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Abstract 12 

R-loops are non-B DNA structures with intriguing dual consequences for gene expression 13 

and genome stability. In addition to their recognized roles in triggering DNA double-strand 14 

breaks (DSBs), R-loops have recently been demonstrated to accumulate in response to DSBs, 15 

especially when induced in transcriptionally active loci. In this review, we discuss whether R-16 

loops actively participate in DSB repair or are detrimental by-products that must be removed 17 

to avoid genome instability. 18 

 19 

  20 
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R-loops are dynamic non-B DNA structures that arise during transcription, when nascent RNA 21 

forms Watson-Crick base pairs with the template DNA strand, generating an DNA:RNA hybrid 22 

duplex and a displaced single DNA strand. Despite their discovery five decades ago, the prevalence 23 

and the roles of R-loops remained mostly ambiguous until the advent of high-throughput 24 

sequencing techniques which enabled their detection genome wide1,2. R-loops mostly accumulate 25 

on the 5’ and 3’ ends of GC-skewed, transcriptionally active loci3,4. Their formation and removal 26 

are regulated via several pathways, including mRNA processing (e.g. the THO/TREX complex5), 27 

RNA modification6, negative supercoiling7, single-strand DNA binding proteins (e.g.8) and 28 

specialized R-loop processing machineries such as RNA:DNA hybrid helicases, nucleases and, 29 

more surprisingly, endonucleases involved in DNA damage repair9.  30 

 31 

R-loops are usually considered as toxic by-products of ongoing transcription that generate 32 

structural obstacles requiring removal to allow the processivity of RNA and DNA polymerases. 33 

They are considered as sources of DNA damage that trigger genome instability1,10,11, although the 34 

mechanism(s) by which they cause such instability are still being characterized12. Accordingly, 35 

downregulation of R-loops removal pathways triggers a large range of detrimental outputs, at 36 

molecular levels from replication and transcription defects to clinical levels as illustrated by the 37 

dramatic phenotype of patients bearing mutations in the senataxin gene13. However, R-loops are 38 

also now recognized to have beneficial roles through their ability to regulate various processes 39 

including transcription, chromatin structure, telomere integrity and replication in physiological 40 

contexts1,14. A key recent study showed that they can act as topological sinks to release in a non-41 

enzymatic manner the negative supercoils imposed by processive activities on DNA7,15. This 42 

suggests that beyond being simple detrimental roadblocks that must be eliminated, R-loops also 43 

represent active players in DNA-related processes.  44 
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 45 

While R-loops are potent inducers of DNA damage, they are also key to maintain telomere integrity 46 

(for a recent review see 14) and recent findings surprisingly revealed that DNA double-strand breaks 47 

(DSBs) elicit RNA:DNA hybrid formation11,16,17. DSBs are harmful DNA lesions that, apart from 48 

being generated by programmed endonuclease activity, can be provoked both by environmental 49 

sources such as chemotherapeutic drugs and exposure to radiation, and by oncogene-induced 50 

replication stress and topoisomerase-induced transcriptional activation16. Here, we review the 51 

conflicting evidence regarding the mechanisms leading to DSB-induced R-loop accumulation, as 52 

well as their potential to regulate resection, transcriptional arrest and ultimately DSB repair. We 53 

will discuss whether RNA:DNA hybrids represent roadblocks with detrimental consequences for 54 

DSB repair or whether they are beneficial structures that actively contribute to this process. 55 

 56 

Several models can account for RNA:DNA hybrid accumulation in cis to DSBs 57 

The first evidence for R-loop accumulation at DSBs came from immunofluorescence studies 58 

showing that a catalytically-inactive mutant RNaseH  protein used as a probe for R-loops is readily 59 

detected at sites of laser-induced DSBs18. Many reports later confirmed the accumulation of R-60 

loops in cis to DSBs provoked by various DNA damaging agents (irradiation, targeted reactive 61 

oxygen species, nuclease-based DSB induction) in several model systems using various R-loop 62 

measurement methods19–34. However, the mechanism by which these RNA:DNA hybrids 63 

accumulate at DSBs is still unclear. This is probably in part due to the methods to induce DSBs, 64 

the position of DSBs on the genome and the number of DSBs analyzed (hundreds versus a few)35. 65 

