ A iff for all b ∈ A, if bRa then ∃c ∈ S
st cRb.

Definition 3 ([10]) GivenA = (A,R), a subset S of A is :
— a conflict-free set iff there are no a and b in S such

that a attacks b,
— an admissible set iff S is conflict-free and for any

a ∈ S, a is acceptable wrt S,
— a complete extension iff S is admissible and for any

a ∈ A, if a is acceptable wrt S then a ∈ S,
— a stable extension iff S is conflict-free and S attacks

any a ∈ A \ S.

Example 2 Let consider againA given in Ex. 1. Here there
is a unique complete and stable extension : {a, d, c} whe-
reas there are 6 admissible sets : {}, {a}, {d}, {a, c},
{d, c}, {a, d, c}.

The Verification Problem for the four semantics given in
Def. 3 can be solved in polynomial time, as indicated by
[11].

Example 3 Considering A given in Ex. 1, an instance of
the Verification problem could be : “Is {} a stable exten-
sion?”; in this case the answer will “no”. Another instance
would be : “Is {a, d, c} a complete extension?”; in this
case the answer will “yes”.

Since an AF can be represented using directed graphs, we
also need to recall some basic notions of Graph Theory.

Definition 4 Let G = (V,E) and G′ = (V ′, E′) be two
graphs.

— G′ is a subgraph of G iff V ′ ⊆ V and E′ ⊆ E. 1

— G′ is a strict subgraph of G iff it is a subgraph of G
and either V ′ ⊂ V or E′ ⊂ E. 2

1. G is then a supergraph of G′

2. G is then a strict supergraph of G′



— G′ is an induced subgraph of G by V ′ if G′ is a
subgraph of G and for all a, b ∈ V ′, (a, b) ∈ E′ iff
(a, b) ∈ E. G′ is denoted as G[V ′]V .

— G′ is a spanning subgraph of G by E′ if G′ is a sub-
graph of G and V ′ = V . G′ is denoted as G[E′]E .

A subgraph G′ of G is included in G. In an induced sub-
graph G′ of G by a set of vertices S, some vertices of G
can be missing but all the edges concerning the kept ver-
tices are present. In a spanning subgraph G′ of G by a set
of edges S, all the vertices of G are present but some edges
of G can be missing.

Example 4 Let consider A given in Ex. 1. An example of
an induced (resp. spanning) subgraph of A is given in the
left (resp. right) following figure :

a
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Induced and spanning subgraphs are examples of ways to
compute a graph from another single graph. Another ope-
ration producing a new graph from other ones is the union
that represents the aggregation of the information contained
in the two graphs :

Definition 5 (Graph union) Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs. The union of G1 and G2 is defined
by G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Let us consider also a particular kind of graphs, bipartite
graphs, whose set of vertices can be split in two disjoint
sets and in which every arc connects a vertex of one part to
a vertex of the other part :

Definition 6 (Bipartite Graph) Let G = (V,E) be a
graph. G is bipartite (with parts T and U ) iff there exist
T,U ⊆ V such that T ∪ U = V and T ∩ U = ∅ (T and
U are a partition of V ) and for every (a, b) ∈ E, either
a ∈ T and b ∈ U , or a ∈ U and b ∈ T . G will be deno-
ted with (T,U,E) and U is the complement part of T (and
vice-versa).

Some important functions can be defined over graphs.

Definition 7 (Successor and Predecessor functions)
Let G = (V,E) be a graph. The successor func-
tion of G is the function E+ : V 7→ 2V such that
E+(v) = {u | (v, u) ∈ E} and the predecessor func-
tion of G is the function E− : V 7→ 2V such that
E−(v) = {u | (u, v) ∈ E}. Let S be a set of vertices,
E+(S) =

⋃
v∈S E+(v) and E−(S) =

⋃
v∈S E−(v).

