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Abstract In this paper, analytical and numerical studies of species separation in vertical and horizontal porous,

cylindrical annular cells were presented. The binary fluid, saturating the porous medium, is a water-ethanol

mixture. The thickness e, of the horizontal and vertical columns is equal to Ro − Ri, where Ri and Ro are

respectively the internal and the external radii. H is the height of the vertical cell, and the length of the horizontal

cell. Constant temperatures, Thot and Tcold, were imposed on the inner and outer cylinders. Since an important

species separation, in thermo-gravitational column (TGC), is obtained for e << H, the same assumption was

made for the two configurations. The analytical solution was obtained using the parallel flow approximation

for both configurations. The governing equations were solved numerically for 2D and 3D configurations using

two different softwares (Comsol Multiphysics and a spectral collocation method with Gauss-Lobatto-Chebyshev

points). Velocity, temperature, mass fraction fields and time to reach steady state were compared for the two

configurations. The amount of species separated at the top or the bottom of each cell was also compared for each

configuration.
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1 Introduction

If a temperature gradient is applied to a binary or

multi-component mixture, a mass fraction gradient ap-

pears for each species. Thus the expression of the mass

flux density vector J′
m is given by Fick’s law with an-

ae-mail: mojtabi@imft.fr

other term proportional to the temperature gradient

namely Soret contribution:

J′
m = −ρ′D∗∇C − ρ′DT

∗∇T ′ (1)

Where ρ′, D∗ are respectively the density of the binary

fluid, the mass diffusion coefficient of the denser com-

ponent and DT
∗ its thermodiffusion coefficient in the

porous medium. C and T ′ are respectively the mass

fraction of the denser component and the temperature.

The species separation due to thermodiffusion or Soret

effect are very weak. So if we consider the coupling

between thermodiffusion and natural convection called

thermo-gravitational diffusion, the species separation

may increase. Thermo-gravitational diffusion has been

widely studied due to its numerous fundamental and

industrial applications. A summary of these applica-

tions were detailed by Nield and Bejan [1], Vafai [2]

and Legros et al. [3]. The Soret effect in liquid mix-

tures has been reviewed by Khöhler et al. [4]. The first

thermogravitational columns (TGC) were filled with bi-
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nary fluids. Furry, Jones and Onsager, developed the

theory of thermodiffusion to interpret the experimental

processes of isotope separation [5]. In their study the

authors assumed that the density of the binary fluid

depends only on the temperature and not on the mass

fraction, in gravity forces, this was commonly called the

forgotten effect. In 1959, Lorenz and Emery [6] consid-

ered vertical columns (TGC) filled with porous pack-

ing saturated by a binary fluid in order to increase the

thickness of the cell leading to maximum species separa-

tion. Research on species separation in vertical thermo-

gravitational columns (TGC) has been performed for

a long time. In 2003, Platten et al. [7] studied experi-

mentally the effect of the tilt, relative to the horizontal

direction, of a rectangular cell heated only from be-

low. Then several papers were devoted to the horizon-

tal porous configuration saturated by a binary fluid,

in order to improve the species separation. Charrier-

Mojtabi et al. [8] showed that it was possible to obtain

the species separation in a horizontal cell heated from

below. The authors studied the influence of the sep-

aration ratio, ψ = −βC

βT

DT
∗

D∗ C0(1 − C0), (βT , βC and

C0 are defined in §2) and the normalized porosity on

the stability of the equilibrium solution, theoretically

and numerically. Seta et al. [9] studied instabilities in

DCMIX1 ternary mixtures when two liquid layers with

different concentrations are superimposed. El Hajjar et

al. [10] studied the species separation in a porous hor-

izontal cell for negative or positive values of the sepa-

ration ratio leading to the onset of a unicellular flow.

El Hajjar et al. [11] considered a shallow porous cavity

filled with a binary fluid. The cavity was heated from

below or from above and was inclined with respect to

the vertical axis. The authors showed analytically and

numerically that the species separation can be increased

for an optimal value of the tilt angle of the cavity. Fur-

ther studies have been carried out for porous horizontal

layers saturated by a binary fluid with various boundary

conditions. Khouzam et al. [12] used mixed convection

in order to study the species separation in a horizontal

porous cell. Yacine et al. [13] considered the case of a

porous cavity that was subjected to cross heat fluxes.