Yet the manner in which DSB-induced hybrids accumulate is not only critical in determining the 66 

mechanistic details but may also inform us as to their “raison d’être”.  67 

 68 
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The “DSB as promoter” model 69 

Several studies led to the proposal that DSB-induced hybrids are generated from de novo 70 

bidirectional transcription in an unconventional manner through DSB ends acting as promoters 71 

(Fig.1a)23,24,36–39. Indeed, DNA ends can directly recruit RNA Polymerase II (RNAPII) in vitro in 72 

a process that depends on the MRN complex38,39. Moreover, in vivo data show that DSBs induced 73 

by the homing endonuclease I-PpoI recruit RNAPII and factors of the pre-initiation complex 74 

(CDK7 and CDK9)24,25,37. CDK7 and CDK9 are key regulators of the regular transcription cycle. 75 

They phosphorylate RNAPII on its carboxy-terminal domain (CTD) heptad repeats, first at serine 76 

5 (CDK7) to promote initiation, then at serine 2 (CDK9) to induce elongation. The recruitment of 77 

these kinases37 suggests that the transcription initiated at DSBs follows the canonical mode. 78 

Accordingly, live and super-resolution imaging studies show both nascent transcription and 79 

RNAPII colocalizing with DNA breaks37,38,40,41. Of interest, DNA-PK, a key mediator of DSB 80 

signaling, can  enhance transcriptional activity outside the DSB context42, which suggests a role 81 

for this kinase in transcription activation at DSBs. Since resection was found to be required for 82 

hybrid formation, it was proposed that these newly synthesized transcripts (called dilncRNAs for 83 

DSB-induced long non-coding RNAs) can form RNA:DNA hybrids at the site of DSBs, rather than 84 

actual R-loops (which are composed of the RNA:DNA hybrid and the displaced ssDNA)23. In 85 

conclusion, such a model proposes that de novo bidirectional transcription, initiated from DSBs, 86 

triggers RNA:DNA hybrid formation and is a necessary and active process that systematically 87 

occurs at all DSBs to ensure correct repair (Fig. 1a).  88 

However, this model is hard to reconcile with the transcriptional repression known to occur in cis 89 

to DSBs and with genome-wide studies revealing that damage-induced R-loops mostly form in cis 90 

to DSBs arising at loci that display prior RNAPII occupancy (see below). 91 

 92 
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The “transcription regulation” model 93 

As an alternative model, DSB-induced hybrids may form as a consequence of transcriptional 94 

repression occurring in cis to DSBs rather than as a consequence of de novo transcription (Fig. 1b). 95 

Accordingly, outside the DSB context, R-loops form in response to impaired transition from 96 

initiating to elongating RNAPII and to decreased RNAPII processivity within genes. For instance, 97 

R-loops accumulate at the 5’end or near the 3’transcription termination site4 where RNAPII 98 

elongation rate is low43. Moreover, increased RNAPII idling at promoter proximal pause sites is 99 

correlated with increased R-loop levels in many cases44–47. Importantly, when induced within or 100 

close to an active locus, DSBs trigger transcriptional repression in cis (reviewed in16,48). This local 101 

transcriptional shut down involves alterations of RNAPII and its associated factors, as well as 102 

changes in chromatin structure16,48. Of particular interest, DSBs trigger (i) the recruitment of 103 

NELF-E49, involved in promoter proximal pausing, (ii) a decrease of RNAPII CTD-Ser2 104 

phosphorylation, the elongating form of RNAPII50,51 and (iii) an increase of RNAPII CTD-Tyr1 105 

phosphorylation41, a mark associated with pausing at the 5’ and 3' ends of genes52,53. Such 106 

alterations probably trigger modifications in RNAPII distribution across the damaged gene, with a 107 

shift from elongating RNAPII within the gene to RNAPII accumulation at promoters and 5’ pause 108 

sites. These changes could account for the previously reported increase of RNAPII at DSBs in 109 

some instances (e.g.: when induced in promoters). It is also interesting to note that H2BK120 110 

ubiquitination and H3K79me2 levels, previously associated with high RNAPII elongation rate54–111 

56, decrease around DSBs57, in agreement with a DSB-induced slowing down or pausing of 112 