Let n ≥ 0. The n-step successor (resp. predecessor) func-

tion of G is E+n(v) =

n times︷ ︸︸ ︷
E+ ◦ · · · ◦ E+(v) (resp. E−n(v) =

n times︷ ︸︸ ︷
E− ◦ · · · ◦ E−(v)). By convention, we have E+0(v) =
E−0(v) = {v}. 3

3. Note that E+1(v) = E+(v) and E−1(v) = E−(v)

Considering an argumentation framework, the successor
(resp. predecessor) function represents the arguments that
are attacked by (resp. are the attackers of) some argu-
ment(s). An AF being usually denoted by (A,R), the suc-
cessor and predecessor functions are thus denoted R+ and
R− in this context.
We then recall some notions on vertices having a particular
status in a graph.

Definition 8 (Source, Sink, Isolated vertex) Let G =
(V,E) be a graph and v be a vertex of G. v is said to
be a source iff E−(v) = ∅ and it is said to be a sink iff
E+(v) = ∅. v is said to be isolated iff it is both a source
and a sink.

Thus, sources (resp. sinks) are vertices that may only be
origins (resp. endpoints) of arcs. Isolated vertices are those
that are connected to no other vertices.

Example 5 Let consider A given in Ex. 1. Argument a is
a 3-step predecessor of e, whereas c is a predecessor of e
(and obviously e is a 3-step successor of a, whereas e is a
successor of c). Moreover, a and d are the sources ofA and
e is the sink of A.

2.2 Explanations in Argumentation
We recall the main definitions of what explanations are
in [2] but only for those answering the questions about se-
mantics results in abstract argumentation. These questions
are defined as follows : let σ represent a semantics among
conflict-freeness, admissibility, completeness and stability,
and given an argumentation framework A = (A,R) and
some set S ⊆ A,

Qσ : Why is S (not) an extension under σ in

A?

In order to answer these questions, and hence to provide
explanations, [2] uses the decomposition of semantics into
principles. The idea is to identify some properties that can
be used to provide a modular characterization of semantics.
We refer the reader to [9] for further details. Given a set S,
the following principles are considered :
Conflict-freeness (CF ) : No internal conflicts in S

Defence (Def ) : ∀x ∈ S, x is acceptable wrt S
Reinstatement (Re) : ∀x acceptable wrt S, x ∈ S

Complement Attack (CA) : S attacks all arguments not in S

Note that the reinstatement principle has been split into
two sub-principles. Indeed, to decide whether a set S of
arguments contains all the arguments acceptable wrt S,
one must consider on the one hand the arguments that are
unattacked and thus acceptable by lack of attackers (sub-
principle denoted by Re1), and on the other hand the argu-
ments for which S defeats all the attackers (sub-principle
denoted by Re2).
The following has been proven in [9].



Proposition 1 Let A = (A,R) and S ⊆ A. S is :
Conflict-free iff S respects {CF }

Admissible iff S respects {CF , Def }
Complete iff S respects {CF , Def , Re1, Re2}

Stable iff S respects {CF , CA}

With this result, a straightforward answer arises for Qσ : a
set S is an extension under semantics σ because it respects
all the principles listed for σ in Prop. 1. This moves the
burden of explanation from semantics to principles. So, in
order to answer Qσ , we are going to answer intermediate
questions on principles. Let π ∈ {CF ,Def ,Re1 , Re2,
CA} represent a principle. Given an argumentation frame-
work A = (A,R) and some set S ⊆ A, the questions we
will define answers for are :

Qπ : Why does (not) S respect principle π?

[2] defines visual answers to these questions. These answers
take the form of a graph. This allows for the answers to be
drawn, as well as to study their visual (i.e. structural) pro-
perties. More precisely, as argumentation frameworks are
graphs themselves, the answers given are subgraphs of an
argumentation framework.

Definition 9 ([2]) Let A = (A,R), S ⊆ A and π ∈
{CF ,Def ,Re1 , Re2,CA}. Gπ(S) is defined as :

GCF (S) = A[S]V

GDef (S) = (A[S ∪R−1(S)]V )

[{(a, b) ∈ R | (a ∈ R−1(S) and b ∈ S)

or (a ∈ S and b ∈ R−1(S))}]E
GRe1(S) = A[{a ∈ A|R−(a) = ∅}]V
GRe2(S) = (A[S ∪R2(S) ∪R−1(R2(S))]V )