Yasnou et al.[14] studied experimentally the thermod-

iffusion dynamics in a compound system when a layer

of a porous medium is surrounded by free liquids. Mo-

jtabi et al. [15] studied a new configuration of the hor-

izontal porous layer by moving the cavity walls at a

constant and opposite velocity. Abahri et al. [16] ana-

lyzed, for the first time, the species separation in a hori-

zontal porous annulus. An analytical resolution using a

perturbation method till order two and function of the

Rayleigh number was presented. The analytical results

were corroborated by numerical results obtained with a

finite element method (Comsol Mutiphysics). Thermo-

gravitational separation and time to reach the steady

state have been studied recently by Seta et al. [17].

Nasrabadi et al. studied, experimentally, the influence

of permeability on species separation and time to reach

steady state in a thermogravitational column filled with

a porous medium [18]. First, there has never been before

a comparative study dealing with the species separation

in a horizontal and in a vertical porous annular column.

In the case of the horizontal column, article [16], only an

approximate analytical solution using the perturbation

method, developed at order two, was obtained. We per-

formed in the present paper 3D numerical simulations

which verified the validity of the 2D results presented in

the article [19]. We also checked that the results of the

3D numerical simulations were in good agreement with

those of the 2D numerical simulations. The authors ex-

amine, analytically and numerically, the species separa-

tion in horizontal and vertical porous cylindrical annu-

lar cells saturated by a binary water-ethanol mixture.

The species separations at steady state were compared

as well as the time needed to reach this steady state.

2 Mathematical formulation

The vertical and horizontal porous cylindrical annular

cells are presented in fig.1. The binary fluid saturating

the porous medium is a water-ethanol mixture (60.88%

water). The thickness of the horizontal and the vertical

column is: e = Ro − Ri, where Ri and Ro are the in-

ternal and the external radii respectively. H = πRi is

the height of the vertical column, and the length of the
horizontal cell. Constant temperatures, Thot and Tcold
were imposed on the inner and outer cylinders. The

fluid flow within the porous medium is assumed to be

incompressible and governed by Darcy’s law. It is also

assumed that viscous dissipation and Dufour effect are

neglected since their influence is very weak in the con-

sidered liquid mixtures. Also, the Boussinesq approxi-

mation is considered for binary fluid properties which

are considered as constant except the density of the

fluid in the buoyancy contribution which varies linearly

with both local temperature and local mass fraction:

ρ′ = ρ0(1− βT (T
′ − T0)− βC(C − C0)) (2)

where, ρ0, βT , βC are respectively the density of the bi-

nary fluid at the reference state T0 and C0, the thermal

and solutal expansion coefficients. Under these assump-

tions, the continuity equation, the Darcy’s law, and the

conservation equations of energy and chemical species

are written in dimensional form as follows:
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∇ ·V′ = 0

V′ = −K
µ
(∇P′ − ρ0[1− βT (T

′ − T0)− βC(C − C0)]g)

(ρc)∗
∂T ′

∂t′
+ (ρc)fV

′ · ∇T ′ = λ∗∇2T ′

ϵ∗
∂C

∂t′
+V′ · ∇C = D∗∇2C +DT

∗C0(1− C0)∇2T ′

(3)

V′ and P′ are respectively the velocity of the flow and

the pressure. In these equations λ∗, (ρc)∗ are respec-

tively the effective thermal conductivity and the effec-

tive volumetric heat capacity of the porous medium-

mixture system and (ρc)f is the volumetric heat ca-

pacity of the mixture. ϵ∗ is the porosity of the porous

medium.

If Ω′ represents the union of surfaces S′
i and S

′
o which

are respectively the inner and the outer surfaces of the

cylinders, the boundary conditions associated with sys-

tem (3) are system (4).

V′(M ∈ Ω′) · n = 0

T ′(M ∈ S′
i) = Thot

T ′(M ∈ S′
o) = Tcold

For(M ∈ S′
i ∪ S′

o); (D
∗∇C +DT

∗C0(1− C0)∇T ′) · n = 0

(4)

The base surfaces are insulated and impermeable in

each configuration:

∇C · n = 0;∇T ′ · n = 0 (5)

The height H = πRi was chosen so that the length of

the streamlines would be almost equal in the two con-

figurations. The length of the horizontal cell is chosen

equal to H, in order to compare the results obtained

for the two configurations.