RNAPII. Finally, DSBs also recruit multiple transcription termination factors and RNA 113 

degradation complexes21,22,26,28,32,58–61 (e.g. DROSHA, SETX and the nuclear exosome). Taken 114 

together, these studies suggest that the transcription cycle (i.e. initiation, elongation, and 115 

termination) is heavily affected on genes in cis to DSBs with a decreased elongation rate, increased 116 
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promoter-proximal pausing and premature termination (Fig. 1b), all of which are features 117 

associated with R-loop formation. This raises the possibility that DSB-induced R-loops may occur 118 

as a consequence of transcription shut down in cis to DSB.  119 

 120 

In contrast to the “DSB promoter” model, the “transcription regulation” model posits that formation 121 

of DSB-induced hybrids is not a ubiquitous feature but rather is restricted to DSBs falling within 122 

regions that were transcriptionally active prior to DNA damage. This proposal is supported by 123 

genome-wide DRIP-seq studies, which show specific accumulation of hybrids in cis to DSB 124 

induced at loci  occupied by RNAPII prior to damage but not around DSB induced in intergenic 125 

loci, despite equivalent DSB induction levels21,62. R-loops induced by reactive oxygen species were 126 

also specifically observed at transcribed damaged loci19. Furthermore, use of NET-seq, which 127 

captures nascent RNA embedded in RNAPII, enabled the identification of bidirectional transcripts 128 

around only those DSBs that were induced in RNAPII pre-bound loci41. Finally, the presence of 129 

DDRNAs (small double stranded RNA produced by dilncRNA processing38,63), was shown to be 130 

restricted to I-PpoI-induced DSBs falling within highly transcribed and repetitive regions64. 131 

Importantly, the de novo bidirectional transcription observed by live imaging40 and NET-seq41 may 132 

arise from such R-loop accumulation induced by transcriptional repression, since R-loops function 133 

as intrinsic promoters65. 134 

 135 

In conclusion, the “transcription regulation” model implies that R-loop production is not a 136 

generalizable feature occurring at all DSBs but occurs only at DSBs harboring prior RNAPII 137 

occupancy, as a consequence of the DSB-induced transcriptional repression (Fig. 1b). Unlike the 138 

“DSB as promoter” model, in which de novo transcription at DSBs allows to generate the RNA 139 

moiety of the R-loop and hence precedes the RNA:DNA hybrid formation, the “transcription 140 
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regulation" model posits that R-loops form due to DSB-induced transcriptional repression, and that 141 

de novo transcription occurs subsequent to R-loop formation as a result of R-loops acting as 142 

promoters.  143 

 144 

Potential contributions of RNAPII backtracking, pre-mRNA and trans RNAs  145 

Besides the two models just described, other mechanisms could contribute to R-loop formation at 146 

DSBs in transcribed loci (Fig. 1c). First, one can envision a contribution of cis-pre-mRNA to R-147 

loop formation33,66. Indeed, the extensive histone modification changes observed following DSB 148 

induction57 could offer the opportunity for pre-existing pre-mRNA to anneal back to the template 149 

DNA7,67. Moreover, the availability of ssDNA produced by resection may also contribute to 150 

stabilize RNA:DNA hybrids with pre-mRNA transcripts, consistent with increased R-loop 151 

formation in cis to DSB in G2, a cell cycle phase in which resection is particularly efficient23. 152 

Second, RNAPII pausing that occurs when RNAPII encounters obstacles68,69 can trigger RNAPII 153 

backtracking68,69. This was proposed to produce anterior R-loops, i.e. R-loops that form in front of 154 

the backtracked RNAPII69. Hence, collision of RNAPII with factors accumulated on DSBs could 155 

cause formation of nearby R-loops. Finally, trans RNA produced from a remote homologous locus 156 

or following processing could also contribute to R-loop accumulation. Hybrids generated by trans 157 

RNA have been seen at the IgH locus70, during CRISPR/Cas9-mediated DSB induction71, TERRA 158 

ncRNA assembly at telomeric sequences72, and during lncRNA trans action on distant loci (e.g. 159 

APOLO in Arabidopsis thaliana73). For trans RNAs to promote R-loop formation they must invade 160 

duplex DNA. This strand invasion was proposed to be mediated by RecA/RAD51, the ssDNA-161 

binding protein usually mediating classical strand invasion during homologous recombination 162 

