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Abstract 

 

Using the TYDL causality test, this paper attempts (i) to investigate the 

existence of shift contagion among a large spectrum of financial markets 

during recent stress and stress-free periods and (ii) to propose a new approach 

of portfolio management based on the minimization of the causal intensity. 

During the COVID-19 crisis period, the shift contagion analysis not only 

reveal a tripling of the causal links between the markets studied, but also a 

change in the causal structure. Beyond the initial impact of the COVID-19 

crisis on financial markets, policy interventions seem to have helped in 

reassuring market participants that the further spread of financial stress would 

be mitigated. However, the Russian-Ukrainian conflict, and the high degree of 

uncertainty it entailed, has again exacerbated the interdependencies between 

financial markets. In terms of portfolio analysis, our minimum-causal-

intensity approach records a lower (respectively higher) reward-to-volatility 

ratio than the Markowitz (1952 & 1959) minimum-variance traditional 

approach during the pre-COVID-19 (respectively pre-war) period. On the 

other hand, both approaches, the one we propose in this paper and the 

minimum-variance approach, record negative reward-to-volatility ratios 

during crisis periods. 
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1. Introduction 

Since the 1980s, many factors, such as financial deregulation, the development of new 

information technologies, as well as financial innovations, have further increased the 

interdependence among financial markets (Gamba-Santamaria et al., 2019), which implies 

greater interactions and interdependencies between the different segments of the financial 

markets. Obviously, more integrated financial markets provide investors with a wider range of 

investment opportunities, enhance the possibility of risk sharing and thus lead to more efficient 

portfolio management. Nevertheless, a high level of integration can weaken the resilience of 

the financial system, as it results in faster transmission of shocks among markets, amplifies 

their effects, and thereby exacerbates systemic risk. History provides us with evidence. 

Throughout the past three decades, financial crises have not only propagated across markets 

and economies more rapidly than in the past, but have also been more protracted and disruptive 

(Forbes and Rigobon, 2002; Aït-Sahalia et al., 2015; Awartani et al., 2016; Bala & Takimoto, 

2017; Mieg, 2020; Zhang & Broadstock, 2020), deeply impacting social welfare (Kwon and 

Holliday, 2006; Schwartz, 2012). The crisis resulting from the COVID-19 pandemic is a recent 

example. Indeed, several studies have shown that this health crisis suddenly amplified the 

interdependence between financial markets, causing a simultaneous fall of the major financial 

markets by the end of February 2021 (Kohlscheen et al., 2020; Zhang et al. 2020).  As a result, 

academics, policymakers, and investors have once again focused on analysing the 

connectedness, as well as shift contagion between financial markets during this crisis (among 

others: Corbet et al. 2020; Broadstock et al. 2021; Corbet et al. 2021; Bélaïd et al. 2021; Ben 

Amar et al. 2021; Yarovaya et al. 2022; Uddin et al. 2022; Corbet et al. 2022). 

Understanding the connectedness as well as shift contagion among different financial markets 

during stress and stress-free periods would provide decision makers, regulators and investors, 

with very useful information (Kang et al., 2016). Regulators need to understand the extent of 

interdependencies among financial markets in order to promote the stability and resilience of 

the financial system (Karolyi, 1995; Caporale et al., 2002; Lee et al., 2015, Liu et al., 2019). 

For investors, a better understanding of the interdependence between financial markets would 

allow for more effective diversification and hedging strategies (King and Wadhwani, 1990; 

Silvennoinen and Thorp, 2013). 

The literature has paid considerable attention to the study of connectedness and shift contagion 

among financial markets. Indeed, a sizable body of literature has examined in depth the 

connectedness and shift contagion between stock markets (Marais and Bates, 2006; Diebold & 

Yilmaz, 2009; Belke and Dubova, 2018; Ben Amar et al., 2020), commodity markets (Chang et 

al., 2011; Pan et al., 2014), commodity and non-commodity markets (Arouri et al., 2011; Basher 

and Sadorsky, 2016; Barbaglia et al., 2020; Asl et al., 2021), stock markets and cryptocurrencies 

(Jeribi and Masmoudi, 2021; Ghorbel et al., 20022), green bonds, renewable energy stocks and 

carbon markets (Tiwari et al., 2022) and clean energy and technology indices (Niu, 2022; 

Hemrit and Benlagha, 2022).  However, the way investors can use the results of this strand of 

the literature in their portfolio diversification strategies remains largely unexplored. 

This paper contributes to the existing literature by proposing a new approach to portfolio 

diversification based on minimizing the causal intensity between markets. Indeed, the goal of 

this study is three-fold. First, using the TYDL causality test, it investigates the structure of 

causal links between different segments of the financial market (commodities, stocks, socially 



responsible investments, sovereign bonds, green bonds, cryptocurrencies and clean energies) 

during recent stress and stress-free periods. Relatively to previous works, our study covers a 

high representative number of financial markets including commodities, stocks, bonds and 

cryptocurrencies. Investigating the causal structure between these different markets will help to 

understand the extent to which markets are segmented or interconnected during both stress and 

stress-free periods, allowing investors to better structure their portfolios and manage risk. In 

our study, two stress periods are included to the analysis: the COVID-19 crisis and the ongoing 

Russia-Ukraine war. Second, it uses a measure of causal intensity to examine the existence of 

shift contagion1 during stress periods, i.e. significant changes in causal links among the 

considered markets before and during the stress periods. Finally, it proposes a new approach of 

portfolio management minimizing the causal intensity among the underlying assets (MIN-CAI). 

Indeed, by using the Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) causality 

test, we extend the traditional minimum-variance portfolio framework of Markowitz (1952 & 

1959) and propose a new minimum causality approach. 

We have uncovered several results which can be summarized as follows. First, the TYDL 

causality analysis reveals not only an increase in the number of causal links between the markets 

studied during the stress periods considered in this study, but also a change in the causal 

structure, suggesting a shift contagion phenomenon during high uncertainty episodes. Second, 

the results show that the war has raised investors interest in businesses engaged in clean 

energies. Third, the portfolio analysis shows that the structure of the portfolio under our 

proposed minimum-causal-intensity approach differs substantially from the structure of the 

minimum-variance benchmark portfolio. Moreover, the structure of the portfolios under the two 

approaches shifted substantially during stress periods. Fourth, our proposed portfolio approach 

delivers better returns during periods of market stability and greater reward-to-risk ratios during 

periods of market turmoil, when compared to the traditional MIN-VAR portfolio approach. 