In order to simplify parametric representation of the

physical problem, a dimensionless formulation of sys-

tem (3) is considered. The reference scales are Ri for

the length, λ∗/(Ri(ρc)f ) for the velocity, ((ρc)∗R2
i )/λ

∗

for time, (λ∗µ)/(K(ρc)f ) for the pression and δT for

the temperature. The dimensionless mathematical for-

mulation of the problem is given by :

∇ ·V = 0

V +∇P = −(RaTT +RS(C − C0))ez
∂T

∂t
+V · ∇T = ∇2T

ϵ
∂C

∂t
+V · ∇C =

1

Le
(∇2C +ARaT∇2T )

(6)

The problem under consideration depends on five non-

dimensional parameters: the thermal Rayleigh number

Fig. 1 Annular vertical and horizontal porous cells

RaT = KgβTRiδT
αν , the equivalent solutal Rayleigh num-

ber RS = KβCgRi

αν , the Lewis number Le = α/D∗, the

modified porosity ϵ = ϵ∗(ρc)f/(ρc)
∗, and a new param-

eter A =
D∗

TC0(1−C0)αν
D∗KβT gRi

not dependent on δT .

Ω represents the union of surfaces Si where r = 1 and

So where r = R, with R = Ro/Ri which are respec-

tively the inner and the outer surfaces.

V(M ∈ Ω) · n = 0

T (M ∈ Si) = 1

T (M ∈ So) = 0

For(M ∈ Si ∪ So); (∇C +ARaT∇T ) · n = 0

(7)

The dimensionless boundary conditions at base surfaces

would be as following:

∇C · n = 0;∇T · n = 0 (8)

3 Analytical resolution

3.1 Vertical porous cell

For the vertical porous cylindrical cell, the following ap-

proximations were taken into account in order to sim-

plify the resolution:
T = f(r)

V = V (r)ez
C = mz + h(r)

(9)

When we take into consideration the boundary condi-

tions (7, 8) for the resolution of the set of equations (6),

the temperature is written as:

T = 1− ln(r)

ln(R)
(10)

In our case e << Ri and the flow is axisymmetric with

respect to ez which allow us to assume that the vertical
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annular cell can be considered as a cell between two

vertical planes heated differentially. Thus the velocity

expression of V (r) noted V2(r) can be written as:

V2 =
RaT (R ln(R)− (ln(r) + 1)(R− 1))

(R− 1) ln(R)
(11)

and the associated mass fraction is noted

C2 = m2z + h2(r) (12)

where the expressions of m2 and h2(r) are given in Ap-

pendix A). If the curvature effect is taken into account

for the annular cylindrical column, we obtain for the

velocity V (r) an expression different from V2(r) noted

V3(r) given by:

V3 =
RaT (2R

2 ln(R)− 2 ln(r)R2 −R2 + 2 ln(r) + 1)

2(R2 − 1) ln(R)
(13)

Fig.2 shows a good accuracy between velocities V2(r)

and V3(r) although their expressions are different.

We also consider that, for the cylindrical cell, the con-

tinuous sum of the mass fraction is conserved in the

cylindrical cell and the total mass flux through any an-

nular horizontal surface is equal to zero which lead us

to the expression of mass fraction C3:

C3 = m3z + h3(r) (14)

where the expressions for m3 and h3(r) are given in

Appendix A.

Fig. 2 Comparison between V2 (blue line) and V3 (black
dots) as a function of r for R = 1.06.

On fig.3 are presented, for r = Ri the evolution of the

mass fraction according to z obtained for C2 and C3.

This evolution as a function of z is linear for all values

of r with r ∈ [Ri, Ro]. The results obtained with these

two approaches are in good agreement.

Fig. 3 Comparison between C2 (blue line) and C3 (black
dots) as a function of z for Ri = 0.1 m.