(HR)72,74–76), although this has been recently debated77,78. RPA, another key ssDNA-binding 163 

protein, known for its function in ssDNA stabilisation and RAD51 filament assembly, also displays 164 
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the potential to bind RNA and catalyse R-loop formation78, supporting a role for this ssDNA 165 

binding-protein in inverse strand invasion. In all these models, nascent de novo transcription at 166 

DSBs would also occur as a consequence of R-loop formation (Fig. 1c), since R-loops are 167 

themselves able to initiate de novo transcription65. 168 

 169 

The ever expanding range of genome-wide methods being developed to map RNA:DNA hybrids 170 

to specific strands at single nucleotide resolution (e.g. DRIPc-seq79, or qDRIP80) should enable 171 

discrimination between these models, particularly when combined with annotated DSB induction 172 

systems35 . 173 

 174 

Regulation of R-loop levels by nucleases and RNA modifications 175 

Beyond the crosstalk between R-loops and transcription, R-loops also possess the potential to alter 176 

a large range of dsDNA and ssDNA templated processes, such as helicase-mediated unwinding, 177 

exo- and endonuclease activities, nucleofilament assembly, strand invasion and DNA synthesis, all 178 

of which are critical steps in the repair process. Moreover, R-loops may act as recruitment platforms 179 

recognized by several bona fide repair proteins, such as RPA78,81, BRCA123,82, CSB19,27 and 180 

Rad5220,27,83, and are directly or indirectly required for loading of MDC141, BRCA223,47,84 and 181 

53BP122,41 at DSB sites. This suggests that R-loops are an integral component of the repair process. 182 

In agreement with their strong potential to regulate the repair process, the R-loop level is subjected 183 

to intense regulation at the site of damage. First, numerous R-loop removal factors are recruited at 184 

DSBs, including SETX21, RNaseH1/223, DDX133, DDX526, XPG20 and EXOSC1032,60. Such 185 

recruitment of several, potentially redundant, R-loop removal activities suggest that R-loops act as 186 

roadblocks that require elimination. Second, recent studies indicate that chemical modifications 187 

can take place on the RNA moiety of R-loops with consequences for their stability across the 188 
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genome6,85–89. These RNA modifications, termed “epitranscriptomic” marks, which include 5-189 

methylcytidine (m5C) and N6-methyladenosine (m6A), regulate many aspects of RNA life, e.g.: 190 

export and stability90 and many cellular processes, including DNA damage30,91,92.  Notably, the 191 

m6A-writer, METTL3 is required for efficient UV-damage repair91, and m6A-modified 192 

RNA:DNA hybrids were found to accumulate post-DSB induction in an ATM-dependent 193 

manner30,89. In cis to DSB, m6A-RNA modification is required to stabilize nascent modified RNAs 194 

that form hybrids, by a mechanism that involves the YTHDC1 m6A reader30,93. Of interest, m5C 195 

also accumulates on mRNAs in cis to DSB, and the methylation was proposed to take place on 196 

RNA:DNA hybrids92. Despite the lack of recruitment of the classical m5C reader, ALYREF, to 197 

m5C-modified DSB-induced hybrids in human cells92, its yeast homologue Yra1 (mostly known 198 

for its role in mRNA export and in stabilizing DNA:RNA hybrids94) has been implicated in DSB 199 

repair95. Altogether, these epitranscriptomic marks could act as a combinatorial code to allow 200 

dynamic and rapid modulation of R-loop levels at DSBs and could also act as a recruitment 201 

platform, given their ability to be recognized by reader proteins. 202 

 203 

Functions of DSB-induced R-loops 204 

Control of transcriptional activity near DSBs 205 

As mentioned earlier, DSB induction results in transient repression of transcription of nearby loci, 206 

which can lead to RNA:DNA hybrid formation. As well as being a consequence of transcriptional 207 

silencing, DSB-induced hybrids may also hold the capacity to mediate transcriptional shut down. 208 

This would create a positive feedback loop whereby hybrid formation is further required to 209 

reinforce repression. This hypothesis is supported by the fact that outside the DSB context R-loops 210 

ensure the recruitment of the PRC1 complex96, a complex also involved in DSB-induced 211 

transcriptional silencing97–99. DSB-induced hybrids could also contribute to premature 212 



 