The results of this paper are of practical interest to investors and regulators. Indeed, beyond a 

better understanding of the interdependence structure between the different financial markets, 

this study proposes to take this interdependence structure into account in portfolio management 

in order to cope with systemic risk. Indeed, to prevent contagion and maintain financial stability, 

it is important to increase regulatory oversight of financial markets to ensure adequate 

supervision and monitoring. Furthermore, diversifying portfolios across multiple asset classes, 

while minimizing the interdependencies among them, can help mitigate contagion risk by 

limiting the potential for systemic failures caused by over-exposure to any one market or asset 

class.  

The remainder of this paper is organized as follows: Section 2 describes the data and outlines 

the empirical strategy. Section 3 documents and discuss the empirical results. Section 4 

concludes the paper. 

 

 

 

 
1 Marais and Bates (2006) define shift contagion as “significant differences in cross-market links between tranquil and crisis 

periods”. It should be noted that the shift contagion concept was first indicated in a study by Forbes and Rigobon (2000) to 

describe the increase in co-movements among markets after a shock. 



2. Methods and materials 

The present study focuses on evaluating shift contagion during recent stress periods (the 

COVID-19 crisis period and the ongoing Russia-Ukraine war period), as well as portfolio 

management. The study was conducted for selected assets ‒ commodities, stocks, socially 

responsible investments, sovereign bonds, green bonds, cryptocurrencies, and clean energies ‒ 

covering a large spectrum of financial markets’ segments. The analysis of causal structures 

during stress and stress-free was carried out for these selected assets to (i) capture shift 

contagion and (ii) to construct a portfolio minimizing the causal intensity among the underlying 

assets. Subsection 2.1 describes the data used and the periods examined, and subsection 2.2 

outlines the methodology. 

 

2.1. Data 

Our underlying datasets are daily observations of broad spectrum of assets: a global stock 

market index, a global sovereign bonds index, a global green bonds index, a global information 

technology index, a socially responsible investment index, two clean-energy related indexes, a 

cryptocurrency, and two representative commodity price indexes (See Table 1).  

 

Table 1. List of Indices  

Indices Description 

MSCI ACWI Index ACWI 

The MSCI ACWI Index is a representative global stock market 

index. It covers approximately 85% of the global stock market 

capitalization. 

S&P Global Developed 

Sovereign Bond Index 
SBND 

The S&P Global Developed Sovereign Bond Index tracks the 

performance of sovereign bonds issued by developed countries. 

S&P Green Bond Index GRNB 

The S&P Green Bond Index tracks the performance of bonds 

whose proceeds are used to finance environmentally friendly 

projects 

MSCI ACWI Information 

Technology Index 
IT 

The MSCI ACWI IT Index is representative of the performance 

of global Information Technology companies. 

MSCI KLD 400 Social Index KLD 

The MSCI KLD 400 Social Index consists of 400 US securities 

providing exposure to companies having high ESG ratings 

relative to the constituents in the MSCI US Investable Market. 

Wilderhill Clean Energy Index CLN 
The Wilderhill Clean Energy Index tracks the performance of 

businesses engaged in the clean energy activities. 

Wilderhill New Energy Global 

Innovation Index 
INV 

The Wilderhill New Energy Global Innovation Index tracks the 

performance of worldwide businesses whose innovative 

technologies and services focus on generation and use of cleaner 

energy, conservation, efficiency and advancing renewable 

energy. 

Bitcoin BTCN 

The Bitcoin is a digital currency that operates on the blockchain. 

It is not only the first cryptocurrency, but also the largest in terms 

of capitalization. 

S&P GSCI Energy Spot Index NRG 

The S&P GSCI Energy Spot Index provides investors with a 

reliable benchmark of the investment performance in the energy 

commodity sector. 

S&P GSCI Non-Energy Spot 

Index 
NNRG 

The S&P GSCI Non-Energy Spot Index provides investors with 

a reliable aggregated benchmark of the investment performance 

in the non-energy markets. 

 



All series, expressed in U.S. dollars, are collected from Refinitiv Eikon Datastream and cover 

the period running from January 2nd, 2019 to November 7th, 2022. This period is informative in 

terms of market development because it covers both calm periods and periods of turbulence 

during which shocks may spread between markets at different intensities.  To investigate the 

existence of shift contagion during stress periods, the causality is tested distinguishing the 

tranquil pre-COVID-19 period (from January 2nd, 2019 to December 31st, 2019), the COVID-

19 crisis period (from January 1st, 2020 to March 31st, 2020), the pre-war period (from April 

1st, 2020 to February 23rd, 2022), and the Russia-Ukraine war period (from February 24th, 2022 

to November 7th, 2022). The separation between the pre-COVID-19 and the COVID-19 periods 

can be justified by the beginning of availability of data on COVID-19, as the first case was 

reported to the World Health Organization Country Office in China on December 31, 2019. To 

assess the initial impact of the COVID-19 medical shock on financial markets, we limit the 

COVID-19 period to the first quarter of the year 2020 (2020Q1). Indeed, the collapse of almost 

all financial markets around the world during 2020Q1 provide a snapshot of how market 

participants process information as disaster strikes. From the second quarter of the year 2020 

(2020Q2), the markets reacted to the different economic policies that were implemented to 

avoid the collapse of the financial system, which is why we consider the period between April 

1st, 2020, and February 23rd, 2022 as a stress-free period. February 24th, 2022 marks the 

beginning of the war between Ukraine and Russia. Thus, we also examine the impact of the 

ongoing war on the causal structure between the markets considered. 

 

2.2. Empirical strategy 

Our empirical strategy consists of two complementary steps. First, we use the TYDL causality 

test to investigate shift contagion and compute the causal structure among the markets 

considered. Second, we use the results of the first step to construct a portfolio minimizing the 

causal intensity among the underlying assets (See Figure 1). 

2.2.i. TYDL Causality test 

In this study we use the TYDL causality test, based on the works of Toda and Yamamoto (1995) 

and Dolado and Lütkepohl (1996), to (i) investigate possible shift contagion, i.e. significant 

changes in the number and magnitudes of causal linkages between a set of financial markets 

during stress and stress-free periods (Marais and Bates, 2006, Ben Amar et al. 2021; Bélaïd et 

al. 2021)2 and (ii) compute the causal intensities matrix. 

