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applications to Structural Reliability
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Abstract

This paper considers reliability analysis problems where the limit state
function, characterizing the failure domain, can be expressed in terms of
two independent components: response and capacity. An approach called
Separable Importance Sampling has been proposed in the literature as an
extension of Importance Sampling, allowing improved sampling efficiency
due to separable sampling of response and capacity. In this paper we
derive a new analytical variance estimator for the probability of failure
estimated by Separable Importance Sampling, allowing to analytically
determine the number of samples required to reach a given coefficient
of variation on the probability of failure. Numerical investigations have
been conducted on two benchmark reliability problems. Thanks to this
variance estimator we were able to carry out a large number of numerical
experiments, allowing us to provide a comprehensive analysis of situations
where Separable Importance Sampling would be most beneficial.

Keywords reliability analysis; structural reliability; separable limit state;
Monte Carlo methods; separable Monte Carlo; importance sampling; sampling
methods; analytical variance estimator

1 Introduction

In recent decades, probabilistic design approaches gained a growing interest in
both the scientific community and in industry. Uncertainties in input data can
be analyzed in a rational framework to measure the impact on outputs, deter-
mine the most influential factors on output variability, accredit a model, verify
the compliance of prerequisites imposed by legislation or select the best design
[De Rocquigny et al. (2008)]. Reliability analyses focus on ascertaining the
failure risk associated to a specific engineering design [Larsson (2015)]. Over
the past decades, the paradigms of this field have been progressively formalized
[Pham (2006), Rykov et al. (2010), Birolini (2013), Trivedi & Bobbio (2017)].
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Such concepts are applied in almost all knowledge fields, from medicine, fi-
nance [Rykov et al. (2010)], engineering systems [Rausand & Høyland (2003)]
to automotive, aerospace and ship industry [Nikolaidis et al. (2007)]. In this ar-
ticle, particular attention is given to structural reliability applications [Lemaire
(2013), Gogu (2021)].

To assess the reliability level of a designed structure, several metrics were
introduced in the literature. The most common is the index βHL introduced
by Hasofer and Lind [Hasofer & Lind (1974)], which is defined as the minimum
Euclidean distance (L2 norm) between origin of a standard normal space and
the Limit State Surface (LSS) representing a failure mode of the system. The
point situated at distance βHL is known as design point or Most Probable Failure
Point (MPFP).

Another important reliability performance metric is given by the failure
probability Pf . The classical Monte Carlo (MC) simulation method is probably
among the simplest and most popular sampling based simulation methods used
in reliability applications [Hammersley (2013)] to determine Pf . Originally de-
fined to compute general integrals, it simply consists in sampling data according
to the input distributions and estimating the expectation trough an arithmetic
sum. This constitutes the reference for all successive approaches, because of
its simplicity, intrinsic stability and independence from problem dimension and
complexity of the system considered in the analysis.

On the downsides, MC presents a slow convergence rate, above all for rare
events estimation. This led to the need for more agile methods, able to reduce
the variance of the Pf estimation with the same number of samples.

Importance Sampling (IS), another popular variance reduction technique
Tokdar & Kass (2010), is based on the concentration of the sampling in specific
areas defined by a support distribution. While IS has been initially developed
in the context of reliability several decades ago, it continues to be a very active
topic with many recent developments seeking to further improve it [Papaioannou
et al. (2019), Chaudhuri et al. (2020), Nadjafi & Najafi ARK (2021), Taban-
deh et al. (2022)], together with industrial applications, like [Gao et al. (2020),
Misraji et al. (2020), Saaed & Daghigh (2021), Liu et al. (2022), Subramanian
& Mahadevan (2022)] among others. One open problem is given by the most
efficient construction of the support importance distribution of IS. Several ad-
vanced techniques, going by the name of Adaptive Importance Sampling, build
this importance function during the simulations in an adaptive way [Karam-
chandani et al. (1989), Zhang (1996), Au & Beck (1999), Richard & Zhang
(2007), Cappé et al. (2008), Müller et al. (2019), Zhang et al. (2022)]. This
issue is not specifically considered in the present article, but needs to be kept
in mind.

Another variance reduction technique, Separable Monte Carlo (SMC) [Smarslok
(2009), Smarslok et al. (2010)] focuses on a particular category of limit state
functions, where response and capacity (typically stress and strength in struc-
tural analysis) present no mutual dependence (or simply rely on distinct inde-
pendent input variables). This assumption is common in structural engineering
[Smarslok (2009)]. This consists in sampling stress and strength (or response
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and capacity, as denoted in [Smarslok et al. (2010)]) separately and evaluate
every possible combination of the two. Therefore, a larger database could be
built with fewer simulations, while also allowing the construction of unbalanced
datasets to exploit differences in computational burden of response and capacity
(the latter is usually computationally inexpensive to sample).

Following the same idea, Importance Separable Monte Carlo (ImpSMC) was
also proposed by [Chaudhuri & Haftka (2013)]. This is in fact a combination of
IS and SMC, benefiting from the respective advantages of both approaches. In
[Chaudhuri & Haftka (2013)], a failure probability estimator was presented, and
the resulting variance reduction was illustrated empirically. Unfortunately, to
date no closed form expression of the variance of the Pf estimated by ImpSMC
is available. This shortcoming makes it difficult to optimally exploit the method
in order to achieve maximum numerical efficiency gains. Thus, the objective of
this article is to develop a closed form variance estimator of the Pf estimated by
ImpSMC and to extensively analyze situations in which the ImpSMC procedure
will be most useful.

In Section 2 a brief overview of MC, IS and SMC is provided. In Section 3,
ImpSMC approach is presented and essentials of the proposed variance estimator
proof are reported. Two numerical examples, related to two structural reliability
test cases, are presented in Section 4 to compare methods enunciated in Sections
2 and 3. Then, conclusions are summarized in Section 6. For the interested
reader, empirical variance validation and further details of variance estimator
proof are reported in the Appendix.

2 Background on relevant sampling-based meth-
ods

The goal of this section is to present several approaches adopted to evaluate the
failure probability of a system. We are going to use the following notation:

- X: random design variable;

- x: realization of X;

- g(X): Limit State Function (LSF), conventionally negative to indicate a
failure state;

- G(X) = 1g(X)<0: failure indicator.

The LSF is expressed in a way that it is negative when the system is in a
failure condition. The hypersurface described by g(X) = 0 is often referred as
Limit State Surface (LSS).

