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Email: quentin.demoulin@airbus.com

Abstract—The estimation of wing deformation is part of
the certification of an aircraft. Wing deformation can be ob-
tained from 3D reconstructions based on conventional multi-
view photogrammetry. However, 3D reconstructions are generally
degraded by the variable flight environments that degrade the
quality of 2D images. This paper addresses this issue by taking
benefit from a priori knowledge of the wing mechanical behaviour.
Specifically, mechanical limits are considered to regularize the
bundle adjustment within the photogrammetry reconstruction.
The performance of the proposed approach is evaluated on a
real case, using data acquired on an aircraft A350-900.

Index Terms—Bundle adjustment, optimization under con-
straints, wing deformations, mechanical limits.

I. INTRODUCTION

Long before the first flight of an aircraft, manufacturers
are able to predict its mechanical behavior in various scenarii
depending for instance on the aircraft weight, speed or angle of
attack, based on accurate theoretical models. As part of aircraft
certification procedure, these models have to be validated
and refined through in-flight estimation of wing deformations.
To this end, we introduce in this paper a new multiple-
view photogrammetry method that reconstructs the wing 3D
shape in flight from the observations, i.e., 2D pictures of
cameras installed inside the aircraft. Similarly to most standard
photogrammetry methods, the proposed approach is based on
Bundle Adjustment (BA), a classical method that simultane-
ously estimates camera positions and surrounding 3D scene
[1, p. 434]. BA was initially introduced for photogrammetry
reconstructions, and has been upgraded and popularized in
robotics and computer applications, with structure from motion
(SfM) [2], [3] or full simultaneous localization and mapping
(SLAM) [4] techniques.

BA is an iterative optimization algorithm that aims at mini-
mizing a non convex and non-linear cost function. Therefore,
one cannot guarantee its convergence to a global minimum,
and the choice of the initial conditions is crucial in practical
applications. Consequently, the application of photogrammetry
to 3D wing reconstruction in flight is a very challenging
problem. First, camera positions suffer from strong installation
constraints, given that today they can only be located on
the rear vertical stabilizer of the aircraft and on the aircraft
windows. With this setup, the wing end is observed under

The authors would like to thank Airbus for funding and support.

very low angles, directly impacting the accuracy of point
detection in images. Besides, the distance between cameras
is also restricted to guaranty covering in views of the wing,
i.e., almost 15m separate for a 30m long wing. Second, highly
varying environment strongly affects the observations: the
whole aircraft itself is deforming and vibrating, and the 2D
images are subject to luminosity changes, potential reflections
and shadows. As a consequence, observation uncertainties
prevent the standard BA method from obtaining accurate 3D
wing reconstructions.

During the previous years, various constrained optimization
methods were developed to improve the performance of the
classical BA approach, taking benefit of prior knowledge
about the scene or system to reconstruct. In [5], [6], prior
knowledge of point coplanarity between neighboring points
or information about their positions constructed from a Digital
Terrain Model (DTM) are introduced in the BA as constraints
on the unknown parameters. Similarly, information red camera
positions acquired from the Global Positioning System (GPS)
or Inertial Measurement Units (IMUs) are introduced in the
BA as constraints for the camera parameters in [2], [7], [8].
In [9], improvements on SLAM accuracy and robustness is
achieved using GPS together with DTM as priors. Finally,
knowledge about 3D structure models is introduced in model-
assisted BA to impose proximity between reconstructed 3D
points and a reference model [10], [11].

In the case of wing deformation estimation, one cannot
introduce directly prior knowledge on the wing structure model
in the BA reconstruction, since the main objective is to prac-
tically evaluate this model. Instead, we propose in this work
to use prior knowledge resulting from wing mechanical limits,
beyond which the wing would break. The major contribution
of this paper is to redefine the BA reconstruction problem
such that it efficiently constrains the 3D points to respect these
mechanical limits, by introducing suitable regularization terms
in the BA cost function.

The remainder of the paper is organized as follows. Section
II introduces the proposed model for wing deformations.
Section III reminds the principle of BA for 3D wing re-
construction. The proposed BA cost function, defined as the
combination of BA and wing limits, is presented in Section
IV. Experimental results are shown in Section V. Conclusions
and perspectives are reported in Section VI.



Fig. 1. Node illustration on the aircraft wing.

