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Abstract – Accurately identifying the sources and rates of
degradation in Li-ion batteries is crucial for predicting and
mitigating their aging process. A diagnostic tool is presented in
this study that can estimate the Degradation Modes (DMs) of
Li-ion batteries using the Incremental Capacity Analysis (ICA)
technique. To improve the precision of the DMs estimation tool,
the software also considers an estimation of the inhomogeneous
loss of cyclable lithium within the negative electrode. A range of
second life Li-ion batteries with Graphite/NMC622 chemistry was
tested in order to evaluate the performance of the diagnostic tool,
enabling the comparison of their respective aging characteristics.
The results demonstrate that the diagnostic tool provides an
effective mean of characterizing and predicting the aging of
Li-ion batteries, offering valuable insights into the behavior and
performance of these critical energy storage systems.

Keywords – Li-ion, Battery, Degradation Modes, Diagnosis, aging,
second life, inhomogeneity, heterogeneity.

1. INTRODUCTION

After a first life in electric vehicles, the battery packs can be
dismantled for determining their fitness for second life applica-
tions with a remaining State of Health (SoH) of around 80%.
The battery module selection procedure is based on several test
protocols such as capacity and power measurements. However,
the aging mechanisms in the Li-ion battery modules cannot be
obtained from these test protocols. Several papers have been
published on the estimation of DMs in the literature, but few
focused on applying the available techniques in the context of
second life [1–12]. Therefore, this paper, which is a follow-up
to our last [13], explains the DMs estimation tool developed for
second life battery applications.

The diagnostic tool here presented was developed on MAT-
LAB and inspired by many publications, especially the Incre-
mental Capacity Analysis (ICA) method used to quantify the
battery DMs published by Matthieu Dubarry et al. [8–10] and
on the software developed by Johannes Philipp Fath et al. [11]
which can estimate lithium distribution inhomogeneity in Li-ion
cells. The goal of this tool is to give an estimation of the DMs
taking place inside a Li-ion cell in order to follow the aging pro-
cess during their second life. This is achieved by obtaining the
pseudo Open Circuit Voltage (pOCV) of the battery at different
SoHs.

The ICA technique has been extensively used to estimate the
SoH of batteries by monitoring the characteristic phase transi-
tion peaks during their operation. ICA has been demonstrated
to provide accurate evaluations of battery SoH, even under high
C-rates, as long as the characteristic peaks are still present in the
signature. When estimating DMs, the magnitude of the imposed
current is more critical, and lower regimes are linked to more
precise results, although some studies have performed high C-
rate tests with satisfactory outcomes [14, 15]. ICA appears to
be a suitable method for evaluating the overall health of Li-ion
battery modules for second-life applications, providing essen-
tial information on the remaining useful life and suitability of

a module for a given application. Nonetheless, to streamline
the module evaluation process, additional research is necessary
to identify the maximum current regimes that can yield prac-
tical information when ICA is applied to second-life batteries
exhibiting higher impedances.

In this study, three Li-ion batteries of the same technology
with a NMC622 cathode and a graphite anode possessing dif-
ferent SoHs were charged and discharged at low currents (C/20)
in order to validate the DMs estimation software. This analy-
sis is important to understand how these DMs will impact the
battery capabilities to accomplish their missions in second life
applications.

2. LI-ION DEGRADATION MODES

There are multiple complex degradation mechanisms taking
place in a Li-ion battery during its life [16]. Nonetheless, these
mechanisms can be grouped into distinct categories based on
their overall macroscopic impact (see Fig. 1). The effects mod-
eled by the diagnostic tool are:

Figure 1. Degradation mechanisms in a Li-ion battery (Original figure from
[16] and modified in [17]).

