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OutlineOutline

 Introduction
 The idealized picture of multi-scale problems

– Upscaling techniques
– Computation of effective properties 

 The real world
– Computation of effective properties on non-periodic images
– Highly Heterogeneous media:

• REV or not REV? What is the question?
• Sequential upscaling

– Various types of model: N-equations, complex terms (convolution, 
fractal derivative, etc), hybrid, ...

 Conclusions



Upscaling 3/48M. Quintard
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Goal: method to solve problems with reduced number of DoFs
Possible route: obtain macro-scale variables and develop a fully 
(closed) macro-scale model (equations, effective properties and Bcs)
Alternative (more accurate?) routes: hybrid, network, N-equations, etc...

Typical (Idealized) Up-Scaling Typical (Idealized) Up-Scaling 
ProblemProblem
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Upscaling: different points of Upscaling: different points of 
viewview
 Heuristic: Darcy's law (1856)!
 Volume averaging + heuristic closure (like CATHARE model)
 Volume averaging +  irreversible thermodynamics (Marle, 

Hassanizadeh, Gray, Bowen (mixture theory), …)
 Upscaling with closure: homogenization theory (Sanchez-

Palencia, Bensoussans et al.,...), volume averaging (Whitaker, … 
and variants), 

 Stochastic theories (Matheron, Dagan, Gelhar, ...), … P
β
=E(p

β
)

 Other point of views...: dual-phase-lagging heat conduction 
(Wang et al., 2008; Vadasz, 2005...); mixed models; fractional 
derivatives (Néel,...); CTRW; ...

(Ψ)=0ϑ

Ψ=g(x) Ψ =g*(⟨ ⟩ x)

Pore-Scale Local-Scale

ϑ
*
( Ψ )=0⟨ ⟩
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Averaging (for dummies):Averaging (for dummies):

A simple introductionA simple introduction

see advanced material in Whitaker, The Method of Volume Averaging, 1999
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Simple Volume AveragingSimple Volume Averaging
(see early work by Marle, Gray, Whitaker, … in the 60s(see early work by Marle, Gray, Whitaker, … in the 60s
see Quintard and Whitaker series on generalized averaging, >93)see Quintard and Whitaker series on generalized averaging, >93)

● β-phase Volume Fraction

●                        Intrinsic phase average

● β-phase Saturation

𝓥

β

σ

y

x
r

nβσ
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Separation of ScalesSeparation of Scales

    r l R LH0 0

Microheter.

Macroheter. 

+ 

Non-linearities

homogeneous

If subsequent averaging

If possible, choose:

r
0
: characteristic length of the averaging volume

REV
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TheoremsTheorems Interfacial 
Effects     
(tortuosity,...)

𝓥

β

σ

y

x
r

nβσ

Phase change, 
dissolution , ...
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General structure of a macro-scale General structure of a macro-scale 
equationequation

 Pore-scale

 Macro-scale

with

closure?
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Upscaling with Upscaling with closureclosure: a schematic view for : a schematic view for 
diffusion in a heterogeneous mediumdiffusion in a heterogeneous medium

x

x

x

DNS

aver.c
Closure:

Macro

Micro

Macro-scale Equation

bx

Note: High Performance Computing → up to 20483 voxels 

● Tomography
● Reconstruction
● Geostatistics
● ...

Effective Properties
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Closure and Macro-scale Closure and Macro-scale 
equation : effective diffusionequation : effective diffusion

 Local problem over 
representative UC

 Macro-scale Equation 

 Effective diffusion 
tensor

Periodicity? To be 
discussed! If isotropic:
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Example: Dispersion with Example: Dispersion with 
heterogeneous reactionheterogeneous reaction

Da=0 → passive case  ;  Da → ∞ → uniform conc. at A
ls
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Conclusions and problemsConclusions and problems

 Upscaling gives insight into appropriate equations and 
effective properties

 Attractive framework for modeling and working with 
pore-scale images combining imaging/upscaling/HPC

 ...BUT, in the REAL WORLD:
– Non-periodic cases
– Bad or no separation of scales
– Non-local terms in space and time
– Non-linear and coupled transport problems (e.g. no linear 

closure)
– Effective Boundary conditions
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L

Block-Scale
Effective surfaces

Reservoir-Scale

K11

K21 K22

K12 K13 K14

Fracture-Scale

SubUnit-Scale
The Real World...The Real World...
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Eff. Prop. for Non-Periodic ImagesEff. Prop. for Non-Periodic Images

 Periodicity : natural handling of anisotropy effects
 Making image periodic? 