[{(a, b) ∈ R | (a ∈ R−1(R2(S)), b ∈ R2(S))

or (a ∈ S, b ∈ R−1(R2(S)))}]E
GCA(S) = A[{(a, b) ∈ R | a ∈ S and b /∈ S}]E

Moreover the interpretation of these subgraphs can be done
using a “checking procedure” in order to explicitly identify
if the given subset satisfies or not the concerned principle :

Definition 10 ([2]) Let A = (A,R), S ⊆ A and π ∈
{CF ,Def , Re1, Re2, CA}. Let G be a subgraph ofA. The
checking procedure Cπ(G) is defined as :
CCF (G) = no attacks in G
CDef (G) = no source vertices in R−1(S) in G
CRe1(G) = all vertices in G are in S
CRe2(G) = all vertices in R2(S) \S are endpoint of an

arc whose origin is a source vertex in G
C′

Re2(G) = all vertices in R2(S) \S are endpoint of an
arc whose origin is a source vertex or is in
R2(S), in G

CCA(G) = no isolated vertices in the complement part
of S in G

For each principle π, [2] has proven that the subgraph Gπ

associated with the corresponding checking procedure Cπ

provides an explanation that answers question Qπ . 4 More

4. This result is slightly more complex in the case of reinstatement.
See [2] and Sec. 3.3.

precisely, if a set S respects a principle π, then Gπ verifies
Cπ , otherwise it does not. When the principles are combi-
ned into a semantics σ, the answer to Qσ is the correspon-
ding set of subgraphs along with their corresponding che-
cking procedures.

Example 6 Let consider A given in Ex. 1 and S =
{a, d, c}. The question we are interested in is : “Why is S an
extension under admissibility in A?”. This question comes
down to wondering : “Why S satisfies conflict-freeness CF
and defense Def ?”. So, an explanation of why S is admis-
sible is a set which contains the explanation for CF and the
explanation for Def .
The GCF (S) and GDef (S) explanations are given in the
following figure :

a
c

d

a

b c

d

There is no attack in GCF , hence CCF is satisfied. And so
we can conclude that S is conflict-free.
Concerning GDef , note that neither e nor (c, e) belong to
this explanation since they have no impact on the defence
of S. Then applying CDef on GDef , we can see that each
attacker of S (here only b) is not a source vertex ; so S also
satisfies the defence principle.

This allows this form of explanation to be used for two pur-
poses as indicated in the introduction : when the answer
to the corresponding verification problem is known, that is,
when we know that a set is (resp. is not) acceptable under
a given semantics or principle, Gπ on which Cπ is (resp.
is not) verified, offers a visual explanation of the situation,
answering XVer. When the answer to the verification pro-
blem is not known, Gπ and the verification of whether Cπ

holds or not offers at the same time an answer to Ver and an
explanation of this answer.

3 Classes of explanations
In this paper, we are interested in refining the notion of ex-
planation proposed in [2] and recalled in Sec. 2.2. Indeed,
considering Ex. 6 leads to the following remark : for explai-
ning the respect of the defence principle it seems useless to
consider the two defenders of c in GDef (only one is en-
ough for proving that c is defended). So, in order to propose
a more flexible notion of explanation, another approach ba-
sed on the notion of classes of explanations is presented
in this section. Of course the definition of these classes al-
lows to recover the explanations described in [2] but also it
results in the possibility of producing several explanations
for the same question.
Hence, for each principle π, we define our explanations so
that they contain at least enough information to be able to
decide whether or not S respects π. We then prove that our
explanations can be used in conjunction with the checking
procedures recalled in Def. 10.



3.1 Explanation about Conflict-freeness
To decide whether a set S of arguments is conflict-free, one
must know whether or not there are attacks among its argu-
ments. Thus, we firstly require our explanation to contain
only arguments of S, and secondly to contain only attacks
between these arguments. However, with only these two
constraints, it may happen that no attacks are displayed
on the explanation when there are some in the original
framework, leading at best to an impossibility to decide
or at worst, an incorrect decision. Hence, we add a third
constraint, which is that if conflicts exist between argu-
ments of S, then at least one must be present in the ex-
planation.