II. WING DEFORMATION MODEL

Although challenging because of the specific flight test
environment, wing deformation estimation can rely on a range
of prior information. On the image processing side, views
in flight are always the same, facilitating the detection and
tracking of points of interest. The latter is also facilitated
by the presence of two black lines along the wing span,
represented in Fig. 1 as green lines, allowing one to define
a set of nodes to track. Wing mechanical properties enable
the use of even richer prior information, since wings are build
on theoretical models using Finite Element Models (FEM).
In addition to geometry scales, predicted wing deformations
are thus available for any flight configuration. However, these
predictions cannot be used in the particular application ad-
dressed herein. More precisely, theoretical deformation models
cannot be used to robustify 3D wing reconstructions, because
these reconstructions are supposed to validate (or not) these
models. Instead, this work aims at exploiting the mechanical
limits derived from the FEM. Specifically, limit conditions cor-
responding to situations where the structure materials would
break are considered. We assume that these extreme cases,
corresponding to the wing shattering, will not occur during
tests. This work defines maximum and minimum deformations
as constraints in the BA algorithm.

Consider N 3D-points used for wing reconstruction denoted
as Xi for i = 1, ..., N , and denote as Xi = (xi, yi, zi) the ith
deformation point, using axes as shown in Fig. 1. This paper
proposes to use the following set of limits

i. Volume limits: each point has a specific maximum volume
(sphere, ellipsoid, or some volume defined according to
the FEM data).

ii. Bending limits: ∀i,∃(bimin, b
i
max), such that the bending

∂2zi

∂y2
ranges in [bimin, b

i
max].

iii. Torsion limits: ∀i, ∃(timin, t
i
max), such that the torsion

∂2zi

∂x∂y
ranges in [timin, t

i
max].

iv. Relative elongation limits: ∀i,∃εi, such that

d(Xi,Xi−1)− d0(Xi,Xi−1)

d0(Xi,Xi−1)
< εi (1)

where d(Xi,Xi−1) is the Euclidean distance be-
tween points Xi and Xi−1 in the (x, y) plane, and
d0(Xi,Xi−1) is the initial distance before deformation.

To integrate these limits in the wing reconstruction process,
we make the assumption that the limits are locally valid,
which allows their definition using finite differences on a
set of nodes in the (x, y) plane. Considering the node Xi

and its neighborhood (Xi−2, . . . ,Xi+2,X ′i−2, . . . ,X ′i+2),
detected on the wing lines as illustrated in Fig. 1 (Xi and
X ′i are on the same ith wing section (i.e., along the same
coordinate y axis), one can define a set of C constraints
(gk)k=0,...,C .

i. Volume constraint is expressed as 3D points having a
limited displacements in the (x, y) plane, leading to:

g0(Xi) =
√

(x̃i − xiinit)
2 + (ỹi − yiinit)

2 − a < 0, (2)

where a is the maximum radius, and Xi
init is the initial

position of point i before deformation.
ii. Bending constraints: ∀i,∃(bmin, bmax), such that

g1(Xi) =
zi+1 − 2zi + zi−1

(yi+1 − yi)2
− bimax < 0, (3)

g2(Xi) = bimin −
zi+1 − 2zi + zi−1

(yi+1 − yi)2
< 0. (4)

iii. Torsion constraints: The two nodes located in section #i
are constrained by the adjacent section #(i− 1), leading
to ∀i,∃(timin, t

i
max) such that

g3(Xi) =
z′i − z′i−1 − zi + zi−1

4(x′i − xi)(yi − yi−1)
− timax < 0, (5)

g4(Xi) = timin −
z′i − z′i−1 − zi + zi−1

4(x′i − xi)(yi − yi−1)
< 0. (6)

iv. Relative elongation constraint: ∀i,∃εi, such that

g5(Xi) =
d(Xi,Xi−1)− d0(Xi,Xi−1)

d0(Xi,Xi−1)
− εi < 0. (7)

III. BUNDLE ADJUSTMENT

BA is commonly used to recover 3D-point coordinates and
camera parameters from 2D observations in more than 2 view
photogrammetry systems. Let αj = (vj , tj)

T be the parameter
vector of the jth camera, where vj is the 3×1 rotation vector
and (tj) is the 3 × 1 translation vector. Given a set of M
cameras and the N 3D-points Xi, the algorithm seeks to
minimize the distance between the projections of Xi on the
jth camera for j = 1, . . . ,M , denoted as x̂(αj ,X

i), and the
matching 2D points (xi

j) from camera observations:

arg min
αj ,Xi

∑
i,j

[
xi
j − x̂(αj ,X

i)
]2
, (8)

where
x̂(αj ,X

i) =
1

cij
Kjl

i
j , (9)

with Kj a 2 × 3 matrix of the intrinsic camera parameters,
considered as known after system calibration, and

lij = (aij , b
i
j , c

i
j)