3.2 Horizontal porous cell

In this paragraph, the main analytical results published

in the article by Mojtabi et al. [19] are reported in or-

der to compare the importance of species separation in

both horizontal and vertical TGC. Natural convection

flow between two isothermal cylinders, maintained at

constant and different temperatures Thot on the inner

cylinder and Tcold on the outer cylinder was character-

ized by a symmetrical flow with respect to the vertical

plane containing the axis of the two cylinders. This flow

is also invariant in any vertical plane orthogonal to the

horizontal axis of the two cylinders. The binary fluid

rises along the hot inner cylinder and descends along

the cold outer cylinder. This convective regime is all

the more stable as (Ro–Ri) and (Thot−Tcold) are small,

Cf.[[20]]. The thermal field obtained in horizontal con-

figuration is purely conductive. It is therefore identical

to the one obtained in a vertical configuration, i.e.:

T = 1− ln(r)

ln(R)
(15)

The analytical solution of this problem has been carried

out in terms of the stream function, ϕ:

ϕ = RaT sin(θ)F (r) (16)

where F (r) is:

F (r) =
R2(r2 − 1) ln(R)− r2(R2 − 1) ln(r)

2r(R2 − 1) ln(R)
(17)

Only the species balance equation has been solved nu-

merically from a partial differential equation with the

mass fraction, C, as the only unknown:

(
∂(r ∂C∂r )

∂r
+

1

r

∂2C

∂θ2
) = Le(

∂ϕ

∂r

∂C

∂θ
− ∂ϕ

∂θ

∂C

∂r
) (18)
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4 Results and discussion

For a binary fluid with a positive thermodiffusion coef-

ficient, DT > 0, the lightest component migrates to the

top of the annular duct and the heaviest to the bottom

of the cell (As seen in Fig. 8 below): the steady state

is stable. However, for negative DT , it is the opposite

situation: the steady state may be instable. This situa-

tion for DT < 0, has not been the subject of a stability

analysis.

4.1 Comparison between analytical and numerical

results

To illustrate the analytical and 2D and 3D numerical

results obtained in this study, the authors only con-

sidered the experimental values of the thermophysics

parametersthe water-ethanol solution (60.88% water -

39.12% ethanol) studied by Platten et al. [7]. The val-

ues of the thermophysical properties of this binary so-

lution for an average temperature T = 22.5◦C are de-

tailed in Table.1. Table.2 shows the values of the coeffi-

Table 1 Properties of a water (60.88 wt%) - ethanol (39.12
wt%) mixture at a mean temperature of 22.5◦C.

D[m2s−1] DT [m2(sK)−1] βC βT [K−1]

4.32× 10−10 1.37× 10−12 −0.212 7.86× 10−4

α[m2s−1] ρ0[kg m−3] ν[m2s−1]

2.23× 10−7 935.17 2.716× 10−6

cients of thermodiffusion, D∗
T and mass diffusion, D∗ of

the water-ethanol binary solution saturating the porous

medium are detailed in Table 2. The two values of the

permeability K1 and K2 of the porous medium and its

porosity ϵ∗ are also reported.

Table 2 Properties of the porous medium at a mean tem-
perature of 22.5◦C.

D∗[m2s−1] DT
∗[m2(sK)−1] ϵ∗ K1[m2] K2[m2]

1.878× 10−10 5.96× 10−13 0.47 6.58× 10−10 2.5× 10−11

The values of dimensionless numbers: thermal Rayleigh

number RaT , radius ratio R, Lewis number Le, solutal

Rayleigh number RS and A used in this study, for a

temperature difference of 10◦C, are detailed in Table 3.

For both configurations, temperature T is the same

function of r. Fig.4 shows the good agreement between

the numerical (points) and analytical (solid line) re-

sults. The hypothesis leading to V = V (r)ez is per-

Table 3 Dimensionless parameters for δT = 10◦C, for K2 =
2.5× 10−11 m2.

R RaT RS A Le

1.06 0.3182 -8.5844 0.0237 1187.4
1.03 0.6365 -17.169 0.0118 1187.4

Fig. 4 Numerical (dots) and analytical (continuous line) di-
mensional temperature T as a function of r.

fectly verified in almost all of the central part of the

vertical column as indicated in fig.5.

Fig. 5 Numerical(dots) and analytical (line) values of di-
mensional velocity V in vertical cell as a function of r for
z = H/2.

