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Abstract. The optimization of complex industrial systems represents
a class of difficult problems, due to their embodiment in the physical
world, and whose search spaces are disrupted, non-linear and potentially
vast. Their parametrization relies on the combination of many variables,
each change generally impacting the whole system. Mathematical ap-
proaches are limited by the fact that the models are too coarse or non-
existent, and by the imprecision of the measurements and the machining
of components of such systems. The action cost of the system calls into
question population-based heuristics and swarm intelligence where each
individual must be tested. We propose a multi-agent approach allowing a
global / black-box modeling of the system in terms of input variables and
objectives, as well as an agnostic and continuous adaptive optimization,
based on sensor feedbacks from the running system.

Keywords: Collective Problem Solving · Self-Organization · Continuous
Multi-Objective Optimization · Robotic Control · Photonics

1 Problem description

This study deals with continuous optimization problems arising from complex
robotic industrial applications. Such problems have a wide variety of external
constraints like limited resolution time or number of moves, predetermined com-
ponents positions, etc. Regardless of the specifics of the applications, we choose
to consider these problems as black-box systems to be optimized, given sensor
feedback.

We propose a self-adaptive multi-agent system (MAS) for optimization able
to tackle multiple robotic applications, with two main advantages:

1. A natural representation of the domain, easily observable and explainable,
where each agent represents a variable of the problem and can perceive and
interact with the real topology of the problem.
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2. A collective resolution process during which the agents continuously adapt
to feedback, whether from a sensor or an expert interacting with the system,
and can therefore integrate perturbations, imperfections, etc.

The application domain we focus on is the Photonics domain as illustrated in
Figure 1. The main goal is to correctly align optical components to get certain
beam properties. Input parameters of the problem are translation and rotation
axes values of the optical components. We aim at developing an algorithm able
to find a set of satisfactory solutions in a minimum number of iterations, and
able to deal with measurement and machining imprecisions.

Fig. 1. Example of a real photonic application on which ISP System is working with
the robot (left) and a schematic of a set of lenses that need to be positioned (right)

In this paper, we consider that optimizing a Photonics system is a continuous
multi-objective optimization (MOO) problem. The following section presents the
main approaches used in this field before focusing on the most suitable ones.
The next section then describes the MAS we propose, followed by experiments.
Finally we discuss the results and conclude.

2 Positioning

Exact methods are able to find optimal solutions but at the expense of high
computation time and are thus not suited for large-scale optimization problems
[5]. Moreover, it is often not possible to precisely model real systems taking
into account all their particularities. The field of geometrical optics is subject
to several types of aberrations between theoretical calculations and practical
observation. Defects of optical components have also to be taken into account.
This limits the relevance of learning approaches, which need repeatability.

Metaheuristic optimization algorithms are widely used to solve MOO prob-
lems, as they can find multiple optimal solutions in a single run, and improve the
ratio between accuracy and computational cost. They are problem-independent
optimization techniques that provide, if not an optimal solution, a set of satisfac-
tory solutions by iteratively exploring and exploiting the search spaces stochas-
tically [10]. The following sections focus on these algorithms.
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2.1 Population-Based Heuristics

These approaches constitute a large part of the state of the art of optimization
metaheuristics. The general principle is to simultaneously process a population
of solutions distributed (randomly or not) in the search space. The population
can evolve and select the best solutions iteratively according to the Darwinian
principle, or converge towards an optimum by following a set of influence rules.

These algorithms can also be used in hybrid solutions alongside more classical
algorithms or exact methods [7] to balance their weaknesses.

Being exhaustive on the state of the art in this area (e.g., Genetic Algorithms
[4] and Swarm Intelligence algorithms [8] together have more than 3000 publi-
cations per year [12]) is difficult [11], however, such algorithms must evaluate
a relatively large number of candidates in order to create a good population
of solutions. To do so, the robot / bench must configure the entire experimen-
tal framework for each proposed new candidate solution in the population. The
cost of activating a real robotic system is heavy compared to the algorithmic
time. The computation of all candidate solutions is therefore prohibitive. A more
suitable strategy would be an adaptive algorithm modifying and proposing for
testing a unique configuration for each feedback (i.e. an optimization process
forming a unique trajectory in the search space).