T =
[
RT

j ,−R
T
j tj

](
Xi

1

)
, (10)



Fig. 2. Example of sparse bundle adjustment Jacobian matrix for 3 cameras
and 10 points. The last rows represent the two first constraints g0 and g1
defined in Section II.

with Rj the rotation matrix formed using the Euler-Rodrigues
formula [12], corresponding to a rotation of angle θj around
the axis represented by the unit vector v̄j , such that vj = θv̄j .
Note that one can also represent the rotations using the three
Euler angles. However, the rotation vector is preferred here
since it removes the ambiguity of rotation order, and enables
a faster Python implementation.

The 3D reconstruction problem (8) is highly non-convex
and non-linear. To solve it, one can consider using iterative
methods such as Gauss-Newton or Levenberg Marquardt (see
[6] or [1, p. 597]). These two methods use iterative steps from
the initial guess to the optimum parameter using the Hessian
matrix, approximated as JTJ , where J is the Jacobian matrix.
The Jacobian matrix in BA has the interesting characteristic
of being sparse, thus significantly fastening the optimization
procedure. Indeed, each projected point depends only on the
corresponding 3D point and on the camera, leading to:

∂(xp
j − x̂(αj ,X

p))2

∂Xq = 0,∀p 6= q,∀j ∈ {1, ...,M} (11)

∂(xi
p − x̂(αp,X

i))2

∂αq
= 0,∀p 6= q,∀i ∈ {1, ..., N}. (12)

Furthermore, some points may not be seen by some cameras,
leading to additional empty lines in the Jacobian matrix. An
example of Jacobian matrix used in BA is presented in Fig. 2,
where the only non-zero elements are displayed in white.

IV. CONSTRAINED BUNDLE ADJUSTMENT

This section explains how to introduce the previously de-
fined constraints in BA. In this work, because of camera
motions during the flight, 3D coordinates of the points and
cameras are estimated in a moving coordinate system, while
the considered constraints are considered in the aircraft co-
ordinate system. Therefore, an additional registration phase is

required to transfer the points in the aircraft coordinate system.
To perform this operation, the aircraft reference points are
detected from the rear camera image, further used to estimate
the transfer matrix P from the aircraft coordinate system to
the camera system. Using the estimated parameters αr from
the same camera, the points X̃

i
are then registered as:

X̃
i

= P
[
RT

r ,−R
T
r tr

]
Xi, (13)

where Rr and tr are the parameters of the rth camera, as
defined in Section III.

After the registration phase, the constraints introduced in
Section II are expressed as regularization terms to penalize the
objective function (8) [13, p. 564], defining the new following
regularized optimization problem (called CBA hereafter):

argmin
αj ,X

i

∑
i,j

[
xi

j − x̂(αj ,X
i)
]2

+
∑
k

µk

{∑
i

[
g+k (αr, X̃

i
)
]2}

,

(14)
where µk are positive hyperparameters and g+k (αr, X̃

i
) =

max(0, gk(αr, X̃
i
)), with gk the kth constraint.

With this formulation, µk equals zero when the correspond-
ing constraint is respected, and therefore this penalty does not
impact the results. As explained previously, the optimization
method used by BA is based on the Jacobian matrix, which
requires the objective function to be differentiable. To enforce
differentiability of (14), we use the Courant-Beltrami penalty
function [13, p. 566], with a quadratic term on g+k , which
also smooths this function. Finally, since the constraints are
applied to specific point neighbourhoods, and depend only
on the rear camera parameters, the sparsity of the Jacobian
matrix is preserved, as shown by the example in Fig. 2,
considering the derivative of each element of the projection
error and constraints with respect to all camera and point
parameters. Similarly to the classical BA problem, the sparsity
of the Jacobian matrix significantly reduces the computational
cost of the optimization algorithm. To further improve the
computational cost of the optimization, this work proposes
to use an analytical form of the Jacobian matrix (see [14]
for details), instead of the usual approach that estimates it
numerically by finite differences.