Definition 11 Let A = (A,R), S ⊆ A and X = {(a, b) ∈
R | a, b ∈ S}. The subgraph (A′, R′) of A is an explana-
tion to QCF iff

— A′ = S
— R′ ⊆ X
— If X ̸= ∅, then R′ ̸= ∅

Note that the subgraph GCF recalled in Def. 9 obviously
belongs to the class of explanations for conflict-freeness.
Moreover, in [2], a result concerning the structural property
of explanations for conflict-freeness has been given : a set
of arguments is conflict-free iff there is no attack in the sub-
graph corresponding to its explanation (checking procedure
CCF recalled in Def. 10). This result can be extended to all
the subgraphs captured by our class of explanations.

Theorem 1 Let A = (A,R), S ⊆ A and (A′, R′) be an
explanation to QCF . S is conflict-free iff CCF (A

′, R′) is
satisfied by S.

This provides a way of deciding whether a set is conflict-
free based on an explanation to QCF . Note that this also
provides a way of deciding whether a set is not conflict-
free, hence the possibility of handling the negative version
of QCF . The same goes for all the other equivalence results
concerning the other principles.

Example 7 Let consider A given in Ex. 1 and S =
{a, b, c}. There are 3 explanations for QCF , each of them
proving that S is not conflict-free :

a

b c
a

b c
a

b c

3.2 Explanation about Defence
To decide whether a set S of arguments contains only ar-
guments that are acceptable wrt S, one must know whether
or not this set defeats all its attackers. Thus, we firstly re-
quire our explanation to contain only arguments of S and
its attackers, and secondly to contain only attacks from S
to its attackers and vice versa. To make sure the attackers
are spotted as such, we further require that all the attacks

of the second type are contained in the explanation. Howe-
ver, with only these two constraints, it may happen that no
attacks targeting a specific attacker are displayed on the ex-
planation when there are some in the original framework.
As we wish the explanation to show how S defends itself,
this situation is certainly undesirable. Hence, we add a third
constraint, which is that if an attacker is attacked by S, then
at least one attack from S to this attacker must be present
in the explanation.

Definition 12 Let A = (A,R) and S ⊆ A. Consider X =
{(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈
R | a ∈ S, b ∈ R−1(S)}. The subgraph (A′, R′) of A is an
explanation to QDef iff

— A′ = S ∪R−1(S)
— X ⊆ R′ ⊆ X ∪ Y
— ∀b ∈ R−1(S), if b ∈ R+1(S), then ∃(a, b) ∈ R′

with a ∈ S

Note that the subgraph GDef recalled in Def. 9 obviously
belongs to the class of explanations for defence. Moreover
it has been shown in [2] that a conflict-free set of arguments
defends all its arguments iff there is no source vertex among
its attackers in GDef (S) (checking procedure CDef recal-
led in Def. 10). This result can be extended to all the sub-
graphs captured by our class of explanations.

Theorem 2 Let A = (A,R), S ⊆ A be a conflict-free
set of arguments and (A′, R′) be an explanation to QDef .
S ⊆ FA(S) iff CDef (A

′, R′) is satisfied by S.

Example 8 Let consider A given in Ex. 1 and S =
{a, c, d}. There are 3 explanations for proving that S sa-
tisfies the defence principle :

a

b c

d

a

b c

d

a

b c

d

Additionally, the next result extends a similar result given
in [2] providing more insight on the behavior of an expla-
nation for defence : when computed using a conflict-free
set, the explanation for defence takes the form of a bipartite
graph.

Proposition 2 Let A = (A,R), S ⊆ A and (A′, R′) be
an explanation to QDef . If S is conflict-free, (A′, R′) is a
bipartite graph and S can always be one of its parts.

The two previous results can thus be used to decide whether
a set of arguments effectively defends all its arguments or
if it is not conflict-free.

3.3 Explanation about Reinstatement
The first part of the reinstatement principle concerns unat-
tacked arguments. All these arguments are acceptable wrt
S and should thus belong to S. Thus, we firstly require our



explanation to contain only unattacked arguments, and se-
condly to contain no attacks (which results from the only ar-
guments displayed being unattacked). However, with only
these two constraints, it may happen that an unattacked ar-
gument not belonging to S is not displayed on the explana-
tion. Hence, we add a third constraint, which is that if there
exists unattacked arguments that are not in S, then at least
one must be present in the explanation.