2.2 Multi-Agent Problem Solving

The MAS paradigm relies on a decentralized approach, based on self-organization
mechanisms [14], where the computational task is distributed over the agents,
which are virtual or physical autonomous entities. Each agent has only a local
view of the problem it solves, corresponding to a local function. The global func-
tion of a problem then results from the composition of all these local functions.
This feature allows to easily distribute the computational tasks in the solving
process and thus to reduce the computational costs. This is why MAS approaches
are preferred when centralized approaches have limited flexibility.

MAS are used in a wide variety of application areas of distributed optimiza-
tion including power systems, sensor networks, smart buildings, smart manu-
facturing [13], etc. Many of these algorithms are based on a combinatorial logic
such as the well-known Distributed Constraint Optimization Problem (DCOP)
framework [1].

DCOP was originally developed under the assumption that each agent con-
trols exactly one variable. This model was designed for problems where the
difficulty lies in the combination of multiple constraints. Only a few works have
tried to extend the DCOP model to continuous optimization problems [3], [2].
Fundamentally DCOP requires a problem to be easily decomposable into sev-
eral cost functions (to be able to evaluate partial assignments) and the relations
between the states of the variables are supposed to be known. These major as-
sumptions do not hold for complex continuous optimization problems, where the
complexity of the models and their interdependencies mean that this detailed
knowledge is not available in most real-life cases.
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3 A MAS for Optimizing Complex Systems

When solving complex continuous problems, existing techniques usually require a
transformation of the initial formulation, in order to satisfy certain requirements
of the technique to be applied. Besides the fact that the correct application of
these changes can be a demanding task for the designers, imposing such modifi-
cations changes the problem beyond its original and natural meaning. What we
propose here is an agent-based modeling where the original structure/meaning of
the problem is preserved. Indeed, it represents the formulation that is the most
natural and the easiest to handle for the expert. We call it Natural Domain
Modeling for Optimization (NDMO) [6].

3.1 Natural Domain Modeling

In order to represent the elements of a generic continuous optimization model, we
have identified five classes of interacting entities: design variables, models, out-
puts, constraints, and objectives. In short: given the values of the design variables,
some models will compute output values, and following models will compute fur-
ther outputs and so on until the constraints and objectives can be computed, in
a kind of computational network. Three types of elements are agentified : design
variables (which must be optimized and thus constitute the solving process),
constraints and objectives (i.e. the requirements or problem statements).

To take into account these requirements, the solving process relies on a spe-
cific measure called criticality. This measure represents the state of dissatisfac-
tion of the agent with respect to its local goal. The role of this measure is to
aggregate in a single comparable value all relevant indicators concerning the
agent’s state. Having this single indicator simplifies the reasoning of the agents.
Each agent is responsible for estimating its own criticality and providing it to
the other agents. However, the system designer has the task of providing the
agents with adequate means to compute their criticality, as for example with a
"barrier" or "logistics" function (Eq. 1 and Fig. 2).

Fig. 2. Typical criticality shapes

crit(x) =
C

1 + a ∗ e−rx
(1)

Where C is the maximum critical
value, a is a translation factor of the
function determining the y-intercept
and r enables to adjust the acceleration
of the criticality curve and in a second
hand determines the maximum toler-
ated distance to the objective.
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3.2 Internal State and Behavior of the Agents

The approach we propose is a single-solution (also called trajectory) algorithm. It
iteratively modifies the solution’s parameters and consequently selects a trajec-
tory in the search space. Our implementation is based on the AMAK framework
[9]. Regarding a complex system to optimize, some inputs affecting its behavior
are considered design variables of the problem and outputs of interest can have
an objective value or some constraints or both. As explained above we agen-
tify design variables, objectives and constraints. Design variables are handled by
solver agents. In the same way that we want to be as close as possible to the
objectives, we must move away as much as possible from the constraints, and
then objectives and constraints are handled by objective agents. Before going
into details, the main principle of the resolution process is to make the agents
cooperate to reduce the highest criticality at each iteration. From their combined
actions will emerge the trajectory to more satisfactory solutions.