The TYDL causality test is reliable whatever the variables’ order of integration, i.e. that time-

series could be I(0), I(1) or I(2), which is consistent with financial time-series. The TYDL 

causality test involves two steps. The first step consists in identifying the order 𝐩 of the vector 

autoregressive (VAR) model on which the causal analysis will be conducted. This 

autoregressive order 𝐩 is nothing but the sum of the optimal autoregressive order 𝐤 of the VAR 

model and the maximum integration order 𝐈𝐦𝐚𝐱 of the endogenous variables within the VAR 

model, i.e., 𝐩 = 𝐤 + 𝐈𝐦𝐚𝐱. Indeed, the inclusion of the additional 𝐈𝐦𝐚𝐱 lags in the level-

estimated VAR model is required as it allows considering the potentially cointegrated 

 
2 According to Marais and Bates (2006), shift contagion can be defined as “significant differences in cross-market links between 

tranquil and crisis periods”. The shift contagion concept was first appeared in a study by Forbes and Rigobon (2000) to describe 

the increase in co-movements among markets after a shock. 



characteristic of time series. Through the estimation of VAR(p), there is a guarantee in the 

asymptotic 𝝌𝟐 distribution of the Wald statistic (Marais and Bates, 2006). 

Given the small period of observation during crisis and war periods, 𝐤 must be obtained from 

an information criterion that does not over-parametrize the VAR system in order to minimize 

the loss of power of the TYDL causality test (Saikkonen and Lütkepohl, 1996). Thus, the 

Schwartz (1978) Information Criterion is employed to identify 𝐤, and the Phillips and Perron 

(1988) unit root test and the Kwiatkowski, Phillips, Schmidt, and Shin (1992) stationarity test 

are used to determine 𝐈𝐦𝐚𝐱. Therefore, the VAR(p), estimated by ordinary least squares, 

describes well the joint dynamics of the endogenous variables, independently of their 

integration order. 

The second step is to test the null hypothesis (H0) of non-causality against the alternative 

hypothesis (H1) of Granger causality using standard Wald statistic that takes into account only 

the first 𝐤 coefficients matrices3. The alternative hypothesis H1 is accepted (i.e., causality) when 

the p-value of the Wald statistic is lower than the significance level α. Otherwise, the non-

causality hypothesis (H0) is accepted. It should be noted that the two steps on which the TYDL 

causality test is performed are applicable only if 𝐈𝐦𝐚𝐱 ≤ 𝐤 (Toda and Yamamoto, 1995). 

Fig.1 Empirical strategy: TYDL causality test steps & portfolio analysis 

 
Note: pv represents the marginal significance level associated with the null hypothesis H0 of non-causality. 

 
3 For further details about the Wald test, we refer the interested readers to Dolado and Lütkepohl (1996). 
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Once H0 rejected, and since the data is expressed in logarithms, Marais and Bates (2006) 

suggest to derive the elasticity 𝐞𝐙𝐗 of the caused variable 𝐙 with respect to the causal variable 

𝐗 based on the estimated coefficients of the VAR(p) and use it as a measure of the magnitude 

of the causal relation. For instance, let ሺ𝐙t , 𝐗tሻ
′ the 2 × 1 dimensional vector of endogenous 

variables. The VAR(p) model is expressed as follows: 

{
 
 

 
 
𝐙t =∑γ1i𝐙t−i

𝐤

𝐢=1

+ ∑ γ1j𝐙t−j

𝐩

𝐣=𝐤+1

+∑β1i𝐗t−i

𝐤

𝐢=1

+ ∑ β1j𝐗t−j

𝐩

𝐣=𝐤+1

+ εZt

𝐗t =∑γ2i𝐙t−i

𝐤

𝐢=1

+ ∑ γ2j𝐙t−j

𝐩

𝐣=𝐤+1

+∑β2i𝐗t−i

𝐤

𝐢=1

+ ∑ β2j𝐗t−j

𝐩

𝐣=𝐤+1

+ εXt

 

 

2.2.ii. Minimum-causal intensity portfolio 

After the causality from the variable 𝐗 to the variable 𝐙 is confirmed from the TYDL test, 𝐞𝐙𝐗 

is derived from the first equation of the VAR system as follows:4 

𝐞𝐙𝐗 =
∑ β1i +
𝐤
𝐢=1 ∑ β1j

𝐩
𝐣=𝐤+1

1 − ∑ γ1i
𝐤
𝐢=1 −∑ γ1j

𝐩
𝐣=𝐤+1

 

and 𝐞𝐗𝐙 is derived from the second equation of the system as follows: 

𝐞𝐗𝐙 =
∑ γ2i
𝐤
𝐢=1 +∑ γ2j

𝐩
𝐣=𝐤+1

1 − ∑ β2i
𝐤
𝐢=1 −∑ β2j

𝐩
𝐣=𝐤+1

 

These elasticities reflect the magnitude of the causal relationship between the two variables in 

the system: the greater the elasticities, the stronger the causal relationship between 𝐗 and 𝐙. 

Thus, the causal intensities matrix is given by:  

𝚽𝐙𝐗 = (
𝐞𝐗𝐗 𝐞𝐗𝐙
𝐞𝐙𝐗 𝐞𝐙𝐙

) = (
1 𝐞𝐗𝐙
𝐞𝐙𝐗 1

)       

 

with 

𝐞𝐙𝐗 = {

∑ β1i +
𝐤
𝐢=1 ∑ β1j

𝐩
𝐣=𝐤+1

1 − ∑ γ1i
𝐤
𝐢=1 − ∑ γ1j

𝐩
𝐣=𝐤+1

        if H1 is accepted

𝟎                                                     if H0 is accepted

               

 

and 

𝐞𝐗𝐙 = {

∑ γ2i
𝐤
𝐢=1 +∑ γ2j

𝐩
𝐣=𝐤+1

1 − ∑ β2i
𝐤
𝐢=1 −∑ β2j

𝐩
𝐣=𝐤+1

        if H1 is accepted

𝟎                                                     if H0 is accepted

 

 
4 To investigate the existence of shift contagion among the markets considered, and to be able to compute the price-elasticity 

linkages between them as well as the causal-intensities matrix, a log-transformation of the data is chosen, as in Marais and 

Bates (2006). Descriptive statistics may be provided from the authors upon request. 