Definition 13 Let A = (A,R), S ⊆ A and X = {a ∈
A | R−1(a) = ∅}. The subgraph (A′, R′) of A is an ex-
planation to QRe1

iff
— S ∩X ⊆ A′ ⊆ X
— R′ = ∅
— If (A \ S) ∩X ̸= ∅, then ∃a ∈ (A \ S) ∩X with

a ∈ A′

The second part concerns arguments for which S defeats
the attackers. These arguments must belong to S if S de-
feats all of their attackers. Thus, we firstly require our ex-
planation to contain the arguments of S, the arguments that
S defends (two steps of the attack relation from S), and
the attackers of these arguments. Secondly, we require it
contains only the attacks from S to the attackers and from
the attackers to the arguments S defends. In addition, we
require that all the attacks of the second type are displayed
on the explanation, so that none is missed. However, with
only these two constraints, it may happen that no attacks
targeting a specific attacker are displayed on the explana-
tion when there are some in the original framework. Hence,
we add a third constraint, which is that if an attacker is at-
tacked by S, then at least one attack from S to this attacker
must be present in the explanation.

Definition 14 Let A = (A,R) and S ⊆ A. Consider X =
{(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y =
{(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. The subgraph
(A′, R′) of A is an explanation to QRe2 iff

— A′ = S ∪R+2(S) ∪R−1(R+2(S))
— X ⊆ R′ ⊆ X ∪ Y
— For every b ∈ R−1(R+2(S)), if b ∈ R+1(S), then
∃(a, b) ∈ R′ with a ∈ S

Note that the subgraph GRe1 (resp. GRe2 ) recalled in Def. 9
obviously belongs to the class of explanations for the first
(resp. second) part of the principle of reinstatement. Mo-
reover in the case of reinstatement, two results have been
proven in [2] and can be extended to all the subgraphs cap-
tured by our class of explanations.
The first one shows how to conclude that a set contains all
the arguments that it effectively defends from both parts of
the explanation on reinstatement.

Theorem 3 LetA = (A,R), S ⊆ A, (A′, R′) be an expla-
nation to QRe1 and (A′′, R′′) be an explanation to QRe2 .
If CRe1(A

′, R′) and CRe2(A
′′, R′′) are satisfied by S then

FA(S) ⊆ S.

The second results shows the behavior of both parts of
the explanation on reinstatement if computed on a set that
contains all the arguments it effectively defends.

Theorem 4 LetA = (A,R), S ⊆ A, (A′, R′) be an expla-
nation to QRe1

and (A′′, R′′) be an explanation to QRe2
.

If FA(S) ⊆ S then CRe1(A
′, R′) and C ′

Re2
(A′′, R′′) are

satisfied by S.

From Th. 3 and 4 follows the next corollary, which shows
an equivalence result :

Corollary 1 Let A = (A,R), S ⊆ A such that R2(S)
is conflict-free, (A′, R′) be an explanation to QRe1 and
(A′′, R′′) be an explanation to QRe2 . FA(S) ⊆ S iff
CRe1(A

′, R′) and CRe2(A
′′, R′′) are satisfied by S.

Example 9 Let consider A given in Ex. 1 and S = {b, e}.
There are 3 explanations for proving that S does not sa-
tisfy the first reinstatement principle (some unattacked ar-
guments are not in S ; here it is the case for a and d) and
one for proving that S satisfies the second reinstatement
principle (the arguments defended by S are in S) :

For QRe1 :

a

d

a

d

For QRe2 :

b c e

Let consider now S = {a, d}. There are one explanation for
proving that S satisfies the first reinstatement principle (any
unattacked argument is in S) and another one for proving
that S does not satisfy the second reinstatement principle
(some arguments defended by S are not in S ; here it is the
case of c) :

For QRe1 :a

d

For QRe2
:a

b c

d

3.4 Explanation about Complement Attack
To decide whether a set S of arguments attacks its comple-
ment, one must know whether or not all the arguments not
in S are attacked by S. Thus, we firstly require our explana-
tion to contain all the arguments of the original framework
(S and its complement), and secondly to contain only at-
tacks from S to arguments not in S. However, with only
these two constraints, it may happen that no attacks targe-
ting a specific argument outside of S are displayed on the
explanation when there are some in the original framework.
Hence, we add a third constraint, which is that if an argu-
ment not in S is attacked by S, then at least one attack from
S to this argument must be present in the explanation.