However, for the horizontal cells, both radial and angu-

lar velocities are not equal to zero. The analytical re-

sults obtained for low values of R and moderate values
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of RaT show thatVr ≪ Vθ. The tangential velocityVθ

given in fig.6 reaches the maximum at θ = π/2, when

Vr is equal to 0. Near the values, θ = 0, π, Vr tends to

its maximum.

Fig. 6 Numerical(dots) and analytical (line) values of di-
mensional angular velocity Vθ in horizontal cell as a function
of r for θ = π/2.

4.2 Species separation and time to reach the steady

state

The system of equations (3) with the boundary con-

ditions (4) and (5), was solved numerically using two

different softwares: Comsol Multiphysics with finite el-

ements in 2D and 3D (fig.8) and code written on MAT-

LAB based on a method of spectral collocation, using

Gauss Lobatto Chebyshev points. The flow in the ver-

tical porous cell has a vertical symmetry axis ez. The

flow in the horizontal porous annular cell is invariant

under translation in any vertical plane perpendicular

to the axis of the cell. The study was conducted with a

porosity, ϵ∗ and two permeabilities, K1 and K2. The bi-

nary fluid is a water (60.88 wt%)- ethanol (39.12 wt%)

solution studied by Platten et al. [7]. The values of the

thermophysical properties of this binary solution are

mentionned in Table 1 and Table 2. The imposed tem-

perature difference δT and the permeability K in both

vertical and horizontal cells were investigated. The an-

alytical result of mass fraction at steady state is found

numerically, fig.7, without resorting to the simplifying

assumptions used in paragraph 3.1.

Species separation S is defined by: S = Cmax–Cmin.

In all the calculations, the thickness is supposed to be

Fig. 7 Numerical (dots) and analytical values of mass frac-
tion in vertical cell as a function of z for r = (Ri + Ro)/2,
K2 = 2.5× 10−11 m2 and δT = 10◦C.

constant: e = 6 × 10−3 m. The respective influence on

the species separation, of the internal radius Ri, of the

imposed temperature difference δT and of the perme-

ability K in both vertical and horizontal cells, was pre-

sented in Table 4, 5, 6 and 7 where comparison between

the two methods results are detailed in Table 4 and Ta-

ble 5. It appears from these various results that the

separation S = Cmax–Cmin:

1°) increases as the value of Ri increases

2°) increases as δT increases

3°) decreases as K increases

As already mentioned, the species separations in hori-

zontal cells are always slightly greater than in vertical
cells (for fixed values of Ri and δT ).When K increases,

the convective velocity increases and becomes higher

than the velocity leading to the optimal separation.

However the time to reach the steady state when K

decreases, increases.Therefore a good compromise must

be found between permeability and time to reach steady

state. Furthermore, the influence of the value of the

inner cylinder is slightly greater than the influence of

the temperature difference, Table 5 and 7. On fig.9 and

fig.10, we present the variations of Cmax and Cmin as

a function of time in order to study the time to reach

the steady state. The study shows that the steady state

was reached for a time of about 6× 104 s for the verti-

cal annular cell and about 12× 104 s for the horizontal

porous annular layer. Moreover the steady state was

reached in the lower part of the horizontal annular cell

two times more quickly than in the upper part (fig.10).

However, the steady state is reached simultaneously at

the top and at the bottom of the vertical annular cell

(fig.9). These results obtained numerically only, fig.9
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and fig.10, led us to look for the physical reason why

the steady state in the vertical configuration is reached

faster than in the horizontal configuration. It emerges

from the analysis of figures (5) and (6) that the velocity

V of the fluid along the vertical axis ez is of the same

order of magnitude as the tangential velocity Vθ calcu-

lated for θ = π/2 where it is maximum. As the time

to reach the stationary state depends on the number of

cycles performed by the fluid particles, we can deduce

that the stationary state will be reached first in the ver-

tical column. Fig.9 shows the presence of a maximum

and a minimum, in the vertical annular column, just

before the stationary state is reached. This result has

also been measured experimentally by Seta et al.[15] in

a parallelepipedic vertical column. Indeed, the process

of thermogravitational separation continues and stops

as soon as the reverse process of pure mass diffusion

balances the thermogravitational contribution to lead

to the stationary state.

Fig. 8 Annular vertical and horizontal mass fraction fields
in 3D porous cylindrical cells for K2 = 2.5 × 10−11 m2 and
R = 1.06.