11 
 

transcription termination via the recruitment of histone methyltransferase G9a, local H3K9me3/2 213 

deposition and HP1 binding, which occur in cis to DSBs100–103, since all these chromatin changes 214 

were reported to arise in an R-loop-dependent manner and to promote transcription 215 

termination104,105. Moreover, several RNA:DNA helicases that resolve DSB-induced hybrids, such 216 

as SETX/Sen121,31, DHX928, DDX133 or DDX526, also mediate premature or normal transcription 217 

termination on undamaged DNA104,106–109 (Fig. 2).  218 

 219 

Control of resection 220 

As mentioned above, the RNA moiety of the R-loop displays an extraordinary potential to regulate 221 

multiple steps of DSB repair, not only through its acting as a recruitment platform, but also by 222 

substituting for the dsDNA substrate on which DSB repair processes naturally occur. A conserved 223 

and essential step of HR repair is the generation of a long 3’ ssDNA on either side of the break, a 224 

process known as resection110,111. Resection is believed to be initiated by the concerted action of 225 

MRN and CtIP, which produce ssDNA nicks near both sides of the DSB. While the 3’end is 226 

processed towards the DSB by the MRN complex, further long-range resection is ensured through 227 

the action of 5’ to 3’ exonucleases Exo1, DNA2 and the BLM helicase. ssDNA is further coated 228 

by the ssDNA binding protein RPA, which is often used as a proxy to measure resection in vivo. 229 

RPA exchange and RAD51 nucleofilament formation on ssDNA are subsequently required for 230 

homology search and HR completion110,111. 231 

 232 

Many reports suggest that R-loops act as roadblocks which modulate resection (Fig. 3a). Indeed, 233 

elevated R-loop levels caused by the depletion of several removal factors (HNRNPD29, DDX526, 234 

USP4228, RNase H1/224) coincides with decreased resection. Conversely, overexpression of RNase 235 
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H fosters resection24. Consistent with these findings, in vitro data showed that long RNA:DNA 236 

hybrids prevent the action of BLM and Exo1112. However, the impact of RNA:DNA hybrids on 237 

resection is proving to be more complex than first thought. Indeed, DSB-induced hybrids may, in 238 

contrast to the above observations, trigger non-canonical and extensive resection (Fig. 3a). First, 239 

the key resection factor CtIP is still recruited at DSBs in the presence of persistent R-loops, after 240 

depletion of EXOSC10/RRP6 or DDX132,33, and it is capable of R-loop removal in other 241 

contexts113. Second, a number of studies reported that accumulation of RNA:DNA hybrids, by 242 

SETX, DDX1, EXOSC10/RRP6 or XRN2 depletion, did not dramatically decrease resection in 243 

vivo, and even increased it in a number of cases21,22,31–33,114. Resection analysis using Single 244 

Molecule Analysis of Resection Tracks (SMART) revealed that EXOSC10 depletion, associated 245 

with increased R-loops, significantly increased the length of resection tracks at irradiation-induced 246 

DSBs32. Notably, in yeast, the absence of Sen1 (SETX homologue), which promotes R-loop 247 

persistence at DSBs, activates a non-canonical resection pathway at an HO-induced break, that 248 

involves Mre11, Sae2 (CtIP) and DNA2, but does not require Exo1 and Sgs1 (BLM homologue)31. 249 

Moreover, an XPG-dependent, non-canonical resection pathway might prevail at transcriptionally 250 

active loci that accumulate hybrids in human cells20, where this structure-specific flap 251 

endonuclease (reported to resolve R-loops outside  the DSB context108,115,116) would simultaneously 252 

promote hybrid resolution and resection20. In addition, DSB-induced large deletions are more 253 

frequent in cells depleted for SETX, further suggesting that resection can occur despite excessive 254 

accumulation of R-loops34. Interestingly, these large-scale deletions depend on XPF34, another flap 255 

endonuclease able to process R-loops115, supporting a broad involvement of flap endonucleases in 256 

non-canonical resection. Such a role for R-loops in promoting long-range non-canonical resection 257 

could also account for the extensive resection observed at breaks induced in ribosomal DNA, a 258 

locus naturally prone to R-loop formation117. It might also explain why the RNAse III 259 
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endoribonuclease Drosha which promotes R-loop formation in cis to DSB, potentiates resection22. 260 