Based on 𝐞𝐙𝐗 and 𝐞𝐗𝐙, we can calculate the pairwise elasticity, 𝐞̅,  measuring the overall inter-

elasticity between the two variables 𝐗 and 𝐙 as:  

𝐞̅ =
𝟏

𝟐
ሺ𝐞𝐙𝐗 + 𝐞𝐗𝐙ሻ 

This metric illustrates the average magnitude of bilateral causal elasticity across variables 𝐗 

and 𝐙, and allows us to extract the following symmetric causal intensities matrix: 

𝚽̅ = (
1

𝐞𝐗𝐙 + 𝐞𝐙𝐗
2

𝐞𝐙𝐗 + 𝐞𝐗𝐙
2

1
) 

If we examine the causal structure for N variables, the causal intensities matrix, 𝚽̅𝐍, becomes: 

𝚽̅𝐍 =

(

 
 
 
 
 
 

1
𝐞𝟏,𝟐 + 𝐞𝟐,𝟏

2
…

𝐞𝟏,𝐍−𝟏 + 𝐞𝐍−𝟏,𝟏
2

𝐞𝟏,𝐍 + 𝐞𝐍,𝟏
2

𝐞𝟐,𝟏 + 𝐞𝟏,𝟐
2

1 …
𝐞𝟐,𝐍−𝟏 + 𝐞𝐍−𝟏,𝟐

2

𝐞𝟐,𝐍 + 𝐞𝐍,𝟐
2

⋮ ⋮ ⋱ ⋮ ⋮
𝐞𝐍−𝟏,𝟏 + 𝐞𝟏,𝐍−𝟏

2

𝐞𝐍−𝟏,𝟐 + 𝐞𝟐,𝐍−𝟏
2

… 1
𝐞𝐍−𝟏,𝐍 + 𝐞𝐍,𝐍−𝟏

2
𝐞𝐍,𝟏 + 𝐞𝟏,𝐍

2

𝐞𝐍,𝟐 + 𝐞𝟐,𝐍
2

…
𝐞𝐍,𝐍−𝟏 + 𝐞𝐍−𝟏,𝐍

2
1 )

 
 
 
 
 
 

 

 

Once we have obtained the causal intensities matrix, we explore historical investment 

performance by back-testing portfolios. Thus, we build on and extend the Markowitz (1952 & 

1959) framework and propose to use the causal-intensities matrix to derive the vector of 

portfolio weights. According to the minimum-causal-intensities (MIN-CAI) approach, the 

vector of weights, ωMIN−CAI = (ω1
MIN−CAI, … , ωN

MIN−CAI)
′
, is given by 

ωmc =
𝚽̅𝐍
−𝟏𝟏

𝟏′𝚽̅𝐍
−𝟏𝟏

 

where ωMIN−CAI is a N × 1 dimensional vector of weights, such as the sum of these weights 

equals one.5 𝟏 is a N × 1 dimensional vector with each element equal one, and 𝚽̅ is the N × N 

dimensional causal-intensities matrix. Indeed, the merit of this approach, comparatively to the 

Markowitz (1952 & 1959) minimum-variance traditional approach, is that it allows the 

construction of portfolios that reduce the causal intensities between the underlying assets and, 

consequently, makes portfolios more resilient to systemic risk. 

 

 

3. Results 

 

3.1. Shift contagion analysis 

Selected descriptive statistics of the log daily data are summarized in Table 2 in the appendices. 

The order of integration of the time-series used is almost equal to one (See Table 2 in the 

 
5 Weights may be negative, which refers to short sale. 



appendices)6. The results of the TYDL causality test and the measure of causal intensities are 

detailed in Tables 3 to 6 in the appendices and summed up by Figures 2.a, 2.b, 2.c and 2.d. 

 

Fig.2 Causal links during stress and stress-free periods 

 
Note: (a) pre-COVID-19 period; (b) COVID-19 period; (c) pre-war period; (d) Russia-Ukraine war period. See 

Table 1 for abbreviations. The ForceAtlas2 algorithm of Jacomy et al. (2014) is used to determine the locations of 

nodes.  

During the pre-COVID-19 tranquil period, BTCN appears to have a major influence on the rest 

of the market considered. Indeed, the causal structure depicted in Figure 2.a shows that it 

influences NRG, NNRG, INV and CLN markets. Indeed, interest in crypto-currencies in 

general, and bitcoin in particular, as an investment asset class began in late 2016, as evidenced 

 
6 The Phillips-Perron unit-root test (Phillips and Perron, 1988) and the KPSS stationarity test (Kwiatkowski et al., 1992) are 

not reported in this paper, but they are available from the authors upon request. 



by the steady (albeit slow) price increases throughout that year and into 2017, when the price 

of bitcoin broke the $1,000 mark. There was massive media coverage of this phenomenon, 

which further piqued investor interest and, in turn, put upward pressure on prices throughout 

the year to break the $19,000 mark. It is worth noting that even the intensity of bitcoin searches 

in Google increased significantly from the end of 2016, and peaked towards the end of 2017 

(see Fig.3). The growing awareness of investors since 2017 seems to strengthen the correlation 

between crypto-currency prices and those in other financial markets, which is consistent with 

our results during the pre-COVID-19 stress-free period. The COVID-19 pandemic created and 

exacerbated concerns in the financial markets due to the sudden slowdown in global economic 

activity. Many investors withdrew from the stock market and placed their money into Bitcoin 

during the COVID-19 crisis period, whose price more than quadrupled between the first quarter 

of 2020 and the first quarter of 2021. This potentially explains the decline in correlation between 

Bitcoin and other financial markets and, in turn, the decline in the influence of BTCN during 

the COVID-19 crisis period (see Fig.2.b). 