2.1 Monte Carlo (MC) Simulation

MC is usually considered as a reference for all sampling-based reliability ap-
proaches. In integral form, the failure probability can be expressed as follows:
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Pf =

∫
D

G(x)f(x)dx (1)

Here f represents the Probability Density Function (PDF) of the random

variable X. Denoting by P̂f an estimator of Pf , expectation, variance and coef-
ficient of variation coV of this estimator are reported in the following equations:

E
î
P̂f

ó
≈ 1

N

N∑
i=1

G(xi) V ar(P̂f ) ≈
E
î
P̂f

ó
− E
î
P̂f

ó2
N

coV (P̂f ) ≈

Ã
1− E

î
P̂f

ó
NE
î
P̂f

ó
(2)

Generally, coV is the performance indicator adopted to indicate the precision
of the estimation itself. It is easy to understand that MC is not affected by the
curse of dimensionality of the problem. Moreover, it is stable and makes no as-
sumption on the LSS itself. However, for rare event estimation, the convergence
rate of coV follows (PfN)−1/2, leading to a very high number of simulations
necessary to achieve an acceptable precision.

2.2 Importance Sampling (IS)

Importance Sampling is a well-known approach to estimate integrals with fewer
data than MC. It stems from a very simple operation on the Pf integral:

Pf =

∫
D

G(x)f(x)dx =

∫
D

G(x)f(x)
q(x)

q(x)
dx =

∫
D

Å
G(x)

f(x)

q(x)

ã
q(x)dx (3)

Here q represents a generic function, which must only respect the require-
ment of being equal to zero where f(x) = 0. In particular, in IS the function
q is a PDF constituting the support importance function. Therefore, x realiza-
tions of the random variable X are sampled following the PDF q. In a compact
notation, Eq. 3 can be rewritten as follows:

Pf = Eq [G(X)w(X)] w(X) =
f(X)

q(X)
X ∼ q (4)

The quantity w is often referred in the literature as importance weight. Ex-
pectation and variance of the corresponding Pf estimator are reported in the
following equation:

E
î
P̂f

ó
≈ 1

N

N∑
i=1

G(xi)w(xi) V ar(P̂f ) ≈ 1

N

N∑
i=1

î
G(xi)w(xi)− E

î
P̂f

óó2
(5)
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2.3 Separable Monte Carlo (SMC)

The Separable Monte Carlo (SMC) method, proposed by Smarslok et al. [Smarslok
(2009), Smarslok et al. (2010)], was initially developed in a structural reliability
context but it is generalizable to any reliability problem, under an indepen-
dence assumption. In structural reliability, the method starts from the assump-
tion that strength R and stress S rely on distinct independent variables. The
key feature behind SMC is the possibility to sample separately R and S, and
successively compare all combinations of their respective instances.

In this context the LSF is expressed as follows:

g(X) = g(XR, XS) = R(XR)− S(XS) (6)

Where XR and XS are partitions of the original design variable vector X
affecting either capacity R or response S respectively. Random variables XR

and XS are considered to be independent. Such an independence assumption is
often verified in structural reliability but it can, of course, be verified in a large
number of other applications. The failure indicator G is rewritten in compact
notation as follows:

G(R,S) = 1R<S = I(R < S) (7)

Here we omit the fact that response and capacity are actually functions of
original variable sets XR and XS (i.e. R = R(XR) and S = S(XS)) in order not
to overload the notation. Of course, input variables XR and XS are sampled
according to their original distributions while R and S are computed as output.
This does not affect neither results nor the proof. It is worth noticing that the
expressions in Eqs. 6-7 are mere examples of separation between two blocks
R and S: since the proof for the SMC procedure [Smarslok et al. (2010)] does
not require a particular choice on the expression of g, the validity is actually
extended to any LSF defined by any operation linking two independent variables.
Denoting by r and s realizations of respectively R and S, and by DR and DS

their domains, failure probability can be expressed as:

Pf =

∫
D

G(r, s)fRS(r, s)drds =

∫
DS

fS(s)

Ç∫
DR

G(r, s)fR(r)dr

å
ds (8)

Using a compact notation, expectation will be given by:

Pf = ES

î
ER

î›FR(S)
óó

where ›FR(S) = G(R,S) (9)

The choice of the symbol ›FR(S) is justified by the fact that its expectation
with respect to the capacity variable is the conditional CDF FR of the variable R
at point S [Smarslok et al. (2010)]. Failure probability estimation will therefore
be given by [Smarslok et al. (2010)]:

E
î
P̂f

ó
≈ 1

NM

N∑
i=1

M∑
j=1

G (rj , si) (10)
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A variance estimator can be expressed as follows (proof available in [Smarslok
(2009)]):

V ar(P̂f ) =
1

NM
Pf +

M − 1

NM
ES

[
ER

î›FR(S)
ó2]

+
N − 1

MN
ES

î
ER

î‹F (min(S1, S2))
óó

− N +M − 1

NM
P 2
f

(11)

The numerical quantities can be obtained trough the following approxima-
tions:

ES

[
ER

î›FR(S)
ó2]
≈ 1

N

N∑
i=1

(
M∑
j=1

G(rj , si)

M

)2

ES

î
ER

î›FR(S1),›FR(S2)
óó
≈ 2

NM

N/2∑
i=1

M∑
j=1

(G(rj , s2i−1)G(rj , s2i))

(12)

The termG(rj , s2i−1)G(rj , s2i) was reported in the original work Smarslok et
al. (2010) as G(rj ,min(s2i−1, s2i)), since the main focus was on LSF expressed
as in Eq. 6. However, the proof of the analytical variance estimator is not
affected by the choice of the shape of g (and thus G) function, but only requires
a separation between two independent blocks R and S, thus we propose to use
the more general notation in Eq. 12.

Separate sampling of R and S allows to create a larger database with fewer
simulations of each. Moreover, when capacity and response simulations imply
very different computational burdens (often sampling S is much more costly),
one can use unbalanced datasets, reducing the overall computational efforts. On
top of that, a significant variance reduction with respect to MC was shown in
[Smarslok et al. (2010)]. In particular, SMC proved to be increasingly beneficial
when most of LSF variance came from capacity [Smarslok (2009)].

3 ImpSMC approach

This section provides a full description of the method known as ImpSMC (Im-
portance Separable Monte Carlo), introduced by [Chaudhuri & Haftka (2013)].
This method consists of a combination of the upper-mentioned IS and SMC,
and it is the method for which we will seek to construct a variance estimator
for its probability of failure estimate.