Fig. 3. Agentification process of a complex system to optimize

Objective agents Each objective agent is responsible for one objective / con-
straint and normalizes the associated feedback (the gap to expert-given ideal
value) into criticality (see Eq. 1 and Fig. 2). It then propagates this criticality
to all the solver agents who will act to lower it as much as possible.

Solver agents A solver agent has no criticality but has a value, corresponding to
the design variable it is assigned to, and a memory. This memory is composed of
a predefined number of previous observations cycles. Each entry of this memory
contains the agent’s value at the corresponding cycle, the set of objective agents
criticalities, the entropy of the system, i.e. the number of solver agents having
acted. The goal of a solver agent is to respond to the criticalities of the objective
agents by adapting its value. Solver agents generally choose to help the most
critical of the objectives so a cooperation may emerge. However, this mechanism
is moderated by the local variations of the problem. To this end, a solver agent
has a Perception-Decision-Action lifecycle:
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– Perception : the agent records an observation of the last cycle in its memory
and updates data needed during the decision phase.

– Decision : the agent may decide in 4 possible ways
• If the agent has an empty memory or has never acted, then it acts in a

stochastic way.
• Otherwise the agent enters a reactive decision phase detailed below.
• If the agent did not decide, it enters a cognitive decision phase detailed

below.
• Potentially, the agent can operate a stochastic stop to look whether its

impact is real and not just a result of other agents impacts.
– Action : The agent changes or not its value according to its decision.

The resolution of the problem results from the capacity of the agents to
make the right decision, therefore this phase is at the heart of the process. The
difficulties encountered are mainly due to the problem itself: almost all the design
variables have an impact on all the objectives, namely all the criticalities, and this
in a non-linear way. The parameters are therefore strongly interconnected: the
current value of one agent displaces the target value of one or several others. The
system is therefore complex and the agents can collectively interfere with each
other. At this point, the optimization problem becomes a cooperation problem.

The decisions of an agent are subject to a stochastic momentum mecha-
nism, i.e. an agent will repeat its action for a random number of cycles equal
to the momentum. The maximum value of the momentum is configurable. This
mechanism of momentum allows to desynchronize the agents in order to avoid
them being trapped in what we call non-cooperative synchronizations (essen-
tially, when agents try to "help" at the same time, thus hindering each other).
More importantly, this desynchronization individualizes the average perception
of each agent over several cycles, allowing them to isolate their average impact
on criticalities. Thus, if a solver agent sees that its impact on the most criti-
cal objective is negligible, it may decide to help another objective, potentially
releasing a constraint on the improvement of the most critical.

Reactive decision If an agent observes that its target criticality decreases
beyond a configurable threshold, it will increase its momentum. This rule is
generally useful to converge quickly when the search space is locally regular or
even linear. On the contrary, if the highest criticality increases beyond the same
threshold, the agent will reduce its momentum so the next cognitive decision will
come sooner, with updated data including these "error" cycles. The goal of this
reactive method is to avoid more expensive processes when the current region of
the search space is not ambiguous.

Cognitive decision When the momentum of its last decision drops to zero,
the agent will process the data it has recorded during the successive perception
phases. This more cognitive process consists in interpolating the variation of
the current target criticality according to its own value. The goal is to identify
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Fig. 4. Screenshot of simulator running

an objective to help according to its criticality and the impact that the agent
believes it has on it. The momentum mechanism has another advantage with
this decision process since the agent operates what we could call a stochastic
pseudo-scan of its local search area. In cases where this second decision process
does not lead to a decision, the agent acts randomly.