V. EXPERIMENTAL RESULTS

Real data from a ground test was acquired on an Airbus
A350-900 to evaluate the proposed method. To reproduce an
installation similar to the one foreseen during flights, cross
targets were installed on the wing surface to improve the
accuracy of point detection in the images. Four 4K cameras
were installed on the aircraft windows. The rear camera
was simulated by a drone placed on the vertical stabilizer.
Examples of images acquired by these cameras are displayed
in Fig. 3. To clearly identify the points on which deformation
constraints are applied, graduations were stuck on the two
black lines every 30 cm, which will define the nodes of the
proposed wing reconstruction.



(a) Camera 1 (b) Rear camera (c) Camera 3
Fig. 3. Examples of recorded views resulting from a the test on ground with an Airbus A350-900.

After installation, a drone was used along with the software
Agisoft Metashape [15] to perform a scan of the wing and ini-
tialize the camera and point positions. Finally, wing vibration
was generated by manually shaking the wing tip of about 5
cm (the vertical motion amplitude was estimated using a scale
board). As expected, the detection of graduations observed
with low angles was less accurate compared to large angles
(see wing tips in cameras 1 and 3 in Fig. 3). In addition,
graduation detection was not possible in some images because
of reflections on the wing (see camera 3 in Fig. 3).

The proposed constrained algorithm (CBA) was imple-
mented in Python and compared to the classical unconstrained
BA algorithm. The constrained optimization was performed
using the least-squares “trust region reflective” method imple-
mented in the Scipy library [16], benefiting from its capability
to take a function to construct the Jacobian matrix as input.
The mechanical limits (a, bimax, b

i
min) were estimated from

data resulting from existing flight tests provided by Air-
bus. Penalization hyperparameters were set to (µ0, µ1, µ2) =
(104, 103, 104) by cross validation. Point and camera positions
were extracted from a representative video of the moving wing,
by running 30 frames through our algorithm. For comparison,
we used unconstrained BA, BA with constrained volume, BA
with constrained bending, and BA with both volume and
bending constrains (respectively denoted as “BA”, “CBA V”,
“CBA B” and “CBA VB”).

Fig. 4 shows that the camera estimation precision is en-
hanced using CBA V and CBA VB algorithms, as cameras
were supposed to have negligible motions during the ground
test. In particular, it can be observed that camera motions is
reduced compared to BA. Furthermore, Fig. 5 shows that using
the volume constraint significantly improves the estimation
results, resulting into an amplitude of 5 cm at wing tip and of
less than 1cm in the middle of the wing, which is consistent
with our measurements using the scale board. On the contrary,
using the bending constraint alone does not provide good
estimation results. The distance between the wing reconstruc-
tion and the theoretical ground shape (computed using Cloud
Compare [17]) displayed in Fig. 6 shows that the distance at
the wing start is reduced using CBA VB (of more than 0.2m
compared to CBA V). As a consequence, the combination
of local volume and bending constraints improves the global
estimation, as points at the wing start should be closer to the
model, where it is more rigid, than at the end. Note that FEM
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Fig. 4. Estimated motions (in meters) of the 4 cameras located on the aircraft
windows versus time.
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Fig. 5. Bending results at the middle of the wing (top) and at wing tip
(bottom).

is only a model, which is is not supposed to perfectly fit the
data. Thus, a deviation from this model is possible. Finally,
estimation results versus time, illustrated in Fig. 7, suggest that
the volume constraint is correctly respected and improves point
position tracking, all points remaining close to their initial
location in the (x, y) plan.

VI. CONCLUSIONS

This article proposed to introduce mechanical limits of an
aircraft wing deformation into a bundle adjustment algorithm
for 3D estimation using multi-view photogrammetry. For this



Fig. 6. Comparison of the distances between the reconstructed point cloud and the theoretical model of ground shape. (left) reconstruction using only volume
constraint, (right) reconstruction using both volume and bending constraints.
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Fig. 7. Point reconstructions in the (x, y) plane for the first and last frames. (left) without the constraint, (right) with the volume and bending constraints.
Some outliers not respecting the constraints can be observed in the last ba frame.

purpose, regularization terms were considered into the clas-
sical bundle adjustment method. The potential of the pro-
posed method was demonstrated through realistic experiments
conducted on images acquired on an aircraft located on the
ground. The application of all the proposed constraints in flight
is clearly an interesting prospect. Another area of improvement
is to use weighted bundle adjustment to reduce the influence of
wrong observations on the reconstruction. Finally, it would be
interesting to study the hybridization of the proposed method
with data from other sensors such as inertial units.
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