I: Percolation problem

II: Loss of anisotropy features

III: potentially various biases

Case of “diffusion” problems: e.g., permeability, effective diffusion

See discussion in Guibert et al., 2015

Keff

I II III
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Calculations over non-periodic Calculations over non-periodic 
images (cont.): “images (cont.): “permeameters”permeameters”

See discussion in: Manwart et al. 2002; Piller et al. 2009; Guibert et al., 2015; ...

ℓpℓa

H

Small-scale Macro-scale

Equivalence: determine Keff to satisfy

solve for solve for
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Choice of Boundary ConditionsChoice of Boundary Conditions

P
1

⇒
x

y P
2

⇒
P

1

P
2

x
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0

a

1

Classical Bamberger

if homogeneous box!

infinite layer 
1D anal. sol. =
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InterpretationInterpretation

1) Optimization (whatever the 
technique): vary Keff to satisfy

2) Approximation: Assume 1D infinite layer

→ complete determination of Keff through 3 calculations, 
changing the orientation of the averaged gradient
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DiscussionDiscussion

 Biases due to ℓp/ℓH and ℓa/ℓH

 Symmetry of the Effective tensor:
– case of periodic conditions: leads naturally to a 

symmetrical Keff

– Technique 1: symmetry of Keff can be imposed
– Technique 2: symmetry is not enforced

– can be used as it is, but no principle axis  (see Zijl, Wouter, 
"The symmetry approximation for nonsymmetric permeability tensors and its 
consequences for mass transport", Transport in Porous Media 22, 2 (1996), 

pp. 121–136.)
– or use


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Example 1: large-scale Example 1: large-scale 
permeabilitypermeability

variance = 0.223

variance = 9.21

side of averaging surface / lc

0
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8

0                   5                   10                 15                  20               25

After Ahmadi & Quintard, 1996

k(x): Lognormal distribution, spatial correlation length ℓc 

note that it may be difficult in practice to satisfy a REV condition!
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Example 2: non-newtonian fluid Example 2: non-newtonian fluid 
flowflow
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Flow of a non-newtonian fluid (from Zami-Pierre et al., 2018)
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Beyond REV paradigmBeyond REV paradigm

 Interest of having a REV:
– convergence properties with ℓREV/L
– above ℓREV , same equation structure and 

effective properties
– calculation over one sample gives a good 

estimate of transport properties
 Note that this is not a purely geometric 

notion (it is process dependent)
 What to do, if no REV properties!
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Sequential Upscaling and Models Sequential Upscaling and Models 
for Non-Separated Length-Scalesfor Non-Separated Length-Scales

(i.e., the real world ☺)(i.e., the real world ☺)
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ExamplesExamples

Pet. Engng, Hydrogeology

Pauline Assemat project
on osteosarcoma
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Sequential upscaling as a tool for Sequential upscaling as a tool for 
GridBlock aggregation, multigrid or GridBlock aggregation, multigrid or 
AMR algorithmsAMR algorithms
 GridBlock models: no separation of scales

 Multigrid, AMR: need projection operators 
taking into account heterogeneity effects! 

 ⛐ assumption of a constant form of the transport equations at all 
levels!
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2-step sequential: ex. of a 2-step sequential: ex. of a 
Fractured systemFractured system
from Kfoury et al., 2004, 2006, ...

Local-scale

sub-unit scale

Block-scale δS

block-scale

16×16 8×8 4×4 2×2

Permeability at Block-Scale

0 0. 10.2 0.3 0.4 0.5
0

0.5

1
x 10−7

lu

0 0. 10. 20. 30. 40.5
0

1

2

3

4
x 10−8

2048×2048
cells

lu / δS lu / δS

Keff Keff

δx

δx

Permeability at the sub-unit scale
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Example: also approximates Example: also approximates 
percolation propertiespercolation properties
from Kfoury et al., 2004, 2006, ...

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
10−12

10−11

10−10

10−9

10−8

10−7

32x32
16x16
8x8

φf

Percolation properties?