The first one is the Loss of Lithium Inventory (LLI), which is
the main cause of aging during the battery first cycles. Lithium
ions are mainly consumed due to the side reactions that form
the Solid Electrolyte Interphase (SEI) layer on the graphite an-
ode. The SEI is a naturally formed passivation layer which pro-
tects the anode from the electrolyte, but it is further thickened
during battery usage where the lithium ions react with the com-
pounds found in the electrolyte to form said layer. The elec-
trolyte composition is of crucial importance to the stability of
this layer, commonly being constituted of Ethylene carbonate
(EC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC) and
additives such as Vinylene carbonate (VC). It has been proved
that for nickel rich NMC cathodes, a small part of LLI can be
attributed to the Cathode Electrolyte Interphase (CEI). Another
effect that causes LLI is the lithium plating mechanism. This
phenomenon occurs when the anode potential drops below 0 V
(during high charging rates and low temperatures) and metallic
lithium is deposited on the electrode surface.

The second and third DMs are the Loss of Active Material



of the negative and positive electrodes (LAMNE and LAMPE),
which are consequences of the volume expansion and contrac-
tion suffered by the electrodes during cycling. Whenever these
DMs occur, the possible sites for lithium ion insertion get dis-
connected from the main active particle and no longer interact
with the conducting matrix. These isolated particles can get dis-
connected with the presence (or not) of lithium inside the active
material, so this particular DM would be accompanied by LLI.
Other reasons such as transition metal dissolution or graphite
exfoliation can also be the cause of these DMs. Particularly for
NMC batteries, Manganese dissolution has been reported and is
known to migrate to the SEI and contaminate this layer, intensi-
fying battery aging by promoting further electrolyte decompo-
sition [18].

The last effect worth mentioning is the inhomogeneous Li+
distribution, which is not a DM on itself, but rather a conse-
quence of aging in large electrode active surfaces [11]. This
phenomenon is more noticeable with more aged cells and could
possibly be attributed to a spatial variation of Li+ concentra-
tion on the electrode, causing a local State of Charge (SoC) dis-
persion in the cell. Towards lower SoHs, the cells can present
lithium plating on some regions of the anode.

3. THE DEGRADATION MODES ESTIMATION TOOL

As previously mentioned, this DMs estimation tool will be
used to further understand the aging mechanisms taking place
in the second life Li-ion batteries. In order to identify the initial
cell parameters and afterward the DMs, the tool relies on a sim-
ple optimization algorithm that generates multiple Incremental
Capacity (IC) curves from the half-cell pOCVs and selects
the one which minimizes the cumulative Root-Mean-Square
Error (RMSE) between the simulated and experimental curves
for each voltage value. These simulated pOCV curves are
created by changing the electrodes Loading Ratios (LR), which
is the capacity proportion between both active materials, and
the Offset between the negative and positive electrode curves.
With this (LR, Offset) pair, the half-cell pOCV curves and the
experimental capacity of the battery, its is possible to recreate a
simulated pOCV curve. Fig. 2 shows a schematic view of the
functions to be described in the following paragraphs.

Function parameters:
Experimental and
Half-cell pOCVs

Trace experimental
IC curve

Vary (LR, Offset)

Create simulated IC
curve from half-cell

data and (LR, Offset)

Compare
experimental and

simulated IC curves

Minimal RMSE?

Last
(LR,Offset)

pair?

No

Save as
(LRini, OFSini)

End function

No

Yes

New cell identification
Function parameters:
Experimental pOCV,
Half-cell pOCVs and

(LRini, OFSini)

Trace experimental
IC curve

Vary
(LLI, LAMpe, LAMne)

and θ 

Create simulated IC
curve from half-cell

data and (LR, Offset)

Compare
experimental and

simulated IC curves

Minimal RMSE?
Yes

Save (LLI, LAMpe,
LAMne)

End function

No

Yes

Aged cell identification

Calculate
(LR, Offset)

No

Yes

Last
(LLI, LAMpe,

LAMne)?

Figure 2. Identification functions of the DMs estimation tool.

3.1. New cell identification

The first identification function is the reference for the follow-
ing DMs estimations, it receives the experimental pOCV curve
of a given battery as input and calculates the associated experi-
mental IC curve. In order to calculate the simulated IC curves,
a first step of adjusting both half-cell pOCVs is necessary. First
the negative electrode pOCV (pOCV−) is shifted by the Offset
and then scaled with the LR value (as seen in Fig. 3). The posi-
tive electrode pOCV (pOCV+) remains unaltered, since this last
is used as the reference for the full cell SoC. Then, if the Offset
value is positive, the pOCV+ is subjected to interpolation with
the negative electrode SoC values in order to add both curves
and create the simulated full-cell. Fig. 3 illustrates this step.
Subsequently the simulated IC curve for the given (LR, Offset)
pair is calculated.
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Figure 3. Full cell determination procedure from half-cells pOCVs.