Definition 15 Let A = (A,R), S ⊆ A and X = {(a, b) ∈
R | a ∈ S, b /∈ S}. The subgraph (A′, R′) of A is an
explanation to QCA iff

— A′ = A
— R′ ⊆ X
— ∀b ∈ A \ S, if b ∈ R+1(S), then ∃(a, b) ∈ R′ with

a ∈ S



Note that the subgraph GCA recalled in Def. 9 obviously
belongs to the class of explanations for the principle of
complement attack. Moreover concerning this principle, it
was proven in [2] that a set of arguments attacks its com-
plement iff there are no isolated vertices in GCA(S) and
the explanation subgraph is always a bipartite graph with
the arguments of S being the only possible origins for at-
tacks. We extend these results to our class of explanations
for complement attack.

Theorem 5 Let A = (A,R), S ⊆ A and (A′, R′) be an
explanation to QCA.
A \ S ⊆ R+1(S) iff CCA(A

′, R′) is satisfied by S.
(A′, R′) is a bipartite graph, S can always be one of its
parts and all vertices in S are sources in it.

Example 10 Let consider A given in Ex. 1 and S =
{a, b, c}. There are three explanations to QCA proving that
S satisfies the principle of complement attack :

a

b c e

d

a

b c

d

e

a

b c e

d

4 Properties of Explanations
We now turn to the definition of explanation properties and
to a formal study of our classes of explanations according
to them. This will allow to highlight some particular kinds
of explanations, as well as to better understand their beha-
vior. The properties that we will consider are : minimality,
maximality, emptyness and uniqueness.

4.1 Some specific explanations
In this section, we identify some specific properties that
could be respected by our explanations.
Minimality, Maximality A minimal (resp. maximal) expla-
nation is an explanation which contains the least (resp. all
the) possible amount of information. In a sense, a minimal
explanation only provides what is required to explain whe-
reas a maximal explanation in fact provides everything that
might be relevant to explain, even if it might be redundant.

Definition 16 Let A = (A,R) and S ⊆ A. The subgraph
(A′, R′) ofA is a minimal (resp. maximal) explanation that
answers Qπ iff there is no subgraph (A′′, R′′) of A which
is also an explanation that answers Qπ such that (A′′, R′′)
is a strict subgraph of (A′, R′) (resp. (A′, R′) is a strict
subgraph of (A′′, R′′)).

Example 7 (cont’d) In this example, the maximal expla-
nation is the first one and the two other ones are minimal.

Emptyness The notion of an empty explanation is one that
should be avoided when providing explanations, in the
sense that it somewhat represents the incapacity of the sys-
tem to answer the question that has been asked.

Definition 17 Let A = (A,R) and S ⊆ A. The sub-
graph (A′, R′) is an empty explanation that answers Qπ

iff (A′, R′) = (∅,∅).

Uniqueness We consider an explanation to be unique when
there is only one of its kind. Although we defined classes
of explanations in an attempt to represent all the different
points of view that could emerge as to how to answer a
question, in some situations, there can only be one way to
answer that question.

Definition 18 Let A = (A,R) be a graph. The subgraph
(A′, R′) is a unique explanation that answers Qπ iff there is
no subgraph (A′′, R′′) with (A′′, R′′) ̸= (A′, R′) which is
also an explanation that answers Qπ .

Example 9 (cont’d) In this example, the explanations for
the second reinstatement principle are unique (for S =
{b, e} or S = {a, d}) whereas the explanation for the first
reinstatement principle is unique for S = {a, d} but not for
S = {b, e}.
Minimality and uniqueness are seen as explanation prin-
ciples in [13]. However, these two notions are defined diffe-
rently in [13], relatively to another concept of explanation
based on sets of arguments, not on subgraphs, as we do.