3.1 Probability of failure estimation

As for SMC, R and S are functions of original variable sets XR and XS . To
improve readability, this dependence is omitted, while keeping in mind that the
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actual sampling is performed on XR and XS . These are sampled according to
support functions (or importance distributions) respectively q(XR) et h(XS).
In the following, response and capacity will be treated as the sampled variables
and importance distributions will be denoted as q(R) and h(S), without this
affecting results. Repeating the same processes used for IS and SMC, one
obtains:

Pf = Eh

ï
fS(S)

h(S)
Eq

ï
G(R,S)fR(R)

q(R)
| S
òò

(13)

In the following, a compact notation, consistent with Smarslok et al. (2010),
is adopted:‹HR(S) = ‹H(R,S) =

fS(S)

h(S)

fR(R)

q(R)
G(R,S)“HR(S) =

1

M

M∑
j=1

‹H(Rj , S)

H(S) = Eq[“HR(S)|S] = Eq[‹HR(S)|S]

P̂f =
1

N

N∑
i=1

“HR(Si)

Pf = Eh

î
Eq[‹HR(S)|S]

ó
= Eh[H(S)] = E

î
P̂f

ó
(14)

Here the subscript R implies a dependence of ‹H with respect to R vari-
able and must not be confused with q and h representing the two importance
functions used to sample R and S variables respectively. As for SMC, when
estimating Pf based on samples according to Eq. 13, all possible combinations
of R and S are compared to each other to verify a failure condition. We take
this into account by introducing N independent identically distributed copies
of S in our estimation. We make the distinction between the original variable
H̃R and its estimation ĤR via arithmetic mean.

The corresponding probability of failure estimator will be given by:

E
î
P̂f

ó
≈ 1

NM

N∑
i=1

M∑
j=1

G (rj , si)
fR(rj)

q(rj)

fS(si)

h(si)
(15)

Where M represents the number of realizations of the capacity R.

3.2 Variance estimation on ”Pf

The novelty proposed in the present article consists in the determination of an
analytical variance estimator. In Chaudhuri & Haftka (2013), variance reduction
was proved empirically, but no actual theoretical estimator of the associated
variance was provided.
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We focus on the definition of the analytical estimator of V ar(P̂f ), starting
from Eq. 14. It is worth noticing that even though all Si are independent,
the terms “HR(Si) are not. Therefore, a correlation in datasets is present and a
covariance term will appear in the variance of the sum over all terms defined by
the copies of the variable S:

V ar(P̂f ) =
1

N2

(
N∑
i=1

V ar[“HR(Si)] + 2
N∑
i=1

N∑
j=i+1

Cov[“HR(Si), “HR(Sj)]

)

Here, the variable R is unique and thus is not indexed in the sum (the

notation “HR(S) clarifies the concept). Since all Si and Sj are independent
identically distributed random variables according to S, one may obtain:

V ar(P̂f ) =
1

N
V ar[“HR(S)] +

N − 1

N
Cov[“HR(S1), “HR(S2)] (16)

It is important to underline the fact that all samples of R are combined with
all samples of S. We do not simply assign M different samples to each of the
N samples of S: this would lead to use NM samples of R, as in conditional
expectation method, and the variance term of Eq. 16 would be sufficient. If we
arrange the values of ‹H(Rj , Si) in a 2D matrix, this re-use of the same samples
induces a correlation between the results in the same row (respectively column).
Given the need for a covariance term describing such correlation, we start the
proof from the covariance estimation at a fixed point (which will be necessary
to easily compute both variance and covariance terms).

The first step aims at determining the covariance between two values of “HR

at two fixed points t1 and t2. After several manipulations one may obtain:

Covq
î“HR(t1), “HR(t2)

ó
=

1

M

Ä
Eq

î‹HR(t1)‹HR(t2)
ó
−H(t1)H(t2)

ä
(17)

In the second step, the total variance law allows to write:

V ar(“HR(S)) = Eh

î
V arq(“HR(S)|S)

ó
+ V arh

î
Eq(“HR(S)|S)

ó
(18)

The first term can be treated as the conditional covariance of “HR(S) on
itself:

Eh

î
V arq(“HR(S)|S)

ó
= Eh

î
Covq(“HR(S)|S, “HR(S)|S)

ó
=

1

M

Ä
Eh

î
Eq

î‹H2
R(S)

óó
− Eh

[
H2(S)

]ä (19)

Then the second term:

V arh
î
Eq(“HR(S)|S)

ó
= Eh

[
Eq

î‹HR(S)
ó2]
−Eh

î
Eq

î‹HR(S)
óó2

= Eh

[
H2(S)

]
−P 2

f

(20)
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To determine the covariance part in Eq. 16, one has to start from the total
covariance theorem:

Cov(X1, X2) = EY [CovX1,X2(X1, X2|Y )] + CovY [EX1(X1|Y ), EX2(X2|Y )]
(21)

In this case, the different variables in Eq. 21 are given by the tern:

X1 = “HR(S1), X2 = “HR(S2), Y = (S1, S2)

The term CovY in Eq. 21 can be neglected as S1 and S2 are, by definition,
independent copies of S. The only remaining part can be developed by using
the fixed point covariance equation (see Eq. 17):

Cov
ĤR(S1),ĤR(S2)

Ä“HR(S1), “HR(S2)|S1, S2

ä
=

1

M

Ä
Eq

î‹HR(S1)‹HR(S2)
ó
−H(S1)H(S2)

ä
Passing to the expectation, it is worth noticing that, since H(S1) and H(S2)

are independent (as they are functions of S1 and S2 which are independent by
definition), we obtain:

Eh [H(S1)H(S2)] = Eh [H(S1)]Eh [H(S2)] = P 2
f

Therefore, one may obtain the following relation:

Cov(“HR(S1), “HR(S2)) =
1

M

Ä
Eh

î
Eq

î‹HR(S1)‹HR(S2)
óó
− P 2

f

ä
(22)

Now, joining together results from Eqs. 19,20 and 22 and substituting in
Eq. 16, the final analytical covariance estimator is obtained:

V ar(P̂f ) =
1

NM
Eh

î
Eq

î‹H2
R(S)

óó
+
M − 1

NM
Eh

[
H2(S)

]
+
N − 1

MN
Eh

î
Eq

î‹HR(S1)‹HR(S2)
óó

− N +M − 1

NM
P 2
f

(23)

Re-writing this expression in a more compact way, one may retrieve:

V ar(P̂f ) =
1

NM
φ1 +

1

N
φ2 +

N − 1

NM
ξ12 (24)

Where:

φ1 = Eh

î
Eq

î‹H2
R(S)

óó
− Eh

[
H2(S)

]
φ2 = Eh

[
H2(S)

]
− P 2

f

ξ12 = Eh

î
Eq

î‹HR(S1)‹HR(S2)
óó
− P 2

f

(25)
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The effect of the covariance term on the overall variance of the estimation
of Pf via ImpSMC is measured by ξ12, while the terms φ1 (second order effect)
and φ2 represent the influence of the variance term. The numerical estimation
of the variance obtained in Eq. 24 thus needs the following ingredients:

T̃j,i = G (Rj , Si)
fR(rj)

q(rj)

fS(si)

h(si)

Pf = Eh

î
Eq

î‹HR(S)
óó
≈ 1

NM

N∑
i=1

M∑
j=1

T̃j,i

Eh

î
Eq

î‹HR(S)2
óó
≈ 1

NM

N∑
i=1

M∑
j=1

T̃ 2
j,i

Eh

[
H2(S)

]
= Eh

[
Eq

î‹HR(S)
ó2]
≈ 1

N

N∑
i=1

(
M∑
j=1

T̃j,i
M

)2

Eh

î
Eq

î‹HR(S1), ‹HR(S2)
óó
≈ 2

NM

N/2∑
i=1

M∑
j=1

Ä
T̃j,2i−1T̃j,2i

ä
(26)

It is possible to verify that from Eqs. 23 and 26 one can retrieve Eqs. 11
and 12 for SMC.