Fig.3 Global Google Search on Bitcoin 

 
Source: https://trends.google.com (download on December 12, 2022) 

 

Moreover, the results of the TYDL causality test (See Tables 3 to 6 and Figures 2.a to 2.d) show 

that all the elasticities are positive (i.e. 𝐞𝐙𝐗 > 0) and suggest an increase in the number of causal 

links between the stress-free and stress periods. Indeed, relatively to the pre-COVID-19 stress-

free period, the COVID-19 crisis period (i.e. Q1 2020) is characterized by the presence of many 

linkages among the markets considered. Specifically, we identify 20 causal relationships during 

the pre-COVID-19 period and 56 during the COVID-19 crisis period (about 30% of which 

emanate from ACWI and NNRG). The results reveal not only a tripling of the causal links 

between the markets studied during the COVID-19 crisis period, but also a change in the causal 

structure between the two sub-periods, suggesting a shift contagion phenomenon during the 

COVID-19 crisis period ― i.e., the structure of causal links shifted during the COVID-19 crisis 

period relative to the pre-COVID-19 stress-free period. This shift contagion phenomenon is 

also observed, but to a lesser extent, during the ongoing Russian-Ukrainian conflict. Indeed, 

compared to the pre-war period, the period of the Russian-Ukrainian war is characterized by 

the presence of a relatively higher number of causal relationships between the markets 

considered. Indeed, we identify 21 causal relationships during the pre-war period and 26 during 

the war period (about 50% of which emanate from CLN and INV). Once again, this result 
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suggests the existence of a shift contagion phenomenon during the ongoing war period, 

although to a lesser magnitude than that observed during the COVID-19 crisis period. During 

the pre-war period, BTCN and NRG have no impact on the other markets (see Table 5) and the 

other markets do not influence these two asset classes, which is why BTCN and NRG do not 

appear in Fig 2.c. This result shows that these two markets are totally isolated and not integrated 

with other markets during the pre-war period. Finally, the comparison of Figures 2.c and 2.d 

reveals (i) a high increase in the number of causal links between INV and the other markets 

during the period of the Russian-Ukrainian war, and (ii) CLN has a greater impact during the 

war. This result shows that the war has raised investors interest in businesses engaged in the 

clean energy activities as well as businesses whose innovative technologies and services focus 

on generation and use of cleaner energy, conservation, efficiency and advancing renewable 

energy.  

3.2. portfolio analysis 

 

In this section we analyse two portfolio strategies composed of assets ACWI, SBND, GRNB, 

IT, KLD, CLN, INV, BTCN, NRG and NNRG. More specifically, we compare the minimum-

causal-intensity (MIN-CAI) portfolio with the traditional Markowitz (1959) minimum-variance 

(MIN-VAR) portfolio. We are aware that an investor cannot directly buy an index. However, 

we make the implicit assumption that they can invest in a tracker or ETF that replicates the 

performance of the indexes under consideration. 

Table 7 summarizes the portfolio weights during stress and stress-free periods under the two 

approaches ‒ MIN-VAR and MIN-CAI. Under casual inspection, we find that the structure of 

the MIN-VAR portfolio differs clearly from that of the MIN-CAI portfolio. This is not a 

tremendous surprise since the methodologies of both methods are very different. More 

interestingly, we find that the structure of the portfolios under the two approaches changed 

substantially once following the COVID-19 crisis and a second time following the onset of the 

Russian-Ukrainian conflict. These shifts in portfolio weights reflect changes in market 

sentiment or investor behavior, which may have a direct impact on the global financial system. 

Table 7. Portfolio weights 
 Pre-COV COVID-19 period Pre-War period War period 

  MIN-VAR MIN-CAI MIN-VAR MIN-CAI MIN-VAR MIN-CAI MIN-VAR MIN-CAI 

ACWI 0.13 -0.05 0.54 0.09 0.10 -0.15 0.39 0.87 
SBND 0.28 -0.04 0.45 -0.10 1.24 -0.03 1.88 -0.37 
GRNB 0.52 0.20 0.12 0.05 -0.33 0.09 -1.22 -0.02 
IT -0.04 0.11 0.07 -0.15 -0.09 0.18 -0.03 0.69 
KLD 0.05 0.13 -0.29 0.30 0.07 0.26 -0.08 0.54 
CLN 0.01 0.09 0.03 0.01 0.02 0.31 -0.02 -0.19 
INV -0.04 0.16 -0.34 0.08 -0.05 -0.02 -0.03 -0.14 
BTCN 0.00 0.14 -0.03 0.52 0.00 0.20 -0.02 0.44 
NRG 0.00 0.22 0.00 0.05 0.00 0.20 -0.04 -0.16 
NNRG 0.09 0.04 0.45 0.15 0.03 -0.04 0.17 -0.67 

μ 0.05099 0.29980 -0.06289 -0.23658 -0.03213 1.30289 -0.13747 -0.39655 
σ 0.00176 0.50775 0.00399 0.66908 0.00235 0.45017 0.00425 0.360511 
SR 28.9737 0.5904 -15.7550 -0.3536 -13.6535 2.8942 -32.2943 -1.1000 

Note: 𝛍, 𝛔 and SR stand for “portfolio gross return”, “portfolio return standard-deviation” and “Sharpe ratio”, respectively. 

MIN-VAR and MIN-CAI stand for “minimum-variance portfolio” and “minimum-causal-intensity portfolio”, respectively. 

As in Tiwari et al. (2022), we compute the Sharpe ratio assuming that the risk-free rate is zero. 



During the pre-COVID stress-free period, while the MIN-VAR method gives more weights to 

GRNB, SBND and ACWI, the MIN-CAI method give more weights to NRG, GRNB and INV. 

Portfolios compositions shifted significantly during the COVID-19 crisis period. Indeed, over 

this crisis period, the MIN-VAR portfolio method assigns the most important weights to ACWI, 

SBND and NNRG. During the same crisis period, the MIN-CAI method assigns the highest 

weights to BTCN, KLD and NNRG. The weights’ structure shifts again during the pre-war 

period. Indeed, during this period, the MIN-VAR portfolio method attributes the most important 

weights to SBND, while the MIN-CAI method favors CLN, KLD, BTCN and NRG. Over the 

Russian-Ukrainian war period, while the MIN-VAR method favors a “flight to quality” strategy 

by giving more weight to SBND, the MIN-CAI method assigns more weight to ACWI, IT, 

KLD and BTCN. 