4.2 Properties of specific explanations
Here, we provide the results of our formal study on our ex-
planations using the aforementioned properties. We begin
with empty explanations. The results show that, although
empty explanations can occur, they only do so in very spe-
cific situations.
The following theorem establishes a characterisation of
empty explanations, which generalises a similar result gi-
ven in [2]. Moreover if this empty explanation occurs, it is
the only possible one.

Theorem 6 Let A = (A,R) and S ⊆ A. (∅,∅) is an
explanation that answers

1. Qπ with π ∈ {CF ,Def ,Re2} iff S = ∅.

2. QRe1 iff {a ∈ A | R−1(a) = ∅} = ∅.

3. QCA iff A = (∅,∅).

If (∅,∅) is an explanation to Qπ with π ∈ {CF ,Def ,
Re1,Re2,CA}, then it is unique.

Now, we turn to our study of maximal explanations. The
next theorem states for each principle that there is only one
possible maximal explanation.

Theorem 7 Let A = (A,R) and S ⊆ A. If (A′, R′)
is a maximal explanation that answers Qπ with π ∈
{CF ,Def ,Re1 ,Re2 ,CA}, then it is the unique maximal
explanation that answers Qπ .



In the worst case, the number of explanations can be expo-
nential in the size of some specific sets of elements, depen-
ding on the type of explanation (for instance the set of the
attacks between the arguments belonging to the extension
S in the case of explanations for the conflict-free principle).
Thus considering only minimal explanations is a first step
towards a computationally efficient method.
Nevertheless, as it turns out, there can be multiple mini-
mal explanations in general for each principle. The next
theorem studies the relation between minimal and maxi-
mal explanations and shows that the maximal explanation
is exactly the union of all the minimal explanations.

Theorem 8 Let A = (A,R) and S ⊆ A. Consider π ∈
{CF ,Def , Re1, Re2,CA} and let (A′, R′) be the maxi-
mal explanation that answers Qπ and M be the set of all
minimal explanations that answers Qπ . Then, (A′, R′) =⋃

G∈M G.

This result opens the way to algorithmic solutions since,
for a given principle, a maximal explanation covers all the
possible explanations (the minimal ones but also all the in-
termediate explanations).

5 Computation of Explanations
This section investigates how to compute the maximal and
minimal explanations of a class.
Maximal Explanations It turns out that maximal explana-
tions exactly correspond to the explanations defined in [2]
(recalled in Def. 9) :

Proposition 3 Let A = (A,R), S ⊆ A and π ∈
{CF ,Def ,Re1 , Re2, CA}. Gπ(S) is the maximal expla-
nation that answers Qπ .

This result entails that maximal explanations can be compu-
ted using only the graph operators of induced and spanning
subgraphs, thus ensuring an efficient computation.
Note that Prop. 3 aggregated with Th. 7 allows to recover a
unicity result given in [2].
From Maximal to Minimal Explanations In order to
compute the minimal explanations for each principle π, we
start from the maximal explanation :

Given A = (A,R) and S ⊆ A, (A′, R′)← Gπ(S)

Then, we gradually remove elements until obtaining a mini-
mal explanation. This leads to five algorithms Algπ (one for
each principle π) that are built following the same schema.
They also use the same condition for stopping the removal :
“it remains at most one element to remove”. The only dif-
ferences between these algorithms concern the “nature” of
the removed elements : 5

For CF , removal of attacks between elements of S :

While |R′| > 1
(x, y)← choose(R′) ; R′ ← R′ \ {(x, y)}

5. Note that these elements are generally attacks except in the case of
the principle Re1.

For Def , for each attacker of S that is not in S, remo-
val of attacks that target it :

For y ∈ R−1(S) \ S
While |R′−1(y)| > 1

x ← choose(R′−1(y)) ; R′ ← R′ \
{(x, y)}

For Re1, removal of unattacked arguments not in S :

While |A′ \ S| > 1
x← choose(A′ \ S) ; A′ ← A′ \ {x}

For Re2, for each argument that is an attacker of the
arguments S defends and that is not defended by S,
removal of attacks that target it :

For y ∈ R−1(R+2(S)) \R+2(S)
While |R′−1(y)| > 1

x ← choose(R′−1(y)) ; R′ ← R′ \
{(x, y)}

For CA, for each argument that is not in S, removal of
attacks that target it :

For y ∈ A \ S
While |R′−1(y)| > 1

x ← choose(R′−1(y)) ; R′ ← R′ \
{(x, y)}

Our algorithms are sound and complete for the computation
of minimal explanations as shown by the following propo-
sition.