3.3 Variance estimator potential

The closed form variance estimator of Pf estimated by ImpSMC makes it pos-
sible to completely exploit the ImpSMC approach, as it allows to:

- evaluate variability of Pf without having to reproduce the reliability anal-
ysis several times;

- stop sampling when a fixed accuracy target on Pf estimation is reached;

- preliminarily estimate the minimum number M of R samples (respectively
N for S) necessary to achieve the accuracy goal;

- preview the number Mk of R (respectively Nk of S) samples needed to
reach targeted variance V ar, given a fixed ratio k = N/M ;

- a priori determine the ratio N/M between number of samples of S and R
allowing to minimize global computational burden.

The first two advantages of such variance estimator are straight-forward.
For preliminary evaluation purposes, it is possible to exploit outcomes in Eq.
24 by determining all terms in Eq. 26 with few simulations, say N = M = 100.
Then, under the assumptions that those latter do not significantly change with
an increase in number of samples nor with variation in ratio k, Eq. 24 can
be used to preview all the relations between precision and number of samples.
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This can be represented on a contour plot, graphically illustrating the levels of
coV (P̂f ) as a function of N and M , as done in Smarslok (2009), Smarslok et al.
(2010) for SMC. The asymptotic behaviors can be extracted from quantities in
Eq. 25:

minN =
φ2

V ar
minM =

ξ12

V ar
k∗ = arg min

k
NkMk =

φ2
ξ12

(27)

A particular remark can be done about the ratio k allowing to minimize the
product NM : this does not depend on the targeted V ar, but just relies on the
nature of the model and input variabilities, namely through the terms φ2 and
ξ12. Such ratio is not necessarily optimal in terms of computational costs as
minimizing the product NM does not necessarily imply reducing the overall
computational burden. In the following, we are referring to it as the reference
ratio, individuating the ratio which is exactly mid-way between two asymptotic
behaviors.

4 Numerical results

In this Section, two test cases are introduced to investigate the gain in terms of
number of simulations needed to achieve a target coV , arbitrarily fixed (for the
examples presented in this paper) at 0.05. In particular, in the first application
a comparative analysis between two LSF formulations is reported, while in
the second use case we conducted a study on the effects of the ratio between
variances due to response and capacity components.

4.1 Composite plate test case

As a first example, a cross-ply composite plate deflection problem was con-
sidered, which was also used in [Smarslok et al. (2010), Chaudhuri & Haftka
(2013)]. We focus on maximum deflection, at the middle point of a simply
supported squared cross-ply plate, characterized by a [90, 45,−45]sym laminate
with lamina thickness of 125 µm. This test case is illustrated in Fig. 1. We
consider the loading condition to be a sinusoidally varying pressure, defined as:

q(x, y) = q0 sin
(πx
L

)
sin
(πy
L

)
Where q0 represents the amplitude and L the length of each side of the

square plate. The deflection output w is defined as:

w =
q0L

4

D∗ D∗ = π4 [D11 + 2 (D12 +D66) +D22] (28)

Here the terms Dij represent the components of the bending stiffness matrix
of the plate. Overall, 7 random variables (listed in Table 1) are introduced.

This part of the analysis aims at evaluating the effect of the ratio between
variances of capacity and response variables (respectively R and S). To this
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Figure 1: Cross-ply test case: illustration (Source: [Smarslok et al. (2010),
Chaudhuri & Haftka (2013)])

Variable Unit Distribution Mean St. Deviation
E1 Pa Normal 1.5× 1011 7.5× 109

E2 Pa Normal 9× 109 4.5× 108

G12 Pa Normal 4.6× 109 2.3× 108

ν12 Normal 0.34 0.017
L m Normal 7.5× 10−2 1.5× 10−3

q0 Pa Normal 1.30× 105 1.95× 104

wall m Log-Normal 8× 10−3 2.4× 10−4

Table 1: Cross-ply test case: random variables

purpose, in analogy with works from Smarslok (2009), Smarslok et al. (2010),
two different formulations of LSF are introduced:

R = wall S =
q0L

4

D∗ (29a)

R =
wall

q0
S =

L4

D∗ (29b)

In particular, the variable sets XR and XS are changed, providing a higher
variance to capacity variable R (respectively lower variance to response S) ac-
cording to Eq. 29a to Eq. 29b. To improve readability, in the following we will
refer to Eq. 29a as Low R-Variability Formulation (LRVF) and to Eq. 29b as
High R-Variability Formulation (HRVF).

The analytical variance estimator described in Section 3 is empirically vali-
dated on both LSF formulations of this first test case. The empirical validation
is carried out with 104 repeated ImpSMC analyses with N = 103 response sam-
ples and M = 103, 104, 105 capacity samples for each one. Error is measured as
follows:

Err(Pf ) =
σan(Pf )− σemp(Pf )

σemp(Pf )
× 100

Where σan is the standard deviation predicted by analytical estimators from
Eqs. 24-26 and σemp the empirical one estimated based on the 104 repetitions
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of ImpSMC. The results, reported in Table 2, show that the maximum error is
around 1%.

ID
M/N=1 M/N=10 M/N=100

σemp(Pf ) σan(Pf ) Err(Pf )(%) σemp(Pf ) σan(Pf ) Err(Pf )(%) σemp(Pf ) σan(Pf ) Err(Pf )(%)
LRVF 2.312× 10−4 2.310× 10−4 -0.09 2.303× 10−4 2.306× 10−4 0.13 2.303× 10−4 2.305× 10−4 0.09
HRVF 1.323× 10−4 1.319× 10−4 -0.29 7.699× 10−5 7.619× 10−5 -1.04 6.842× 10−5 6.822× 10−5 -0.30

Table 2: Composite plate test case: validation of analytical variance estimator
(N = 103, values issued from 105 repetitions)

Reliability simulation results are reported in Table 3 for LRVF and Table
4 for HRVF. The first three columns in both tables represent the mean of Pf

estimations, the mean and the standard deviation of required N to achieve
coV (P̂f ) = 0.05. The successive ones report standard deviation and coefficient
of variation of Pf estimation at fixed number N of S samples (N = 100 in 4th
and 5th columns, N = 1000 in 6th and 7th columns). All values are obtained
by repeating 100 times the reliability analyses.