This process is repeated for each (LR, Offset) pair and com-
pared with the experimental IC curve. The result with the small-
est cumulative RMSE is retained as the reference cell at 100%
SoH for the following function. The following equation is used
to calculate the RMSE between the experimental and simulated
IC curves. Here, N is the number of points in the window con-
taining the IC peaks, set to 3.2 V and 4.15 V.

RMSE =

√√√√ 1

N

N∑
j=1

(
ICExperimental(j)− ICsimulated(j)

)2

(1)

3.2. Aged cell identification

The second identification function, as in the first, receives the
experimental pOCV curve to calculate its IC signature. It then
creates the simulated IC curves by trying multiple combinations
of the triplet (LLI, LAMPE , LAMNE) that will ultimately mod-
ify the original values of (LR, Offset) according to the following
equations (modified from [8]).

LR = LRini
100%−%LAMNE

100%−%LAMPE
(2)

Offset = Offsetini +%LLI − LR

LRini
%LAMPE (3)

Here, (LRini, Offsetini) are the initial parameters found
for the cell with 100% SoH. The following step is taking into
account the inhomogeneous lithium distribution. It is known
that as the cell ages, the negative electrode can present a spacial
dispersion of lithium distribution across its surface [23]. This
phenomenon could possibly be attributed to an heterogeneous
current density across the electrode, inducing local hot spots in
the cell and thus LLI (with possible lithium plating). This degra-
dation effect is modeled by a third and last function of the DM



estimation tool. Its inputs are the (LR, Offset) pair of the aged
cell, which is the result of the previous function, as well as its
pOCV curve. The procedure is possible thanks to the superpo-
sition property of the IC curve, for which the sum of multiple
parallel cell voltages is the response of the battery. This is done
by dividing the original cell into multiple virtual parts (11 in this
work) and simulating a LLI gradient around the Offset value of
the real cell, since LLI is directly translated into a shift of the
negative electrode. Each virtual cell will have a different per-
centage of Li+ loss, but the average of all the virtual parts is the
same as the real cell. The following equation, modified from the
article by J.P Fath et al. [11], equates this phenomenon:

Offset = Offsetmean + (
cell

10
− 5) ∗ θ (4)

In which (cell ∈ N|cell ∈ [0, 10]) is the virtual cell number
and θ is the total LLI gradient range in percent. In practice, a
large θ means that the cell presents a high lithium distribution
heterogeneity and each virtual cell used to create the experimen-
tal signature has a different LLI value. Here, as in [11], a linear
LLI distribution has been chosen to model the dispersion. Note
that since the input of this function is the output of the previ-
ous, any inaccuracies found in the former in terms of DMs are
propagated to the latter. This was prevented by inserting the in-
homogeneous lithium distribution function inside the DMs esti-
mation function. However, this means that for any triplet (LLI,
LAMPE , LAMNE) tested, the inhomogeneous lithium distri-
bution test has to be done in sequence, making the simulation
computationally heavier, although still feasible. The triplet and
θ capable of minimising the RSME are stored.

The choice of weather implementing the inhomogeneous
lithium distribution function inside the main identification loop
or after it depends mainly on the SoH of the cell to be identified.
For less aged cells, since they present well defined IC peaks, the
overall identified IC shape without inhomogeneities taken into
account can represent accurately the experimental one. There-
fore, in such cases, the inhomogeneity function can be placed
outside the loop to simplify the process. However, for cells with
higher degrees of aging and thus flatter IC signatures, the inclu-
sion of the inhomogeneity step within the primary function loop
becomes essential. This is due to the fact that for such cells,
no triplet (LLI, LAMPE , LAMNE) would be able to accurately
model its flatter IC shape, propagating the inaccurate result to
the inhomogeneity loop. This last remark is develloped in the
next section.