During the pre-COVID and the pre-war periods, the portfolio analysis shows that the MIN-CAI 

portfolio outperforms the MIN-VAR portfolio in terms of gross return. Indeed, during these 

stress-free periods, the MIN-CAI method provides a portfolio structure characterized by a 

relatively higher return. However, this relatively high return-based performance is associated 

with a relatively higher level of risk, which is reflected in the relatively higher standard 

deviation of return. However, during the COVID-19 and war periods, the MIN-CAI portfolio 

not only results in a negative return (even more negative than that offered by the MIN-VAR 

portfolio), but it is also associated with relatively a higher level of risk. 

After acknowledging some empirical differences between the MIN-VAR and MIN-CAI 

methods, we further explore their potential impacts on portfolio and risk management. To do 

so, we analyze the Sharpe ratios of both the MIN-CAI portfolio and the conventional MIN-

VAR portfolio to compare and contrast their effectiveness. It may be beneficial to reiterate that 

in the context of competing strategies for constructing portfolios, the MIN-VAR method 

inherently aims to minimize the volatility of the portfolio, while the MIN-CAI approach 

prioritizes reducing the magnitude of causal intensities among the assets. Table 7 reports the 

reward-to-volatility ratios (Sharpe, 1994), which divide the excess returns of portfolios by their 

respective volatilities to assess their risk-adjusted performances. In other words, the Sharpe 

ratio indicates the return that can be expected from a given portfolio with a risk equal to one 

standard deviation. The reward-to-volatility ratios are uniformly smaller during the two stress 

periods considered in this study, i.e., the COVID-19 and the war in Ukraine periods, which is 

quite expected as stress periods are associated with lower returns and higher risk. The MIN-

VAR portfolio records the highest reward-to-volatility ratio during the pre-COVID period, and 

the MIN-CAI outperforms during the pre-war period. Nevertheless, during both stress periods 

(the COVID-19 period and the Russian-Ukrainian war period), both methods result in negative 

Sharpe ratios. Additionally, the findings imply that the implementation of the MIN-CAI 

portfolio methodology may be deemed a feasible investment strategy, given that it is grounded 

in sound logic and exhibits the potential to deliver better returns during periods of market 

stability and greater reward-to-risk ratios during periods of market turmoil, when compared to 

the MIN-VAR portfolio approach. 

In addition to discussing the implications of MIN-CAI portfolio approach for investors, it is 

important to also discuss potential policy implications and formulate recommendations based 

on our results. Indeed, the portfolio method proposed in this study consists in calculating and 

reducing causal intensities between the markets considered. Thus, by using the TYDL causality 

test, it provides us with the structure as well as the magnitude of the interdependencies between 



the financial assets and, by the same token, indicates the level of systematic risk on the markets, 

and therefore enables to find the allocation allowing to reduce the causal intensities between 

the assets considered. Indeed, based on our findings, it appears that there is a discernible pattern 

of shift contagion during times of stress, with a greater prevalence observed during the COVID-

19 pandemic as compared to the period of war in Ukraine. To prevent contagion, it is imperative 

to have greater regulatory oversight of financial markets to ensure adequate supervision and 

monitoring of transactions, risks, and leverage. Effective regulatory oversight would help 

maintain financial stability and resilience, limiting the shift and the spread of contagion and 

preventing it from causing widespread financial disruption. Another potential measure to limit 

contagion is diversifying portfolios across multiple asset classes or geographic regions. By 

spreading investments across various assets, the risk of significant losses in one particular asset 

or region is reduced. Diversification can help mitigate contagion risk by limiting the potential 

for systemic failures caused by over-exposure to any one market or asset class. 

To sum up, our study results provide valuable insights into the need for effective measures to 

prevent contagion during times of stress, including greater regulatory oversight of financial 

markets and diversifying investment portfolios. By implementing these measures, we can 

promote financial stability and resilience, limiting the potential for contagion to cause 

widespread disruption. 

 

4. Conclusion 

 

Little attention has been paid in the literature to the impact of the COVID-19 crisis as well as 

the ongoing Russian-Ukrainian conflict on the causal links among financial markets. This paper 

fills this gap by (i) providing a quantitative assessment of the existence of shift contagion 

phenomena among a broad spectrum of financial markets (commodities, stocks, socially 

responsible investments, sovereign bonds, green bonds, cryptocurrencies, and clean energies) 

during recent stress periods (the COVID-19 crisis and the ongoing Russia-Ukraine war 

periods), and (ii) studying the implications for portfolio management. Thus, we first use TYDL 

causality test to investigate shift contagion and compute the causal intensities among the 

markets considered. Second, we use the results of the first step to propose a new portfolio 

method minimizing the causal intensity among the underlying assets. 

The results of the TYDL causality test provide evidence of a structural change in the causal 

links between the financial markets under consideration during the two crisis periods examined. 

Indeed, the results show that the number of causal links between the markets considered almost 

tripled during the COVID-19 crisis period. More specifically, 20 causal links during the pre-

COVID-19 period are identified, with a major influence of Bitcoin on the other markets, 

compared to 56 during the COVID-19 period. This finding reflects the existence of a strong 

shift contagion during the COVID-19 crisis. This shift contagion phenomenon is also observed 

during the ongoing Russia-Ukraine war period, although to a lesser extent than that observed 

during the COVID-19 crisis period. More interestingly, the Wilderhill Clean Energy Index 

(CLN) and the Wilderhill New Energy Global Innovation Index (INV) have the largest causal 

impact on the other financial markets during the war period. This result reflects the growing 

impact of companies engaged in clean energy activities as well as companies with innovative 

technologies on financial markets. 



The portfolio analysis shows that the minimum-causal-intensity (MIN-CAI) portfolio method 

we propose suggests portfolio weights’ structures that are different from those provided by the 

MIN-VAR method during both calm and turbulent periods. Moreover, the results show that the 

MIN-CAI portfolio outperforms the MIN-VAR portfolio in terms of gross return during the two 

stress-free periods examined. Nevertheless, this relatively outperformance in terms of return is 

associated with a relatively underperformance in terms of risk. During the COVID-19 crisis 

period and the Russian-Ukrainian war period, the proposed MIN-CAI portfolio method as well 

as the MIN-VAR benchmark method result in a negative return and higher levels of risk. 

Furthermore, the MIN-CAI portfolio records a lower reward-to-volatility ratio than the MIN-

VAR portfolio during the pre-COVID period, and a higher ratio during the pre-war period. 

However, both portfolio approaches, the MIN-CAI approach and the MIN-VAR approach, 

record negative reward-to-volatility ratios during crisis periods. 