For both formulations, ImpSMC outperforms MC, IS and SMC: both σ(P̂f )

and N to reach coV (P̂f ) = 0.05 are noticably reduced.
In the LRVF case, the introduction of a separate sampling process appears

more efficient when IS concept is applied: this can be observed by comparing
gains allowed by ImpSMC with respect to IS (N reduced by 52%) and gains of
SMC with respect to MC (N reduced by 30%). Here the ratio M/N appears to
present no substantial advantage for neither SMC nor ImpSMC approach.

Looking at the HRVF results, improvement ratios increase for both ImpSMC
and SMC with respect to IS and MC respectively. Still, ImpSMC introduces
gains with respect to IS which are superior to the ones ensured by the transition
from MC to SMC. Moreover, in this case the ratio M/N has a significant in-
fluence on reducing both variance of failure probability and number of required
samples. In particular, creating an unbalanced dataset with more R samples,
can reduce the substantial number of S samples, which usually determine most
of overall computational burden.

For both formulations, IS outperforms SMC and MC: therefore, in the fol-
lowing, IS approach will be used as a reference for comparison.

Results at coV (P̂f ) = 0.05 Results at N = 100 Results at N = 1000

P̂f N σN (%) σ(P̂f ) coV (P̂f ) σ(P̂f ) coV (P̂f )
MC 6.23× 10−3 6.4× 104 4.45 7.36× 10−3 1.18 2.17× 10−3 0.35
IS 6.22× 10−3 1159 5.18 1.02× 10−3 0.16 2.90× 10−4 0.047

SMC
M/N=1 6.20× 10−3 4.5× 104 3.35 7.21× 10−3 1.16 2.05× 10−3 0.33
M/N=10 6.20× 10−3 4.4× 104 4.37 6.95× 10−3 1.12 2.00× 10−3 0.32
M/N=100 6.20× 10−3 4.4× 104 2.42 6.41× 10−3 1.03 1.92× 10−3 0.31

ImpSMC
M/N=1 6.26× 10−3 552 7.39 7.58× 10−4 0.121 2.31× 10−4 0.037
M/N=10 6.24× 10−3 549 7.10 7.46× 10−4 0.120 2.30× 10−4 0.037
M/N=100 6.23× 10−3 547 6.95 7.07× 10−4 0.113 2.30× 10−4 0.037

Table 3: Composite plate: main results for LRVF from Eq. 29a (values issued
from 100 repetitions of each reliability algorithm)
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Results at coV (P̂f ) = 0.05 Results at N = 100 Results at N = 1000

P̂f N σN (%) σ(P̂f ) coV (P̂f ) σ(P̂f ) coV (P̂f )
MC 6.23× 10−3 6.4× 104 4.45 7.36× 10−3 1.18 2.17× 10−3 0.35
IS 6.26× 10−3 1143 11.5 1.03× 10−3 0.16 2.90× 10−4 0.046

SMC
M/N=1 6.24× 10−3 1.4× 104 5.09 2.68− 3 0.43 8.01× 10−4 0.13
M/N=10 6.29× 10−3 4105 9.74 1.71× 10−3 0.27 6.20× 10−4 0.099
M/N=100 6.22× 10−3 2985 20.2 1.47× 10−3 0.24 5.88× 10−4 0.095

ImpSMC
M/N=1 6.28× 10−3 178 35.7 3.11× 10−4 0.054 1.32× 10−4 0.021
M/N=10 6.24× 10−3 59 30.5 2.37× 10−4 0.038 7.62× 10−5 0.012
M/N=100 6.25× 10−3 51 23.5 2.35× 10−4 0.038 6.82× 10−5 0.011

Table 4: Composite plate: main results for HRVF from Eq. 29b (values issued
from 100 repetitions of each reliability algorithm)

Exploiting the potentialities of the variance estimator at a higher level, it is
possible to trace the evolution of coV as a function of both N and M , thanks to
the algorithm described in Section 3.3. The ingredients which must be computed
are φ1, φ2 and ξ12. These are evaluated through the numerical estimators
presented in Eqs. 25-26. In this part, we aim to analyze both magnitude and
precision of the estimation provided for each of the extrapolation parameters
φ1, φ2 and ξ12. Numerical estimations are performed with 100 repetitions of
the dataset containing N = 100 response (S) samples. Both LSF formulations
and three different M/N ratios are investigated. Results of such estimations are
summarized in Table 5.

Parameter Sample size
LRVF HRVF

Mean St. Dev. (%) Mean St. Dev. (%)

φ1

M/N=1 5.88× 10−5 4.85 1.08× 10−4 1.51
M/N=10 5.87× 10−5 4.66 1.08× 10−4 1.08
M/N=100 5.88× 10−5 4.54 1.08× 10−4 1.02

φ2

M/N=1 5.32× 10−5 3.98 4.62× 10−6 11.92
M/N=10 5.31× 10−5 3.58 4.53× 10−6 5.82
M/N=100 5.31× 10−5 3.65 4.53× 10−6 4.87

ξ12

M/N=1 2.63× 10−7 50.77 1.27× 10−5 5.08
M/N=10 2.62× 10−7 49.62 1.27× 10−5 4.82
M/N=100 2.64× 10−7 48.46 1.27× 10−5 4.73

Table 5: Composite plate test case: extrapolation parameters for two LSF
formulations at different M/N sample ratios (N = 100)

From such results, it is confirmed that the estimations of the extrapolation
parameters φ1, φ2 and ξ12 do not depend on the sample size. For a same LSF
formulation, mean values are not affected by the ratio M/N . On the other
hand, bigger dataset sizes can improve ξ12 estimation precision, as can be seen
in Table 5. Increasing ratio M/N can be used as an efficient procedure to
enlarge the database by only enriching the population of the cheapest variable,
thus without a huge additional computational burden. Moreover, from Table 5
it may be observed that the LSF formulation itself can greatly affect the average
values of φ2 and ξ12: the former is increased, while ξ12 mean value decreases
when switching from LRVF to HRVF.
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Looking at φ1 results, a remarkable difference in average values is obtained
in the upper-mentioned formulations. However, this constitutes a second-order
effect and thus does not significantly affect the final results in terms of variance
of the estimation of Pf . The precision improvement provided by HRVF with
respect to LRVF is thought to be circumstantial and just related to the adopted
use case.

Estimations related to ξ12 seem poor in LRVF case: however, being on av-
erage two orders of magnitude lower than the others, their effect is not relevant.
This excessive error is mostly due to the low magnitude of the quantity itself.
A similar precision issue is also visible for φ2 in HRVF, with the difference that
here larger M/N ratios can reduce the related standard deviation.