Taken together, these studies suggest that persistence of R-loops around DSBs strongly affects 261 

DSB processing, which could activate a non-canonical resection pathway to form an unusually 262 

long resected strand (Fig. 3a). Such R-loop-driven large-scale resection may occur when canonical 263 

R-loop removal pathways are inefficient, as in a SETX deficient background, but could also take 264 

place at specific genomic locations that are more prone to form stable hybrids. However, several 265 

lines of evidence suggest that the extended ssDNA produced may not be competent for 266 

nucleofilament assembly and later steps in homologous recombination (HR) (see below).  267 

 268 

Regulation of RAD51 nucleofilament assembly and HR repair 269 

A few reports have suggested that R-loop formation is required for RAD51 focus assembly. Indeed, 270 

depletion of Drosha, involved in forming DSB-induced R-loops, or METTL3 , involved in 271 

stabilizing them, reduced RAD51 focus formation and HR22,30. Interestingly, R-loops may promote 272 

RAD51 nucleofilament assembly through a non-canonical mechanism that relies on CSB and 273 

RAD52, but not BRCA1 and BRCA2, as proposed for DNA damage induced by reactive oxygen 274 

species19. Such non-canonical RAD51 assembly also requires the TRDMT1-dependent m5C 275 

modification of DSB-induced R-loops92.  276 

In contrast, most studies highlight the need to remove R-loops, since persistent R-loops prevent 277 

RAD51 filament assembly and downstream HR21,24,26,28,32,33,60,114. For example, the R-loop removal 278 

factors SETX, EXOSC10, DDX5, and DDX1 are all required for correct RAD51 focus formation 279 

and ‘error-free’ HR repair21,26,32,33,60. Consequently, SETX depletion increases translocation 280 

frequency (i.e.: illegitimate rejoining of two independent DSBs) and strongly impairs cell survival 281 

following DSB production in active loci, which are prone to form DSB-induced R-loops21 (Fig. 282 

3b). 283 
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Overall, RNA:DNA hybrid accumulation and subsequent removal appear to be essential steps for 284 

resection, nucleofilament assembly and HR. Conflicting data about the role of DSB-induced 285 

hybrids likely arises from difficulties in experimentally recapitulating the dynamic and transient 286 

nature of DSB-induced hybrids. Indeed, tipping the balance towards their absence or stabilization 287 

may both result in detrimental outcomes. Another likely source of discrepancy is the variety of 288 

methods used to measure resection and HR. Among the most striking examples is the possibility 289 

that RNA:DNA hybrids actually form on ssDNA thereby precluding RPA binding. In this scenario, 290 

resection would be detected by quantitative biochemical assay but not by using RPA as a proxy of 291 

resection. This clearly highlights the need to use several methods for measuring resection, as well 292 

as for detecting nucleofilament assembly and HR. 293 

 294 

Roles of R-loops in alternative repair pathway usage 295 

As an additional layer of complexity, R-loops and in particular their RNA moiety, may also be 296 

substrates for alternative DSB repair pathways.  297 

RNA-templated repair 298 

Mounting evidence now supports the existence of RNA-templated DSB repair pathways, where cis 299 

mRNAs support repair of their own DNA by two distinct mechanisms. cDNA-templated DSB 300 

repair (also called c-TDR) uses a DNA copy of the transcript for repair; in yeast it relies on Ty 301 

reverse transcriptase activity118. The second mechanism, called R-TDR, directly uses the RNA 302 

transcript to mediate DNA synthesis by DNA polymerase  (Fig. 3c)118–120. In yeast and human, 303 

R-TDR is RAD51-independent and requires RAD52 for the cis-RNA to invade minimally resected 304 

dsDNA, thereby forming an RNA:DNA hybrid by inverse strand invasion66. Interestingly, 305 

RAD51/RecA can also mediate inverse strand exchange with a trans RNA72,74–76 raising the 306 
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possibility that RAD51 could also direct such RNA-templated repair. R-TDR is further stimulated 307 

by RPA66, which acts as an R-loop sensor when associated with transcribed genes, and whose 308 

presence at R-loops fosters DNA synthesis by human DNA polymerases in vitro78,81. Accordingly, 309 