Percolation threshold → OK  ;  K
eff

 ≈ (p-p
c
)α

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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φf

Kff
xx

Seed 123
Seed 456
Seed 789
Seed 159
Seed 753
Seed 852

reflects matrix
permeability

reflects fracture
permeability

K (seq. 1st step)k (small scale)

step-1 prop.
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Sequential upscalingSequential upscaling

 decreases computer resources requirement, can be easily 
scripted, ...

 gives additional informations (local heterogeneities, better 
evaluation of REV, ...)

 no-a priori error estimation with ℓu , but end point convergence 
(not uncommon: see building network approximation)

 requirements:
– need to use full anisotropy tensors

– 1st step may require a different upscaling: e.g. Stokes → Darcy → 
large-scale Darcy

 Alternative: PDE structure adapted for each sub-unit. Not very 
practical?
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L

𝓥
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σ
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Various Types of modelVarious Types of model
● Two-Equation Models: Two-Equation Transient, 

Two-Equation Quasi-Stationary, variants
● One-Equation Models
● Telegrapher’s Equation
● Multirate Approaches
● Hybrid Models
● Etc...

see review in Davit, Y., Quintard, M., 2015. Handbook of Porous Media, in: Vafai, K. (Ed.), Taylor & Francis.
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Various types of model, illustrated Various types of model, illustrated 
by the Heat Transfer Problemby the Heat Transfer Problem

     . .    in p p

T
c c T k T V

t


     
 


    


v

B.C.1       at T T A  

B.C.2    . .k T k T         n n

L

𝓥
β

ℓβ

σ

ℓσ
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Macro-scale TemperaturesMacro-scale Temperatures

 Temperature not 
additive: ~OK to use 
phase average

 Mixture Temperature

 Phenomenology

– Contrast of 
parameters → 
different regimes

– Local equilibrium :

– Non-equilibrium 
models
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I - Local Equilibrium → 1-Eq modelI - Local Equilibrium → 1-Eq model

Closure:

(Carbonell & Whitaker, 84; Nozad et al, 85; …)

with:
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II - Local Non-Equilibrium: Various II - Local Non-Equilibrium: Various 
closures for 2-Eq modelsclosures for 2-Eq models

 transient closure (→ convolution product, at least in time): retardation and memory effects!

 quasi-steady closure

 other … Hsu (1999), Nakayama, ...   DeGroot & Straatman, 2011

 n-th order closure (see Davit and Quintard, 2014, for n=2)
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Local Non-Equilibrium Models: 1Local Non-Equilibrium Models: 1stst  
order 2-Eq modelorder 2-Eq model
 Volume averaging theory, 1st order, quasi-steady closure

(Carbonell & Whitaker, 84; Zanotti & Carbonell, 84; Quintard & Whitaker, 93, 95, 97; 
Quintard et al., 96; …...)

Similar to heuristic models if no non-conventional terms (in red)!

heat exchange coefficient
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Discussion about exchange Discussion about exchange 
coefficientcoefficient

 exchange term has retardation and memory 
effect

–  → no intrinsinc value for h2eq  
– h2eq(t)  is not a correct implementation

 film theory?

Seff

h
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Various estimates for the 1Various estimates for the 1stst order  order 
exchange coefficient (diffusive case)!exchange coefficient (diffusive case)!

Stratified System 2D-Rectangular

System

3D-
Parallelepiped

System

Asymptotic
Value

Warren & Root
(1963)

Kazemi et al.
(1976, 1992)

Quintard &
Whitaker

(1992)

Linked to 1st eigenvalue

Linked to harmonic 
mean of eigenvalues!

Parabolic profile, also 
literature on LDF models, 
Liaw et al. (1979)

Linear Hat profile

Consequence: various values 
from inverse methods with ≠ 
objective functions
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III - 2-Eq Asymptotic Behavior (mixture III - 2-Eq Asymptotic Behavior (mixture 
temperature)temperature)

T
em

pe
ra

tu
re

xPre-asymptotic regime Asymptotic regime

from Zanotti & Carbonell, 1984; Davit et al., 2010 (moment analysis)
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 t for a semi- or infinite medium (see Zanotti & 
Carbonell, 1984; Davit et al., 2010):

     → good test for the choice of … h2eq!  

2-Eq Asymptotic Behavior2-Eq Asymptotic Behavior (mixture temperature) (mixture temperature)
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IV - 1-Eq Non-Equilibrium ModelIV - 1-Eq Non-Equilibrium Model

 Mixture Temperature:

 New decomposition:
 Specific Closure:

                              
 same equation and effective property as asymptotic eq.