4 Simulation and Experiments

The MAS is connected to an optical simulator and has to update the state of this
system, apply the changes decided by the agents and compute the feedback. The
simulator we have developed is presented in Figure 4. It is a 2D-world composed
of a light source, several lenses (Li with i in [1, N ]) and a screen. The light source
emits a number of rays (Rj with j in [1,M ]) of conical shape. If a ray crosses a
lens, it is refracted according to the Snell-Descartes laws: n1.sin(θ1) = n2.sin(θ2)
(where theta is the angle measured from the normal to the surface hit by the
ray, and ni is the refractive index of the respective medium). Thus, assuming
that a ray passes through all the lenses in the system, we have a mathematical
sequence of operations applied to its position and orientation: Rj(posj,i, θj,i) =
Li(Rj(posj,i−1, θj,i−1)) with i in [1, N ] and j in [1,M ].

The test cases are generated so that all rays pass through all lenses as follows:
a set of lenses with various characteristics (thin or cylindrical shape, refractive
index, focal length) are randomly placed on the axis between the light source and
the screen. A set of rays is generated parallel to the axis X so that each ray passes
through all the lenses and reaches the screen. The lenses are then iteratively and
randomly moved and rotated, changing the direction of the rays. After a certain
number of cycles, the state of the system is defined as the reference to be reached
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by the agents. The following iterations are used to artificially deteriorate the state
of the system to what will be the starting point of the experiment.

Fig. 5. Lens control di-
agram (theoretical objec-
tive beam in hashed gray)

A lens Li is represented by its type (thin or cylin-
drical), its position Pi(x, y) and its rotation angle Ti,
its refractive index ni and its focal length Fi. For cylin-
drical lenses, the radius of each face is also defined: R1i
and R2i. Among these parameters, only Pi and Ti can
change during the execution and are controlled by the
agents. So we have 3 solver agents per lens3: X and
Y for the position on 2 axes and Rt for the rotation
in the plane, as represented in Figure 5.

A ray is a more complex structure since it is repre-
sented by a path. A path is an ordered list of positions
and directions describing the points of intersection
with the various lenses it passes through {pj,k(x, y)}
and the direction of the ray at these points represented
by an angle to the X axis {angj,k}, with k the index
of the intersection.

The rays are not directly known by the agents. Only the last position and
direction of each ray (when it reaches the screen) are used to compute sensor
measures to send to the MAS. For example two measures can be computed from
the mean square deviation of the positions and angles of the rays:

Rpos =
√

(
∑

((pj,last(y)− prefj,last(y))
2)/M) (2)

Rang =
√

(
∑

((angj,last − angrefj,last)
2)/M) (3)

As seen in section 3.2, an objective agent is associated with each sensor
measure and updates its criticality depending on the gap with its objective
value.

Other measures such as the width of the beam, or the power (percentage of
rays arriving on the screen) can be calculated from this set of intersections of the
rays with the screen. Our goal is to construct values that are as representative
as possible of what can be perceived on a real system with one or more specific
sensors.

5 Results

For each experiment presented in this section, for observability issues necessary
to validate the tested hypotheses, each parameter evolves at a fixed step, and a
curve of the most critical objective is represented at each iteration.

Each of the first two graphs (Fig. 6) represent an experiment run one hun-
dred times, allowing to observe the variability of the resolutions on a single lens
3 Note that in reality, in 3 dimensions, there will be 6 agents for the 6 degrees of

freedom.



Optimization of Complex Systems in Photonics by MAS 9

(cylindrical and thin). We notice that when the system is far enough from the
solution (in the first cycles where the criticalities oscillate under 100), the con-
vergence is slower. We observed the agents decisions are mostly cognitive and
stochastic at this point. The main reason is that agents try to know what is
the right direction. The momentum mechanism is crucial here. Then when the
acquired information becomes sufficient to perceive a direction, the criticality
decreases more and more quickly. The agents then make a series of reactive
decisions that maintain this so-called acceleration phase. When the criticalities
reach a level where their competition is strong, thus stopping the convergence,
the agents reach an equilibrium in cognitive and reactive decisions which will
help to continue converging towards the solution. However, this final phase in-
cludes the most non-cooperative synchronizations.