R-TDR is mediated by the translesion DNA polymerase  that uses the cis mRNA hybrids as a 310 

template to initiate DNA synthesis at sites of DNA damage120. R-TDR has been detected in the 311 

absence of RNaseH, but it has been argued that R-TDR is used as a fall back mechanism for 312 

BRCA1-dependent HR66,118,120. R-TDR would be ideal for mediating repair in G0/G1 phase, in 313 

which canonical HR repair is strongly inhibited. Accordingly, an RNA-templated recombination 314 

necessitating CSB, RAD52 and hybrid formation was proposed to occur at transcriptionally active 315 

loci in G0/G1 cells83,121.  316 

 317 

A role in triggering Pol and Pol dependent synthesis? 318 

Landmark work from the de Lange lab indicated that the CST-Polcomplexis mobilized to 319 

counteract resection at DSBs, by initiating a fill-in reaction122. During replication, Pol normally 320 

initiates DNA synthesis using a small RNA primer, synthetized by the primase. Yet there are 321 

precedents for non-canonical replicative DNA synthesis using R-loops as a primer: origins of E. 322 

coli multicopy plasmids and the yeast rDNA locus are examples123,124. One could thus envisage the 323 

RNA moiety of DSB-induced R-loop priming Pol-dependent fill-in (Fig. 3c). 324 

Moreover, compelling evidence indicates that in the absence of Sen1 and RNaseh1/2 in yeast, DSB 325 

are repaired by a Pol32-dependent Break-Induced Replication (BIR) pathway125,126. In human cells, 326 

BIR (which involves POLD3/POLD4, Pol32 orthologs) has been reported to occur mainly on 327 

telomeric sequences in ALT (Alternative Lengthening of Telomeres) positive cells127,128. Indeed, 328 

BIR-ALT increases in conditions where R-loop removal is impaired129–132, and telomeric DSB 329 
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repair was recently shown to depend on an R-loop-mediated CSB-RAD52-POLD3 pathway27. 330 

Whether a similar pathway is followed at intra-chromosomal DSBs in the absence of R-loop 331 

removal needs further clarification, but our recent work suggests that a POLD3-dependent pathway 332 

may indeed be initiated at DSBs induced in active loci in absence of SETX (Fig.4)133.  333 

 334 

Outlook 335 

Recent work hence brought to light the unanticipated presence and function of RNA:DNA hybrids 336 

at DSBs. However, a large number of questions remain regarding their accumulation and their 337 

exact roles. 338 

For instance, the involvement of numerous R-loop removal factors raises several important 339 

questions that deserve future investigation: are these removal factors redundant or do they 340 

cooperate? do they deal with a homogenous or heterogeneous population of hybrids that current R-341 

loop mapping methods are unable to distinguish? Moreover, transcription termination pause sites 342 

prone to form R-loops have been recently reported to trigger the synthesis of a new class of RNA 343 

(DNA damage associated small RNAs, or sdRNAs) that are required for PALB2/Rad52 344 

recruitment and repair of single strand breaks arising at those genomic locations134. Can such 345 

sdRNAs also arise from DSB-induced R-loops and can they also contribute to DSB repair?. 346 

 347 

Another exciting future avenue of research is the function of R-loops in large-scale DSB 348 

movement. Indeed, use of alternative repair pathways has been associated with relocalization of 349 

DSBs to the nuclear periphery and nuclear pores, which act as docking sites for initiating error-350 

prone non-canonical repair pathways such as BIR and Microhomology-Mediated End joining 351 

(reviewed in135–137). Interestingly, many factors involved in mRNA export and associated with 352 

nuclear pores prevent R-loop formation outside the DSB context138,139. It is thus tempting to 353 
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speculate that localizing persistent DSBs to the nuclear pore/envelope would favor DSB-induced 354 

hybrid removal and repair. Future lines of investigation should also aim at understanding the 355 

implication of R-loops in DSB clustering, which also involves large-scale movements140–142. While 356 

the function of such clustering is as yet unknown, it mainly involves persistent DSBs induced in 357 

transcribed loci that accumulate RNA:DNA hybrids141. Moreover, DSB clustering relies on phase 358 

separation37,143–145, thanks to the liquid-liquid demixing properties of 53BP1 that can be fostered 359 

by RNA molecules37. Of interest, RNA molecules as well as the m6A RNA modification (present 360 

on DSB-induced hybrids) contribute to the assembly of many phase-separated bodies146–148. The 361 