Proposition 4 Let A = (A,R), S ⊆ A and π ∈
{CF ,Def ,Re1 , Re2, CA}. Algorithm Algπ using A and
S as inputs is sound and complete for the computation of a
minimal explanation that answers Qπ .

The computation of minimal explanations thus relies on
the computation of maximal explanations, and the removal
of some arcs (or arguments) in them. The computation of
maximal explanations is already known to be polynomial
(see [2]). Moreover the complexity of the removal opera-
tion in the worst case is linear in the number of removed
elements and this number is either quadratic in the number
of vertices in the graph when these elements are attacks (so
for any principle except the one for the first part of reins-
tatement), or linear in the number of vertices in the graph
when these elements are vertices (for the first part of reins-
tatement). From these considerations, our algorithms can be
considered as computationally efficient.
Note also that a slight adaptation of these algorithms could
produce random intermediate explanations (so neither mi-
nimal, nor maximal). This could be done by randomly
stopping the removal process after a parametric number of
steps. It is also the way to create more specific explanations
responding to certain constraints given by users (for ins-
tance, explanations containing only x elements of a given
type among the y ≥ x existing ones).

6 Conclusion and Future Work
This paper has defined classes of explanations for prin-
ciples and semantics for the explanation Verification Pro-



blem XVer in Abstract Argumentation. These classes of ex-
planations have been studied according to general proper-
ties such as maximality, minimality, emptyness and unique-
ness. They extend and generalize the single explanations
of [2], allowing more flexibility in the choice of explana-
tions that could be presented to potential users. Moreover
we have established that the explanations of [2] correspond
to the maximal explanations of the defined classes, thus pro-
viding a way to compute them using graph operators. A pro-
cedure to compute minimal explanations from the maximal
ones has also been provided and proven sound and complete
for each class of explanations.
These results make an implementation of the proposed ap-
proach ready to be done. From this implementation, like in
any XAI approach, as underlined by [7], an empirical eva-
luation should be conducted to assess to which extent these
visual explanations actually are helpful for human agents to
understand the answer to the Verification Problem. This is a
first important future work, clearly related with the explai-
nability social process described in [14].
Moreover, this evaluation could also provide a first study
about what is a “best explanation” and how to select it. It
is therefore also related to a second important future work :
how take into account the issue of the “realizability”, or
personalization of an explanation. Indeed, one may have in
mind parts of an explanation (some arguments, some at-
tacks), but not a correct and complete explanation ; deter-
mining whether there exists such an explanation, and pro-
viding it, would ensure a personalized answer. In order to
do so, a deeper investigation of the inner structure of the
classes of explanation, and more specifically of the links
they could have with lattices, may be of help.
This contribution and its research avenues will be of help
in any application which uses computational abstract argu-
mentation [19, 7].
In addition, the approach may be extended in several direc-
tions :

— to some semantics that use additional principles like
maximality/minimality for set inclusion, for ins-
tance, the preferred or grounded semantics ; in this
case, some new visual criteria must be identified
in order to be able to explain why a given set is
or is not a preferred or a grounded extension ; note
that the visualization difficulty is not related to the
complexity of the underlying problem (since the Ver
problem for the grounded semantics is a polynomial
problem whereas it is an exponential one for the pre-
ferred semantics) ;

— to contrastive questions : single explanations to such
questions have been proposed in [2] ; their genera-
lisation to classes of explanations may be studied
using the work presented here since, very often, a
contrastive question can be viewed as the conjunc-
tion of some specific single questions.

Moreover, extending XVer to additional semantics and ad-
ditional questions can be considered as an attempt to pro-
duce a generic approach for the computation of explana-
tions, on the model of the approach of [3].

Finally, more notions of Graph Theory may be investigated
in order to provide other kinds of visual explanations. In
particular, the notion of graph isomorphism seems of great
interest, especially to provide ways of reasoning by asso-
ciation (explaining a result via a structurally identical argu-
mentation framework that one already accepted).
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