The results of this study are useful and provide several implications and policy insights for 

market operators and regulators. First, this research highlights a discernible pattern of shift 

contagion during periods of high uncertainty. Thus, to strengthen the stability and resilience of 

the financial system, it is imperative to increase markets regulatory oversight to ensure adequate 

supervision and monitoring. Second, diversifying portfolios, while minimizing the 

interdependencies among the underlying assets, can help mitigate contagion risk by limiting the 

potential for systemic failures caused by over-exposure to any one market or asset class, 

particularly in times of increased market uncertainty. 
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Appendices 

Table 2. Descriptive statistics 

Pre-COVID-19 period 

 ACWI SBND GRNB IT KLD CLN INV BTCN NRG NNRG 

Mean 6,25 4,71 4,63 5,59 6,99 4,08 5,25 8,83 5,29 5,79 

Median 6,25 4,71 4,64 5,60 6,99 4,09 5,25 8,96 5,29 5,79 

Max 6,34 4,74 4,66 5,76 7,10 4,26 5,40 9,44 5,43 5,83 

Min 6,11 4,68 4,61 5,33 6,81 3,79 5,07 8,13 5,11 5,73 

Std. Dev. 0,04 0,02 0,01 0,08 0,05 0,08 0,05 0,40 0,06 0,02 

Skewness -0,32 0,12 -0,13 -0,41 -0,46 -0,91 -0,02 -0,46 0,20 -0,60 

Kurtosis 3,59 1,79 1,83 3,14 3,44 4,56 4,91 1,79 2,76 3,02 

Jarque-Bera 8,20*** 16,60*** 15,79*** 7,45*** 11,24*** 62,38*** 39,75*** 25,24*** 2,40 15,44*** 

IO 1 1 1 1 1 1 1 1 0 0 

COVID-19 period 

Mean 6,26 4,72 4,64 5,73 7,04 4,28 5,39 9,01 5,04 5,78 

Median 6,34 4,71 4,64 5,78 7,10 4,34 5,45 9,07 5,15 5,79 

Max 6,36 4,77 4,68 5,84 7,15 4,53 5,57 9,25 5,36 5,84 

Min 5,95 4,69 4,57 5,47 6,74 3,86 5,05 8,52 4,40 5,66 

Std. Dev. 0,13 0,02 0,02 0,11 0,12 0,17 0,14 0,18 0,30 0,05 

Skewness -1,15 1,40 -1,29 -1,08 -1,14 -1,07 -1,21 -0,93 -1,02 -0,81 

Kurtosis 2,80 5,27 4,40 2,91 2,88 3,07 3,17 2,98 2,57 2,59 

Jarque-Bera 14,42*** 35,10*** 23,34*** 12,64*** 14,04*** 12,32*** 15,86*** 9,39*** 11,81*** 7,51** 

IO 1 1 1 1 1 1 1 1 1 1 

Pre-war period 

Mean 6,47 4,74 4,68 6,10 7,30 4,98 5,96 10,18 5,22 5,99 

Median 6,52 4,74 4,69 6,15 7,32 5,09 6,08 10,50 5,32 6,04 

Max 6,63 4,79 4,74 6,37 7,53 5,64 6,44 11,12 5,74 6,26 

Min 6,05 4,66 4,59 5,56 6,84 3,93 5,15 8,76 4,16 5,66 

Std. Dev. 0,14 0,03 0,03 0,19 0,17 0,38 0,30 0,73 0,34 0,16 

Skewness -0,81 -0,54 -0,75 -0,79 -0,48 -0,77 -0,87 -0,48 -0,60 -0,53 

Kurtosis 2,54 2,95 2,72 2,79 2,20 2,96 2,88 1,61 2,70 1,95 

Jarque-Bera 59,17*** 24,25*** 48,34*** 52,37*** 32,60*** 48,93*** 62,75*** 58,93*** 31,57*** 45,78*** 

IO 1 1 1 1 1 1 1 1 1 1 

War period 

Mean 6,44 4,54 4,46 6,08 7,33 4,70 5,81 10,19 5,86 6,22 

Median 6,44 4,54 4,46 6,07 7,32 4,71 5,82 10,05 5,86 6,17 

Max 6,58 4,67 4,61 6,27 7,48 4,96 5,99 10,77 6,06 6,36 

Min 6,31 4,43 4,33 5,90 7,19 4,48 5,62 9,82 5,66 6,09 

Std. Dev. 0,07 0,06 0,07 0,09 0,07 0,12 0,09 0,31 0,09 0,09 

Skewness 0,11 0,06 0,00 0,12 0,11 0,08 -0,12 0,52 0,16 0,23 

Kurtosis 2,11 2,31 2,18 2,12 2,11 2,00 1,97 1,66 2,29 1,33 

Jarque-Bera 6,36** 3,79 5,18* 6,39** 6,45** 7,82** 8,61** 22,08** 4,57* 22,83*** 

IO 1 1 1 1 1 1 1 1 1 1 

Note: Table 2 reports descriptive statistics of the log daily data. First row displays mean. second row displays median. Third and fourth rows 

show the largest and the smallest values, respectively. Fifth row displays standard deviation. Sixth and seventh rows skewness and kurtosis 

coefficients, respectively. Eighth row report Jarque-Bera normality test statistics. Nineth row displays the order of integration. As in Marais and 

Bates (2006) we use Phillips-Perron and KPSS tests to determine the order of integration. 