Fig. 6. Highest criticality over 100 repetitions of 2 problems with 1 lens (cylindrical
on the left and thin on the right)

5.1 Problem Specific Knowledge

We made the hypothesis that the convergence of the system towards satisfactory
states tends to accelerate when we provide agents with additional information
that they take into account seamlessly without having to change their algorithms.

This hypothesis was tested by introducing a criticality on the deviation from
the desired position of the quartile rays (in the order of the screen intersections).
For example if Q1 is more critical than Q3 it means that the beam is too high
compared to the target. The added information is that depending on which
quartile is more critical, the collective will tend to redirect the beam faster than
with the overall criticality of the positions.

The collective tries to help the most critical agent first, so it will lower the
beam position before continuing the optimization of other objectives. This obser-
vation, validated empirically, led to better results when the quartile ray position
criticalities are added (Fig. 7 and 8).

Indeed, we notice that the convergence of the system tends to be accelerated
in the first phase of the resolution. The addition of criticality for purely informa-
tive purposes for the solver agents improves the worst resolution cases. However,
we must be careful not to disturb their cooperation, because these additional
criticalities are new criteria between which to arbitrate.
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Fig. 7. Highest criticality over 10 repetitions of 10 1-lens problems without (left) and
with criticality on quartiles (right)

Fig. 8. Highest criticality over 100 repetitions of a 1-lens problem without (left) and
with criticality on quartiles (right)

5.2 Increasing Complexity by the Number of Lenses

For an optical system, we consider that the increase of the complexity of a prob-
lem goes hand in hand with the increase of the number of lenses that compose
it. Indeed, each lens has 3 axes of alignment, and therefore 3 design variables to
the problem, which means 3 additional agents. Thus, for 10 lenses, we have a
total of 30 agents who must cooperate in a 30 dimensional search space where
each step deforms this space.

The following experiments have been performed with strongly reduced fixed
steps because the instability of the system is greatly increased, due to the discon-
tinuities of the beam in the chaining of the lenses. This causes peaks in criticality
curves that can be remarked for 3-lens problems (Fig. 9) and even more for 7-lens

Fig. 9. Highest criticality over 10 repeti-
tions of 10 3-lens problems

Fig. 10. Highest criticality over 10 repeti-
tions of 10 7-lens problems



Optimization of Complex Systems in Photonics by MAS 11

Fig. 11. Highest criticality for 10 repetitions of 10 problems with 10 lenses

problems (Fig. 10). However, a strong homeostasis capacity allows the agents to
successively degrade and improve the solution to globally converge to more sat-
isfying configurations. This is the result of the trade-off between exploration and
exploitation in the agents’ behavior. We can see that the system also manages
to converge with 10 lenses (Fig. 11). The increase in complexity is not the heart
of the problem. The difficulty lies in the cooperation of an increasing number of
interacting elements in an environment with many interconnections. The opti-
mization problem has become at this stage a problem of systemic cooperation.
The more efficient it is, the better the MAS will be in its resolution.

6 Conclusion and Perspectives

This article proposed a multi-agent approach to naturally model a real-world
complex optimization problem as a cooperative solving problem and to satisfy
as much as possible objectives given by experts at a reasonable computational
cost. This is made possible by the agentification of the constraints and objectives
of the problem and by making these agents cooperate in order to adapt the
parameters of the system.

Experiments performed and results obtained show that this approach is
generic enough to be applied to a wide range of complex systems, notably in
Photonics with various search space topologies. It also shows that the agents
manage to differentiate themselves by observing the behavior of the complex
system in response to their changes. Results are yet to be confirmed on real
data, and a deployment of this solution is in progress on physical robotic indus-
trial systems, both in Photonics and control loop tuning domains.

The behaviour of solver agents, notably their decision phase, has been kept
as simple as possible for now. Some improvements are planned inside the agents



12 Q. Pouvreau, J-P. Georgé, C. Bernon, S. Maignan

by implementing further learning algorithms able to work on sparse data, or by
adding criticalities to have a constraint/stagnancy repulsive behavior.
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