E. coli SSB protein, the homologue of RPA which binds the displaced R-loop ssDNA strand81, also 362 

displays liquid-liquid phase separation properties149. Thus, whether R-loops promote phase 363 

separation clearly deserves to be investigated. Such process may be particularly relevant for 364 

neurological diseases-associated with aberrant R-loop formation and increased genomic instability, 365 

given that one of the main hallmarks of many neurodegenerative diseases is the accumulation of 366 

pathological protein aggregates, caused by aberrant phase separation behavior150. 367 

 368 

In conclusion, much remains to be understood regarding the functions of DSB-induced RNA:DNA 369 

hybrids during repair, including their mode of accumulation at DSB, their relationship to 370 

transcription, their role in non-canonical resection as well as their influence on the use of non-371 

canonical repair pathways. The apparent need of R-loops to recruit repair proteins underscores their 372 

potential beneficial roles in the repair process. However, these functions must be regulated to be 373 

compatible with the need for their ultimate removal to ensure safe repair and maintenance of 374 

genome integrity. This duality of function is not restricted to DSB-induced hybrids, and advances 375 

in the R-loop field will sooner or later reveal the true importance of DSB-induced hybrids during 376 

the repair process. 377 
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Figure Legends 391 

 392 

Figure 1: Current models for RNA:DNA hybrid accumulation in cis to DSB.  393 

(a) The “DSB as promoter” model postulates that DNA ends act as promoter, where the Pre 394 

Initiation Complex (PIC), the Mediator and the RNAPII are loaded. de novo synthetized RNA 395 

(dilncRNA) hybridizes back to the resected strand forming an RNA:DNA hybrid. dilncRNAs are 396 

further processed and give rise to DDRNAs, that amplify the DDR response. (b) The “transcription 397 

regulation” model posits that R-loops arise as a consequence of local transcription inhibition 398 

elicited in cis to DSBs. The DSB induces changes in the transcription cycle of near-by genes, which 399 

entails decreased elongation rate on genes bodies, increased promoter-proximal pausing and 400 

premature termination. R-loops form as a consequence of these changes, as shown in other 401 

contexts. These R-loops that accumulate in cis to DSB further act themselves as promoters, 402 

triggering bidirectional de novo transcription not initiated from the DNA ends themselves.  (c) R-403 

loop accumulation could also occur following the hybridization of prior pre-mRNA with the 404 

resected strand, from RNAPII backtracking when it encounters a DSB on the gene body, or from 405 

an RNA produced in trans (from a remote locus) that invades the dsDNA. In these conditions, as 406 

in (b), R-loops  then act as promoters leading to de novo transcription  in the vicinity of DSBs.  407 

 408 

Figure 2: A function of R-loops in local transcriptional repression 409 

R-loops were shown in other contexts to display the potential to repress transcription by triggering 410 

repressive histone modifications. R-loops can foster H3K9me2 by G9a and promote termination. 411 

R-loops also trigger the PRC1 Polycomb complex recruitment, leading to H3K27me3. R-loops 412 

induced at DSB could therefore contribute to terminate transcription locally around DSBs.  413 

 414 
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Figure 3: Function of R-loops in the successive repair steps 415 

 (a) R-loops regulate resection. When R-loops removal pathways are inefficient, R-loops block the 416 

ability of exonuclease to act on the dsDNA. However, in such case, the XPF/XPG endonucleases 417 

and potentially CtIP may excise the hybrids, as shown in other context, hence leading to extended 418 

resection. (b) R-loops regulate Rad51 filament assembly. The presence of a RNA strand hybridized 419 

to the resected strand inhibits Rad51 loading, and shall be removed to ensure HR repair. Defective 420 

removal triggers alternative, error prone repair. (c) R-loops can also initiate alternative repair 421 

pathways. Top panel: RNA can act as a template for polDNA synthesis. Middle panel: RNA can 422 

prime Pol DNA synthesis for fill in.  Bottom panel: A persistent R-loop can transform a two 423 

ended DSB into a one-ended DSB, further repaired by a Pol dependent pathway, such as Break 424 

Induced Replication (BIR). 425 

 426 
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