Table 4 Comparison of maximum and minimum mass frac-
tions values in vertical annular cell between spectral method
and Comsol Multiphysics for Ri = 0.05 m, 0.1 m, 0.2 m, 0.3
m for fixed δT = 10◦C and for K2 = 2.5× 10−11 m2.

Ri Comsol Spectral method

Cmax Cmin Cmax Cmin

0.05 0.6475 0.5719 0.646 0.572
0.1 0.6804 0.5372 0.680 0.537
0.2 0.7498 0.4678 0.750 0.468
0.3 0.8191 0.3985 0.819 0.398

Table 5 Comparison of maximum and minimum mass frac-
tions values in horizontal annular cell between spectral
method and Comsol Multiphysics for Ri = 0.05 m, 0.1 m,
0.2 m, 0.3 m for fixed δT = 10◦C and for K2 = 2.5× 10−11

m2.

Ri Comsol Spectral method

Cmax Cmin Cmax Cmin

0.05 0.6508 0.5652 0.651 0.565
0.1 0.6871 0.5273 0.687 0.527
0.2 0.7595 0.4517 0.759 0.452
0.3 0.8320 0.3762 0.832 0.376

Table 6 Maximum and minimum mass fractions in vertical
and horizontal annular cells for Ri = 0.1 m, 0.2 m, and 0.3
m for fixed δT = 10◦C and for K1 = 6.58× 10−10 m2.

Ri Vertical cell Horizontal cell

Cmax Cmin Cmax Cmin

0.1 0.6133 0.6043 0.6236 0.5982
0.2 0.6165 0.6010 0.6338 0.5898
0.3 0.6200 0.5980 0.6444 0.5813

Table 7 Maximum and minimum mass fractions in vertical
and horizontal annular cells for δT = 10, 15, 20, 25◦C for Ri =
0.1 m, K2 = 2.5× 10−11 m2.

δT Vertical cell Horizontal cell

Cmax Cmin Cmax Cmin

10 0.6804 0.5372 0.6871 0.5273
15 0.6900 0.5276 0.7134 0.5009
20 0.6945 0.5231 07328 0.4822
25 0.6971 0.5205 0.7483 0.4680

4.3 Verification of the hypothesis

C(1− C) = C0(1− C0)

In order to verify the validity of the hypothesis intro-

duced in the mathematical formulation of the prob-

lem, direct numerical simulations were performed when

C(1−C) ̸= C0(1−C0). Table 8 and Table 9 show that

the hypothesis can no longer be adopted for Ri > 0.3m

because the difference between mass fraction values, for

C(1−C) ̸= C0(1−C0), would be relatively important.
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Fig. 9 Variation of Cmax (in red) and Cmin (in blue) as
a function of time in vertical annular cell for: Ri = 0.1 m
e = 6× 10−3 m and δT = 10◦C for K1 = 6.58× 10−10 m2.

Fig. 10 Variation of Cmax (in red) and Cmin (in blue) as
a function of time in horizontal annular cell for: Ri = 0.1 m
e = 6× 10−3 m and δT = 10◦C for K1 = 6.58× 10−10 m2.

For this reason, all the cases studies were limited to

configurations where Ri ≤ 0.3 m.

Table 8 Comparison of maximum and minimum mass frac-
tions values in vertical annular cell between considering or
not the hypothesis C(1− C) = C0(1− C0) for Ri = 0.05 m,
0.1 m, 0.2 m, 0.3 m and 0.4 m for fixed δT = 10◦C and for
K2 = 2.5× 10−11 m2.

Ri C(1− C) ̸= C0(1− C0) C(1− C) = C0(1− C0)

Cmax Cmin Cmax Cmin

0.05 0.6451 0.5713 0.6457 0.5719
0.1 0.6782 0.5359 0.6804 0.5372
0.2 0.7401 0.4654 0.7498 0.4678
0.3 0.7948 0.3977 0.8191 0.3985
0.4 0.8413 0.3349 0.8886 0.3290

Table 9 Comparison of maximum and minimum mass frac-
tions values in horizontal annular cell between considering or
not the hypothesis C(1− C) = C0(1− C0) for Ri = 0.05 m,
0.1 m, 0.2 m, 0.3 m and 0.4 m for fixed δT = 10◦C and for
K2 = 2.5× 10−11 m2.