Thanks to the upper-mentioned parameters, contour plots are extrapolated
and reported in Fig. 2, where M number of R samples constitutes the abscissa,
N number of S samples is the ordinate and the curves represents the ensemble
of points allowing the same estimation precision, defined through the coefficient
of variation coV (P̂f ). In such graphs, it is visible that every iso-coV can be
described as an hyperbole branch. As shown in Section 3.3, all points minimiz-
ing the product NM are perfectly aligned in logarithmic axes, as the reference
ratio does not depend on the targeted variance level. It is possible to recognize
a vertical asymptote, identifying the minimum number M of R samples, and an
horizontal one, related to minimum N . The reference ratio M/N described in
Section 3.3 represents a transition between two asymptotic behaviors. There-
fore, for ratios M/N higher than the reference one, precision will be defined
essentially by N and adding further R samples would be ineffective. The op-
posite considerations can be done for ratios M/N lower than the reference one.
The estimated value of such reference ratio M/N can be seen as a decision tool
to state which component (namely R or S) mostly contributes to variance of

P̂f estimation: in particular, if this is higher than 1, one can expect to improve
precision by adding more R samples, and conversely if it is lower than 1. A
sampling strategy can thus be defined from this ratio to reduce the number of
samples, but it needs to be coupled with information about the relative com-
putational burdens of R and S to make a more rational choice to reduce the
overall analysis cost.

The effect of LSF formulation can be extrapolated from the translation
towards right and down of the contour plots when transitioning from LRVF to
HRVF. This implies that the minimum number N of response samples can be
reduced, while the minimum number M of capacity samples and the reference
ratio M/N are increased. Such phenomenon can be explained by the higher
(respectively lower) variability assigned to R (respectively S) component in
HRVF. Associating results from Eq. 27, Table 5 and Fig. 2, it can be observed
that ξ12 translates coV contour plot horizontally (towards right as it increases),
φ2 is responsible for vertical translation (towards up if it increases) and φ1 has
a minor effect on the contour shape.

Another aspect to take into account is the variance reduction - measured
in terms of coV (P̂f ) ratios - provided by ImpSMC with respect to IS, used as
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Figure 2: Composite plate test case: coV (P̂f ) contour plots on two LSF formu-
lations
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Figure 3: Composite plate test case: effect of LSF formulation on variance
reduction ofP̂f estimation as a function of number of samples N of S and M of
R

reference. Relative results are extrapolated from variance estimator, as done
for the coV (P̂f ) contour plots, and reported in Fig. 3. The simple introduction
of a separated sampling approach on the same amount of data is given by the
central abscissa point in every subplot (corresponding to M/N = 1): it can
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be seen that in any case, substantial gains are ensured by ImpSMC approach,
without even altering the ratio M/N .

For LRVF, N number of S samples has a significant impact on variance
reduction, while little effect is observed from M number of R samples. The
gains illustrated herein are in line with the ones reported in Table 3. These
stem directly from the coV (P̂f ) contour plot. In fact, as for M > 10, only
horizontal lines are present in Fig. 2a, the only relevant effect is provided by
N . Such conclusions are confirmed when switching from Fig. 3a to 3b or from
3c to 3d.

Focusing on HRVF, both N and M significantly affect precision. They both
have a nonlinear effect on variability of Pf estimation for small sample sizes,
reaching an asymptotic behavior for bigger sizes. These observations are direct
consequences of the contour plot in Fig. 2b: compared to LRVF, contours of
the HRVF are more balanced and almost symmetric with respect to the first
bisector of the Cartesian plane (in logarithmic axes). However, considering the
reference ratio M/N ≈ 3 (individuated by the hyperbole branch bisector), a
slightly superior influence of M is expected. This is confirmed in Fig. 3, where
a delay in transition from nonlinear to asymptotic behavior of M with respect
to N can be observed by comparing Figs. 3a and 3c (or alternatively Figs. 3b
and 3d): this implies that the increase of M keeps affecting precision at higher
samples sizes than N does. As for LRVF, no difference is encountered in terms
of variance reduction (with respect to IS) when increasing the overall database
size without altering the ratio M/N , as it appears when comparing Fig. 3a with
3b or 3c with 3d.

Again, the differences between ImpSMC performances in LRVF and HRVF
directly come from the coV (P̂f ) contour plots. Moreover, these do not depend
on the size of the dataset itself but just on the adopted ratio M/N and LSF
formulation. Variance reduction effects are directly reflected on the number of
samples required to achieve a target precision.

4.2 Truss test case

In this section, we focus on a common benchmark problem, generally adopted
as medium-complexity reliability example [Blatman & Sudret (2011), Lelievre
(2018)], mainly due to a medium-large number of uncertain design variables.
A 23-bar truss problem is considered (confront Fig. 4), for which the LSF is
formulated here as:

g(Vall, XS) = Vall − V1(XS) (30)

Where XS represents the whole set of variables affecting the deflection V1,
computed through Finite Element Analysis (FEA). Maximum allowable deflec-
tion is denoted as Vall. In this paper, we modify the problem by assigning
different Young’s Modulus and cross section areas to each finite element, with
different section statistical distributions for horizontal and oblique bars. Consid-
ering 23 elements, 6 load variables and one capacity variable (the allowed Vall),
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we have overall 53 random variables (52 forming XS and one forming XR). We
use mean S = V1 = 0.079 and standard deviation σ(S) = σ(V1) = 6.47×10−3 as
references to analyze results from different configurations in following sections.

Figure 4: Truss test case: illustration (Source: Lelievre (2018))

Variable Unit Distribution Mean St. Deviation
E1, E2 GPa Log-Normal 210 21
A1 m2 Log-Normal 2.0× 10−3 2.0× 10−4

A2 m2 Log-Normal 1.0× 10−3 1.0× 10−4

P1 − P6 N Gumbel 5.0× 104 7.5× 103

Vall m Normal 0.115 0.01

Table 6: Truss test case: random variables

As done previously for the composite plate test case, several configurations of
the truss example were used to experimentally validate the analytical variance
estimators. The experimental validation is reported in Appendix A: in all
configurations analyzed, the maximum error never exceeded 2%, while the mean
value of errors was below 0.3%.

In Table 7, all main results related to different reliability estimators are
provided, as done for the previous test case. Note that the mean, standard
deviation and coV estimations of P̂f and required N to achieve coV (P̂f ) =
0.05 come from statistical repetition of 100 reliability analysis: the analytical
variance estimator was used to stop sampling when target coV = 0.05 was
obtained. Several ratios between number of sample N of S and M of R were
introduced for both SMC and ImpSMC approaches. It can be easily observed
that this latter allows to reduce both variance at fixed number N of response
samples and necessary amount of simulations to achieve a fixed coV , clearly
outperforming MC, IS and SMC. Moreover, such gains can be even improved
by increasing the ratio M/N , then reaching an asymptotic behavior at very high
M/N ratios.

As done for the previous numerical example, the coV (P̂f ) contour plot as a
function of both N and M is plotted in Fig. 5, by using the algorithm described
in Section 3.3.