4. APPLICATION
In order to validate the DMs estimation tool, three Li-ion

NMC622/Graphite cells issued from hybrid electric vehicles
used packs were extracted. Since they come from different
packs, their first lives were not exactly the same. For each cell,
the IC curve was plotted from a measurement of the cell voltage
during a charge protocol with low current (C/20) between 2.7
V and 4.2 V at ambient temperature (23°C). Fig. 4 displays the
three experimental IC curves of the aforementioned cells. The
cell with 100% SoH presents well defined phase transition peaks
as expected for a new battery. The cell with 86.2% SoH also ex-
hibits well pronounced peaks, however with lower amplitudes
when compared with the pristine cell. Finally, the 82.8% SoH
cell shows the most flawed signature, as this last has lost the
last distinct graphite phase transition peak, while the remaining
peaks appear broader and smaller in amplitude.

It is already known that for cells with higher aging, their IC
curves present lower peak amplitudes due to LLI and LAM [8].
This trend is confirmed when comparing the three experimental
curves at different SoHs (Fig. 4). As explained in section 3, the
cell with 100% SoH, set as the reference for the others, was the
first to be subjected to the tool. Its parameters were then used as
inputs for the following functions, together with the remaining
two batteries pOCV curves. Ideally, the tool should be applied
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Figure 4. Experimental IC plots for the three cells at different SoHs.

to the same battery at multiple SoHs, in order to track the DMs
throughout its lifetime. Fig. 5 shows the experimental IC curves
of each battery as well as the identified curves with and without
Li+ inhomogeneity taken into account.
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Figure 5. Simulated IC plots for the three cells at different SoH.

The identification results shown in Fig. 5 are satisfactory,
as the overall shapes of the IC curves are captured by the es-
timation tool with minor local errors (see Tab. 1). The initial
two cells tested exhibited minimal levels of Li+ inhomogeneity,
which was anticipated given their well-defined shapes. On the
other hand, as seen on Fig. 4, the most aged cell presents a much
flatter IC signature when compared to the cell with 86.9% SoH,
despite the fact that their capacity difference is not substantial.
This could be explained by a higher Li+ inhomogeneity for the
more degraded cell. In the last plot from Fig. 5, it is clear that
the experimental IC peaks more closely resemble the identifi-
cation function with inhomogeneity taken into account (in the
inner identification loop), as this last tends to widen peaks and
reduce their amplitudes. The observed effect can be attributed to
the simultaneous phase transitions occurring at slightly different
voltages in distinct regions of the anode [22, 23].

Fig. 6 shows the DMs obtained with the estimation tool and
the θ value for the three cells. Note that LLI and LAMPE are the
main aging mechanisms associated with capacity fade, this is a
known trend for NMC batteries [23, 24]. They mainly contribute
to the loss in amplitude of the IC peak situated between 3.6 V



Table 1. Minimal RMSE between the experimental and simulated IC curves.

RMSE
(Experimental -
simulated) [Ah/V]

100% SoH 86.9% SoH 82.8% SoH

With
inhomogeneity

4.47 3.06 2.35

Without
inhomogeneity

4.47 3.11 5.74

and 3.7 V. As for the first identified peak between 3.4 V and 3.5
V directly associated to the first phase transitions in the graphite
electrode, its flattened out signature is linked to the Li+ inhomo-
geneity increase, since no LAMNE has been identified for the
most aged cell. The high inhomogeneity value identified can be
explained by a probable amount of lithium plating consuming
Li+ in addition to the SEI layer, for the cell with 82.8% SoH.
Whereas the LLI for the 86.9% SoH cell is only due to the passi-
vation layer, since the Li+ inhomogeneity value is much lower
for this last. It is crucial to acknowledge that this assertion is
solely based on the high inhomogeneity value obtained through
the tool. The veracity of this supposition can only be proved by
conducting a post-mortem analysis of the electrode surfaces or
through an in-depth investigation of the SEI and charge trans-
fer resistances utilizing, for example, a pulse characterization
method to precisely quantify the individual contributions to the
overall surface resistance [19–21].
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In order to better understand the DM results obtained with the
tool, Fig. 7 portrays the Differential Voltage (DV) plot for the
three cells. Since the peaks of this plot highlight not the phase
transitions, but the existence of just one phase in the graphite
electrode, a direct inter-peak measurement can give the extent
of LAMNE [12]. This procedure yielded a LAMNE of 10.15%
for the cell with 86.9% SoH, which is close the 8% given by the
estimation tool. As for the most aged cell, this technique is not
applicable, since no visible peak is recognised before the last
graphite phase transition towards higher capacities. Nonethe-
less, a plateau-like form is present and helps to visualise the
extent of the Li+ inhomogeneity identified with the tool.