Ri C(1− C) ̸= C0(1− C0) C(1− C) = C0(1− C0)

Cmax Cmin Cmax Cmin

0.05 0.6505 0.5649 0.6508 0.5652
0.1 0.6854 0.5267 0.6871 0.5273
0.2 0.7488 0.4497 0.7595 0.4517
0.3 0.8005 0.3713 0.8320 0.3762
0.4 0.8387 0.2921 0.9044 0.3006

4.4 Mass fraction fields and streamlines in the two

configurations

In fig.11 and fig.12, the steady state mass fraction field

and the streamlines in the horizontal annular cell and

in the vertical annular cell are presented. It can be ob-

served for the horizontal configuration that the velocity

field is almost tangential except near the azimuth angles

θ = 0 or π. For the vertical configuration the velocity

field is almost vertical except near the two extremities

of the cell.

Fig. 11 Iso-C and streamlines in an annular horizontal
cell*Ri = 0.2 m, e = 6 × 10−3 m and δT = 10◦C and
K2 = 2.5× 10−11 m2.
*the scales are not respected in order to clearly visualize the
mass fraction field and the streamlines.
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Fig. 12 Iso-C and streamlines in an annular vertical
cell*Ri = 0.2 m, e = 6 × 10−3 m and δT = 10◦C and
K2 = 2.5× 10−11 m2.
*the scales are not respected in order to clearly visualize the
mass fraction field and the streamlines.

4.5 Amount of species separated at the bottom and

the top of the two cells

The two previously mentioned configurations (fig.11 and

12) were considered. The difference between these two

configurations is mainly due to the amount of species

separated at the top or the bottom of the cells.The

useful volume in the vertical cell where the denser com-

ponent with C > 0.7 can be collected is obtained by:

V ol1 = e(0.1075)π(Ri + Ro) = 8.2 × 10−4 m3 (cf.

Fig.13).

In the horizontal annular cell, the volume where the

denser component with C > 0.7 can be collected is ap-

proximately: V ol2 = (π
(R2

o−R2
i )

4 πRi) = 12 × 10−4 m3

(cf. Fig.14).

The amount of species separated at the bottom or top

of the cells is about one and a half times bigger for the

horizontal annular cell than for the vertical annular cell.

Fig. 13 Calculation of V ol1.

Fig. 14 Calculation of V ol2

5 Conclusion

This paper focuses on the species separation in a verti-

cal and in a horizontal porous cylindrical annular cell.

The cells are filled with a porous medium saturated

by a water-ethanol mixture (60.88% water). The thick-

ness of the two cells is e = Ro − Ri ≪ Ri where Ri

and Ro are respectively the inner and outer radius of

the cylinder. For the vertical thermogravitational col-

umn, we succeeded in finding the analytical solution

of the thermal, velocity and mass fraction fields. Two

alternative solutions were obtained in the case where

e ≪ Ri. The first one (V2) corresponds to the case

where the annular geometry approaches the parallelipi-

pedic thermogravitational column while the second one

(V3) takes into account the curvature of the annular ge-

ometry. A good agreement was observed between these

two solutions. The governing equations and the associ-

ated boundary conditions were solved numerically us-

ing a finite element method with Comsol Multiphysics

sofware. For Ri = 0.005, 0.1, 0.2 and 0.3 m, e = 0.006

m, δT = 10◦C, K2 = 2.5 × 10−11 m2, the results were

compared with those obtained by a spectral collocation
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method with Gauss-Lobatto-Chebyshev points. The re-

sults obtained by these two methods were in good agree-

ment. The influence of Ri and δT on the species separa-

tion were investigated as well as the permeability of the

porous medium. For two cylindrical annular columns of

the similar geometric dimensions, the amount of species

separated from the same binary mixture is 1.5 higher

in the horizontal column than in the vertical column.

On the other hand the time necessary to reach the sta-

tionary state in the vertical column is almost twice as

short as the one necessary to reach the stationary state

in the horizontal column.
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Mojtabi, Separation in an inclined porous thermogravita-
tional cell, Int. J. of Heat and Mass transfer, 53,I.21-22,
4844-4851 (2010).