Overall, 15 configurations are defined to take into account different vari-
abilities of the capacity variable R. The correspondent means are calibrated
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Results at coV (P̂f ) = 0.05 Results at N = 100 Results at N = 1000

P̂f N σN (%) σ(P̂f ) coV (P̂f ) σ(P̂f ) coV (P̂f )
MC 2.01× 10−3 2× 105 5.46 4.21× 10−3 2.094 1.38× 10−3 0.687
IS 1.97× 10−3 1862 21.52 4.01× 10−4 0.204 1.32× 10−4 0.067

SMC
M/N = 1 1.98× 10−3 3.51× 104 7.82 2.13× 10−3 1.077 5.15× 10−4 0.261
M/N = 10 1.96× 10−3 1.33× 104 14.05 1.17× 10−3 0.598 3.45× 10−4 0.176
M/N = 100 1.96× 10−3 1.07× 104 21.25 1.11× 10−3 0.568 3.41× 10−4 0.174

ImpSMC
M/N = 1 1.98× 10−3 190 41.79 1.47× 10−4 0.074 4.35× 10−5 0.022
M/N = 10 1.96× 10−3 155 39.01 1.26× 10−4 0.064 3.83× 10−5 0.020
M/N = 100 1.96× 10−3 150 33.66 1.23× 10−4 0.062 3.77× 10−5 0.019

Table 7: Truss test case: main reliability results from different simulation algo-
rithms (values issued from 100 repetitions of each reliability algorithm)
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Figure 5: Truss nominal case: coV contour plot

to maintain the same failure probability target Pf of the nominal case. These
are listed in Table 8 (ID=8 corresponds to nominal case). In this Section,
all statistical parameters of S are kept constant: mean S = V1 = 0.079,
standard deviation σ(S) = σ(V1) = 6.47 × 10−3) and coefficient of variation
coV (S) = coV (V1) = 0.082. Reference results related to MC and IS are re-
ported in Table 9.

A first evaluation can be done with respect to different evolutions shown in
the coV contour plots, depicted in Fig. 6. The reader may observe a translation
toward down-right of the contours as the ratio σ(R)/σ(S) increases (Fig. 6b).
This implies that the necessary number of needed M samples increases, while
minimum N decreases. The reference ratio M/N will therefore increase. It is
worth noticing that in this case, as N > 10, the dominant contributor to the
Pf estimate precision will be M , as we are already very close to the vertical
asymptote. Opposite conclusions are drawn if the ratio σ(R)/σ(S) is reduced
(Fig. 6a).

Another aspect to consider is the variance reduction allowed by ImpSMC ap-
proach with respect to N and M . In the previous section it was already observed
the potential variance reduction (compared to other reliability simulation-base
algorithms) for a nominal case and with different N and M/N ratios. In Fig.
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ID R σ(R) coV (R) R/S σ(R)/σ(S) coV (R)/coV (S)
1 0.1023 0.001 0.01 1.29 0.16 0.12
2 0.1024 0.0012 0.012 1.30 0.19 0.15
3 0.1026 0.0016 0.016 1.30 0.25 0.20
4 0.1028 0.002 0.019 1.30 0.30 0.23
5 0.1031 0.0025 0.024 1.31 0.38 0.29
6 0.1037 0.0033 0.032 1.31 0.51 0.39
7 0.1057 0.005 0.047 1.34 0.77 0.57
8* 0.115 0.01 0.087 1.46 1.55 1.06
9 0.1405 0.02 0.142 1.78 3.08 1.73
10 0.1685 0.03 0.178 2.13 4.64 2.17
11 0.196 0.04 0.204 2.48 6.18 2.49
12 0.225 0.05 0.222 2.85 7.72 2.71
13 0.253 0.06 0.237 3.20 9.27 2.89
14 0.31 0.08 0.258 3.92 12.36 3.15
15 0.368 0.10 0.272 4.66 15.46 3.32

Table 8: Truss test case: configurations for study on σ(R)/σ(S) effect (fixed
statistical parameters of S: mean S = V1 = 0.079, standard deviation σ(S) =
σ(V1) = 6.47× 10−3 and coefficient of variation coV (S) = coV (V1) = 0.082)

ID σ(R)/σ(S)
MC IS

P̂f N σN/N(%) P̂f N σN/N(%)
1 0.16 1.91× 10−3 2.10× 105 5.23 1.91× 10−3 3351 37.8
2 0.19 1.90× 10−3 2.11× 105 4.45 1.95× 10−3 3289 49.2
3 0.25 1.93× 10−3 2.08× 105 4.72 1.88× 10−3 3154 31.7
4 0.30 1.91× 10−3 2.10× 105 4.73 1.97× 10−3 3376 38.2
5 0.38 1.90× 10−3 2.11× 105 5.00 1.88× 10−3 3309 73.2
6 0.51 1.97× 10−3 2.03× 105 5.06 1.91× 10−3 2927 29.6
7 0.77 1.96× 10−3 2.04× 105 4.77 1.98× 10−3 2643 31.0
8* 1.55 1.98× 10−3 2.03× 105 5.27 2.08× 10−3 1868 20.7
9 3.08 1.93× 10−3 2.08× 105 4.37 1.98× 10−3 1399 16.0
10 4.64 1.87× 10−3 2.14× 105 5.17 1.87× 10−3 1353 5.2
11 6.18 2.02× 10−3 1.98× 105 4.76 2.02× 10−3 1298 11.3
12 7.72 1.95× 10−3 2.05× 105 5.43 1.94× 10−3 1317 5.1
13 9.27 2.02× 10−3 1.98× 105 4.94 2.01× 10−3 1282 11.4
14 12.36 2.03× 10−3 1.97× 105 5.21 2.16× 10−3 1275 15.2
15 15.46 2.00× 10−3 2.01× 105 5.55 2.02× 10−3 1286 11.6

Table 9: Truss test case: reference results for study on σ(R)/σ(S) effect (100

simulations considered, targeted coV (P̂f ) = 0.05)

7 is reported a complete study over the effects of the ratio σ(R)/σ(S). Results
are consistent with previous conclusions from contour plots. All curves related
to configurations with σ(R)� σ(S) show a small sensitivity to variations of M ,
but a massive coV reduction can be achieved by increasing N . With the increase
of the ratio σ(R)/σ(S), impact of M over coV becomes more visible, while the
influence of N is reduced. The turning point is given by σ(R) ≈ σ(S), where the
effects of N and M are almost perfectly balanced. Then, for σ(R)� σ(S), the
only responsible for coV is the number M of R samples. Comparing ImpSMC
and IS performances, the coV reduction factor is kept constant when multiplying
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Figure 6: Truss test case: effect of σ(R)/σ(S) on coV contour plot

the available computational budget: this is visible when passing from N = 100
(respectively M = 100) to N = 1000 (respectively M = 1000) we obtain almost
identical graphs of coVImpSMC/coVIS .
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Figure 7: Truss test case: effect of σ(R)/σ(S) on variance reduction in function
of number of samples N of S and M of R (fixed σ(S) = 6.47× 10−3)

We would now like to make some comments regarding the computational cost
gains. Thanks to the variance estimator, it is in fact also possible to preview the
overall number of complete analysis without even needing to actually perform
them.