→ Direct Estimation of         (see proof in Davit et al., 2010, 
if proper closure problem!)

 see Moyne et al. for relation with homogenization theory 

(Chella et al., 1998; Moyne et al., 2000; Quintard et al., 2001; Davit et al., 2010; ~Brenner's method)
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V - Better Non-Equilibrium models V - Better Non-Equilibrium models (N-(N-
eq., multi-rate models)eq., multi-rate models)

 Multi-rate (Brusseau et al., 1989;…); N-equation 
(Landereau et al., 1998) → a practical alternative to 
time convolution

Example: 3-eqs

 
1

1

   ,   

    with  , from the harmo. mean of the remaining eigenv.
r

r

T T 

 
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Examples: fractured mediaExamples: fractured media

(Landereau, 2000)

1st eigenv.
(worse estimate)

Q&W

t
ad

reference
1st eigenvalue
harmonic mean
equiv. block

eq. block (Bourbiaux
et al., 1998)

h

1   +   rh

t
ad

reference
3-eqs
2-eqs

σ

Tests with various h
2eq

Test with 3-Eq model

(also for Darcy’s law with slightly 
compressible fluid)
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VI - Mixed (or Hybrid) ModelVI - Mixed (or Hybrid) Model  
((diffusion, diffusion, kk    kk , dispersed σ , dispersed σ-phase-phase; De Swaan, 1976; …..; De Swaan, 1976; …..))

Macro-

Micro-

general solution:

→ involves spectrum of eigenvalues & eigenfunctions → h(t, BC, IC)!
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Mixed (or Hybrid) Model: Mixed (or Hybrid) Model: 
Practical ImplementationPractical Implementation

-Direct Numerical 
Simulation (Heavy 
computations)

-Mixed Model, Full 
UC (still Heavy 
Comp.)

-Mixed Model, 
Representative 
Matrix Block,…

…in some cases Analytical Solutions may be available

pore scale

hybrid
model

(a)

(b)

(c)

(d)
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Synoptic of various modelsSynoptic of various models

1D Macro-Scale

{

DNS

1-eq local equilibrium

2-equation, N-equation (multi-
 rate, ...

Mixed or Hybrid models

meso-scale Network model

Mixed or Hybrid Network
model (PNM+pore-scale VOF)

3D µ-scale

1-eq non-eq: convolution,
asympt. 2-eq, frac. deriv.,
wave eq., CTRW,...

Mixed or Hybrid models
for fronts, entrance regions

Mixed or Hybrid Network
model (PNM+Darcy-scale)
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Important: transitions between Important: transitions between 
the various models!the various models!

● t~0 non-homogenizable or specific treatment
● t>0 LNE models
● t>>0 (if enough length): 1-Eq asymptotic 
model
● t → ∞ (revert to 1eq-LE if finite domain, 
because of Dirichlet condition)

(Davarzani et al., 2010; Davit & Quintard, 2014)

t=49000slβ

x

y

σ
β

T
e

m
p

er
at

u
re

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

x
470 472 474 476 478 480

Teq − T βσ

T∞ − T βσ

T βσ(DNS) − T βσ

T
e

m
p

er
at

u
re

0

0.2

0.4

0.6

0.8

1

x
80 90 100 110 120 130 140

⟨Tσ⟩σ-num
⟨Tβ⟩β-num
⟨Tβ⟩β-2eq
⟨Tσ⟩σ-2eq

t=49000s

t=5000s

T
e

m
p

er
at

u
re

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x
60 80 100 120 140 160

Teq − T βσ

T∞ − T βσ

T βσ(DNS) − T βσ

T
e

m
p

er
at

u
re

0

0.2

0.4

0.6

0.8

x
15 20 25 30

⟨Tσ⟩σ-num
⟨Tβ⟩β-num
⟨Tβ⟩β-2eq
⟨Tσ⟩σ-2eq

t=5000s

t=1000s

T
2

T
1



Upscaling 48/48M. Quintard

Conclusions: Conclusions: How to handle How to handle 
multi-scale systems?multi-scale systems?

 Popular picture: REV, upscaling, macro-scale 
equations and effective properties

 Sequential upscaling: may be use to built 
approximations for systems without the need of a 
REV

 Complexity often results in different types of 
models (fully closed models, mixed models, N-
equations, hybrid models, etc...)

 not discussed today: highly non-linear or coupled 
problems, effective boundary conditions, etc...
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