12. A. Khouzam, A. Mojtabi, M.C. Charrier-Mojtabi, B.
Ouattara, Species separation of a binary mixture in the
presence of mixed convection, Int. J. Therm. Sci. 73, 18-
27 (2013).

13. L. Yacine, A. Mojtabi, R. Bennacer, A. Khouzam, Soret-
driven convection and separation of binary mixtures in a
horizontal porous cavity submitted to cross heat fluxes,
Int. J. Therm. Sci. 104, 29–38 (2016).

14. V. Yasnou, A. Mialdun, D. Melnikov, V. Shevtsova, Role
of a layer of porous medium in the thermodiffusion dy-
namics of a liquid mixture, Int. J. of Heat and Mass trans-
fer, 143, 118480 (2019).

15. A. Mojtabi, A. Khouzam, Y. Loujaine, M.C. Charrier-
Mojtabi, Analytical and numerical study of Soret mixed
convection in two sided lid-driven horizontal cavity: Opti-
mal species separation, Int. J. of Heat and Mass transfer,
139, 1037-1046 (2019).

16. O. Abahri, D. Sadaoui, K. Mansouri, A. Mojtabi,
M.C. Charrier-Mojtabi, Thermogravitational separation
in horizontal annular porous cell. Mech Ind, 18(106)
(2017).

17. B. Seta, E. Lapeira, D. Dubert, F. Gavalda, M.M. Bou-
Ali, X. Ruiz, Separation under thermogravitational ef-
fects in binary mixtures, Eur. Phys. J. E, 42(58) (2019).

18. H. Nasrabadi, H. Hoteit, A. Firoozabadi, An analysis of
species separation in a thermogravitational column filled
with a porous medium, Transp Porous Med, 67, 473–486
(2007).

19. A. Mojtabi, K. Sioud, A. Bergeon, M.C. Charrier-
Mojtabi, Numerical and Analytical Studies of Soret-
Driven Convection Flow Inside an Annular Horizontal
Porous Cavity, Fluids, 6, 357 (2021).

20. A. Mojtabi and J.P. Caltagirone, Energy stability of a
natural convective flow in a horizontal annular space,
Physics of Fluids, 67(6), (1979).

Appendix A: Expression of m2, h2(r), m3 and

h3(r)

m2 = −108Le(R− 1)A(−ln(R)2R+ (R− 1)2)R2
aT

/(54R2ln(R)3Le2R2
aT − (9(−12 + (Le2R2

aT − 12)R2

+ (3Le2R2
aT + 24)R))(R− 1)ln(R)2 + 3Le2RR2

aT

(R−17)(R−1)2ln(R)+R2
aTLe

2(R2+R+28)(R−1)3)

h2(r) = C0 +
1

36(R−1)2ln(R) (18Leln(R)
2R2RaTm2

−(36(R−1))((1/2)Le ln(r)RRaTm2+R((1/12)LeRm2

+ Le(−(1/4)r2 + 5/6)m2 +A)RaT + (1/2)Hm2

(R− 1))ln(R) + (36((Le(1/4− (1/4)r2)m2 +A)ln(r)

− (1/36)R2m2Le− (1/36)LeRm+ 2m2Le(1/9) +A))

(R− 1)2RaT )

m3 = −(16ALeR2
aT (R

6 − 4 ln(R)2R4 + 4 ln(R)2R2

− 3R4 + 3R2 − 1))/(32R4 ln(R)3Le2R2
aT + 64(R− 1)3

(R+ 1)3 ln(R)2 − 12Le2R2R2
aT (R− 1)2(R+ 1)2 ln(R)

+ Le2R2
aT (R

2 + 1)(R− 1)3(R+ 1)3)

h3(r) = C0 +
1

32(R2−1)2 ln(R) (16Le ln(R)
2R4RaTm3

− 32( ln(r)R
2m3LeRaT

2 + (Le( 38 − r2

4 )m3 +A)R2RaT

+ Hm3(R−1)(R+1)
2 )(R− 1)(R+ 1) ln(R) + 32((−Lem3r

2

4

+A) ln(r)− 3R2m3Le
32 + Le( r

2

8 − 3
32 )m3 +

A
2 )RaT

(R− 1)2(R+ 1)2)