In Fig. 8, attention is focused on the balance of necessary N (as in this
example, response sampling is computationally more expensive than capacity)
to achieve a target coV = 0.05. This analysis allows to confirm what was
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previewed in previous sections. In fact, when σ(R) < σ(S) the effect of M/N
is not relevant, and ImpSMC approaches IS when σ(R) � σ(S). On the other
hand, when σ(R)� σ(S), low ratios M/N do not allow to fully exploit ImpSMC
potentialities, as the necessary M increases. In this context, it is fundamental
to increase the imposed ratio M/N to be able to decrease N (which is usually
the main contributor to overall computational burden).
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Figure 8: Truss test case: effect of σ(R)/σ(S) on needed number of samples N
of S and M of R to achieve cov(Pf ) = 0.05 at given M/N ratios

5 Discussion of results

From the analysis conducted in the two test cases some general conclusions can
be drawn.

First, the only assumption for the formalization of the ImpSMC approach
relies on the possibility of separating LSF in two independent variables R and S:
therefore, no further assumption on the shape of LSF nor the operation linking
R and S is needed. Additionally, ImpSMC approach can be applied to any
engineering field and extended to system reliability applications, aerodynamic
studies, power engineering or even fields outside of engineering requiring the
determination of a reliability, like pharmaceutic industry.

From the study on the composite plate, it can be observed that slight changes
in LSF formulation can lead to substantial gains. The key point in transferring
- whenever possible - variability on the computationally cheapest component
(between response and capacity) can allow to reduce the needed amount of
samples required to achieve a prescribed precision target, above all when making
use of unbalanced datasets.

From both test cases, we observed that the efficiency of increasing ratio
M/N is more relevant with high levels of the ratio σ(R)/σ(S). This is valid for
all situations where response sampling implies a fairly superior computational
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burden, compared to capacity sampling. This means that in such cases, if the
variability of the capacity R is greater than that of response S, more capacity
samples (M) can be very efficiently generated and allow to significantly decrease
the variability of the Pf estimate. The reverse reasoning must be done in the
opposite situation, where most of computational efforts comes from resistance
model.

In industrial engineering applications, such an analytical variance estima-
tor can predict the precision of failure probability estimation and the required
amount of simulations to achieve a good precision target without being forced
to replicate empirically the entire procedure for a statistical analysis. Moreover,
the bisector of the coV (P̂f ) plot (which can be estimated from a low number
of samples) may give an idea of a good ratio M/N between number of capacity
and response samples to guarantee a good compromise between precision and
computational burden. However, as this just minimizes the product NM , en-
gineering judgment is needed to refine it: if sampling the response S is more
expensive than sampling capacity R, this ratio can be multiplied - or divided, if
the reverse consideration is valid - up to 10 (no more than this as an asymptotic
behavior would be reached).

6 Conclusion

In this paper, an analytical variance estimator related to ImpSMC approach is
proposed and numerical studies are conducted on two test cases. This method
can be used to estimate failure probability in reliability applications where it is
possible to identify two separated independent components in the Limit State
Function (LSF). Generally, we could think of response and capacity of a system.
In structural applications, we refer respectively to stress and strength.

The basic idea of ImpSMC is to separately sample these two components
and concentrate them around failure zones. Thanks to the variance estimator,
it is possible to show without large number of simulations how such an ap-
proach outperforms other simulation methods like MC, IS and SMC. Variance
of the Pf estimator is significantly reduced as well as the number of required
samples to achieve a good precision target. Separate sampling also allows to
deal with unbalanced datasets, leading to even higher gains. Results show that
ImpSMC approaches IS when all variability in LSF comes from the most ex-
pensive component. In all other cases, precision improvements with respect to
IS are significant, above all in the opposite situation of variability mostly due
to the cheapest component of LSF.

The two test cases presented in this paper, despite their simplicity, allow
to highlight the potential of a variance estimator for ImpSMC. In particular,
the first use case shows that it is not an obligation to distinguish a stress and
a strength component, but LSF can be re-adapted (if possible) to any form
containing two separated independent terms. A key to increase gains in term
of computational burden is to work towards unbalanced datasets and assign-
ing (where possible) most of variability to the component which is cheaper to
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sample.
Focusing on the practical use of ImpSMC approach, the allowance of unbal-

anced datasets is of utmost importance. Generally, the response S of a system
is often much more expensive to sample than the capacity R: for example, in
structural applications, the response will be provided by finite element model
simulations, while the capacity is often given by an empirically characterized
random variable which is cheap to sample. Allowing unbalanced datasets, one
can focus on maximizing the ratio between the number M of R samples and
the number N of S samples to reduce the overall computational burden, while
improving the precision of the estimation of the failure probability Pf .

Moreover, coupling our method to Adaptive Importance Sampling algorithm
could extend its application to any reliability problem with unknown importance
function.

Finally, the introduction of ImpSMC in machine learning techniques would
make it possible to cheaply evaluate failure probability in real-life applications
where response is so expensive to evaluate that it must be approximated by a
surrogate model.
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A Experimental variance validation on truss test
case

ID
M/N=1 M/N=10 M/N=100

σemp(Pf ) σan(Pf ) Err(Pf )(%) σemp(Pf ) σan(Pf ) Err(Pf )(%) σemp(Pf ) σan(Pf ) Err(Pf )(%)
1 1.966× 10−4 1.958× 10−4 -0.39 1.680× 10−4 1.673× 10−4 -0.39 1.593× 10−4 1.586× 10−4 -0.46
7 8.615× 10−5 8.549× 10−5 -0.77 8.482× 10−5 8.515× 10−5 0.38 8.480× 10−5 8.514× 10−5

8 4.331× 10−5 4.345× 10−5 0.31 3.827× 10−5 3.838× 10−5 0.29 3.779× 10−5 3.765× 10−5 -0.38
12 8.302× 10−5 8.304× 10−5 0.02 2.666× 10−5 2.709× 10−5 1.60 1.084× 10−5 1.081× 10−5 -0.28
15 9.868× 10−5 9.827× 10−5 -0.41 3.139× 10−5 3.138× 10−5 -0.39 1.041× 10−5 1.042× 10−5 0.10

Table 10: Truss test case: validation of analytical variance estimator (configu-
rations ID from Table 8, N = 103, values issued from 105 repetitions)
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