The robustness of our results given by the DMs estimation
tool was verified, nevertheless, in order to enhance its reliability
and accuracy, further improvements to the tool are necessary and
will be pursued. Additional aging data will be incorporated to
refine and enhance the tool’s performance in the future. As seen
in Fig. 6, LAMNE is null for the cell with higher capacity loss.
Although possible, this value is rather unlikely for a cell aged
to this extent. This might be due to a difficulty of the algorithm
in distinguishing the more flatter IC signature of this last cell.
Distinguishing LAMs with and without lithium trapped inside
the electrodes could probably help to get more precise results.
However, in [11], which examined the same battery technology
as in this study, it was observed that for the majority of the ag-
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ing profiles, either no LAMNE was verified or a net increase in
the total negative electrode capacity was observed. This corrob-
orates to the possibility of having no or negligible LAMNE for
the most aged battery.

As for the Li+ inhomogeneity estimation, a possible point
for improvement is the distribution function itself. In [22], the
possibility of having different Offset dispersions is mentioned.
This would help to explain why in Fig. 4, for the most aged
cell, two distinct peaks appear between 3.4 V and 3.55 V. In
this case specifically, maybe two distinct Offset gradients super-
posed could better capture the Li+ inhomogeneity distribution.

Moreover, a crucial consideration for the effective utilization
of this type of tool is the half-cell data employed. It is a well-
established fact that the half-cell pOCVs deteriorate as they age
[25], and incorporating diverse half-cell data could enhance the
identification of older cell signatures. Furthermore, the elec-
trodes exhibit rate dependence, and as LAM progresses, their
effective active surface area diminishes, resulting in the accen-
tuation of kinetic effects. In this study, this issue was circum-
vented by imposing low currents. However, in order to apply
the tool on a large scale, the development of a rate-dependent
algorithm is of utmost importance for faster and more accurate
testing, specially for the selection of second life batteries.

Moving forward, this diagnostic tool will be utilized to study
second life battery modules until the end of their useful life,
providing valuable insights into their performance and behavior
over time. By utilizing the information derived from this tool,
it becomes feasible to forecast the battery aging knee [26] and
generate accurate prognostic assessments of the system’s overall
health. This diagnosis at the beginning of a battery’s second life
is vital for the development of second life battery energy sys-
tems and for mitigating the ecological impact of these elements.

5. CONCLUSIONS

The identification of aging mechanisms in second life Li-ion
batteries is crucial for the development of effective battery man-
agement strategies that can prolong their useful lifespan. The
presented DMs identification tool has exhibited promising re-
sults in accurately estimating the primary sources of aging in
such batteries. Notably, while this type of methodology is typi-
cally employed for first life batteries, its applicability to second
life batteries represents a significant step towards the optimal
utilization of these resources. The accurate identification of ag-
ing mechanisms in second life Li-ion batteries is critical for en-
suring their safety and reliability, as well as for mitigating the
environmental impact of battery disposal. The DMs identifica-
tion tool, with its capability of pinpointing the root causes of
aging in these batteries, holds immense potential in advancing
the development of sustainable and efficient energy storage so-
lutions.

In addition, the ongoing second life battery aging campaign
presents a unique opportunity to further refine and enhance the
performance of the DMs identification tool. By utilizing addi-



tional aging data, the tool’s accuracy and reliability can be fur-
ther improved, leading to even more precise and effective bat-
tery management strategies.
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