 



Table 3. TYDL causality test results and causal intensities during the Pre-COVID-19 tranquil period 
H1 hypothesis 

[X→Z] 
𝐈𝐦𝐚𝐱 𝐤 𝐩 = 𝐤 + 𝐈𝐦𝐚𝐱 Marginal significance levels of the TYDL Decision 𝐞𝐙𝐗 

ACWI→SBND 1 1 2 0.2821 Reject H1 ACWI↛SBND 

ACWI→GRNB 1 1 2 0.4859 Reject H1 ACWI↛GRNB 

ACWI→IT 1 1 2 0.0047 Accept H1 0.91 

ACWI→KLD 1 2 3 0.0242 Accept H1 1.12 

ACWI→CLN 1 1 2 0.7872 Reject H1 ACWI↛CLN 

ACWI→INV 1 1 2 0.0117 Accept H1 0.84 

ACWI→BTCN 1 1 2 0.9968 Reject H1 ACWI↛BTCN 

ACWI→NRG 1 1 2 0.1601 Reject H1 ACWI↛NRG 

ACWI→NNRG 1 1 2 0.6246 Reject H1 ACWI↛NNRG 

SBND→ACWI 1 1 2 0.1939 Reject H1 SBND↛ACWI 

SBND→GRNB 1 1 2 0.0016 Accept H1 0.98 

SBND→IT 1 1 2 0.6997 Reject H1 SBND↛IT 

SBND→KLD 1 1 2 0.2500 Reject H1 SBND↛KLD 

SBND→CLN 1 1 2 0.3461 Reject H1 SBND↛CLN 

SBND→INV 1 1 2 0.8179 Reject H1 SBND↛INV 

SBND→BTCN 1 1 2 0.5321 Reject H1 SBND↛BTCN 

SBND→NRG 1 1 2 0.7261 Reject H1 SBND↛NRG 

SBND→NNRG 1 1 2 0.7225 Reject H1 SBND↛NNRG 

GRNB→ACWI 1 1 2 0.1138 Reject H1 GRNB↛ACWI 

GRNB→SBND 1 1 2 0.0034 Accept H1 1.01 

GRNB→IT 1 1 2 0.1479 Reject H1 GRNB↛IT 

GRNB→KLD 1 1 2 0.0986 Accept H1 1.51 

GRNB→CLN 1 1 2 0.1055 Reject H1 GRNB↛CLN 

GRNB→INV 1 1 2 0.6815 Reject H1 GRNB↛INV 

GRNB→BTCN 1 1 2 0.2871 Reject H1 GRNB↛BTCN 

GRNB→NRG 1 1 2 0.5177 Reject H1 GRNB↛NRG 

GRNB→NNRG 1 1 2 0.7545 Reject H1 GRNB↛NNRG 

IT→ACWI 1 1 2 0.0027 Accept H1 1.10 

IT→SBND 1 1 2 0.8486 Reject H1 IT↛SBND 

IT→GRNB 1 1 2 0.8348 Reject H1 IT↛GRNB 

IT→KLD 1 1 2 0.1493 Reject H1 IT↛KLD 

IT→CLN 1 1 2 0.0996 Accept H1 0.73 

IT→INV 1 1 2 0.8703 Reject H1 IT↛INV 

IT→BTCN 1 1 2 0.7797 Reject H1 IT↛BTCN 

IT→NRG 1 1 2 0.9715 Reject H1 IT↛NRG 

IT→NNRG 1 1 2 0.2029 Reject H1 IT↛NNRG 

KLD→ACWI 1 2 3 0.0408 Accept H1 0.89 

KLD→SBND 1 1 2 0.8508 Reject H1 KLD↛SBND 

KLD→GRNB 1 1 2 0.9021 Reject H1 KLD↛GRNB 

KLD→IT 1 1 2 0.2015 Reject H1 KLD↛IT 

KLD→CLN 1 1 2 0.0996 Accept H1 0.59 

KLD→INV 1 2 3 0.1458 Reject H1 KLD↛INV 

KLD→BTCN 1 1 2 0.7927 Reject H1 KLD↛BTCN 

KLD→NRG 1 1 2 0.3692 Reject H1 KLD↛NRG 

KLD→NNRG 1 1 2 0.2638 Reject H1 KLD↛NNRG 

CLN→ACWI 1 1 2 0.2593 Reject H1 CLN↛ACWI 

CLN→SBND 1 1 2 0.9235 Reject H1 CLN↛SBND 

CLN→GRNB 1 1 2 0.8177 Reject H1 CLN↛GRNB 

CLN→IT 1 1 2 0.0632 Accept H1 1.35 

CLN→KLD 1 1 2 0.1384 Reject H1 CLN↛KLD 

CLN→INV 1 2 3 0.1427 Reject H1 CLN↛INV 

CLN→BTCN 1 1 2 0.9988 Reject H1 CLN↛BTCN 

CLN→NRG 1 1 2 0.5088 Reject H1 CLN↛NRG 

CLN→NNRG 1 1 2 0.1667 Reject H1 CLN↛NNRG 

INV→ACWI 1 1 2 0.5324 Reject H1 INV↛ACWI 

INV→SBND 1 1 2 0.3963 Reject H1 INV↛SBND 

INV→GRNB 1 1 2 0.5579 Reject H1 INV↛GRNB 

INV→IT 1 1 2 0.0369 Accept H1 1.07 

INV→KLD 1 2 3 0.1086 Reject H1 INV↛KLD 

INV→CLN 1 2 3 0.4619 Reject H1 INV↛CLN 

INV→BTCN 1 1 2 0.8036 Reject H1 INV↛BTCN 

INV→NRG 1 1 2 0.1056 Reject H1 INV↛NRG 

INV→NNRG 1 1 2 0.5084 Reject H1 INV↛NNRG 

BTCN→ACWI 1 1 2 0.3144 Reject H1 BTCN↛ACWI 

BTCN→SBND 1 1 2 0.3046 Reject H1 BTCN↛SBND 

BTCN→GRNB 1 1 2 0.8605 Reject H1 BTCN↛GRNB 



BTCN→IT 1 1 2 0.4137 Reject H1 BTCN↛IT 

BTCN→KLD 1 1 2 0.7011 Reject H1 BTCN↛KLD 

BTCN→CLN 1 1 2 0.0649 Accept H1 0.31 

BTCN→INV 1 1 2 0.0259 Accept H1 0.54 

BTCN→NRG 1 1 2 0.0176 Accept H1 0.56 

BTCN→NNRG 1 1 2 0.0181 Accept H1 -0.15 

NRG→ACWI 1 1 2 0.5568 Reject H1 NRG↛ACWI 

NRG→SBND 1 1 2 0.0786 Accept H1 0.91 

NRG→GRNB 1 1 2 0.2559 Reject H1 NRG↛GRNB 

NRG→IT 1 1 2 0.5139 Reject H1 NRG↛IT 

NRG→KLD 1 1 2 0.8614 Reject H1 NRG↛KLD 

NRG→CLN 1 1 2 0.8939 Reject H1 NRG↛CLN 

NRG→INV 1 1 2 0.6413 Reject H1 NRG↛INV 

NRG→BTCN 1 1 2 0.7912 Reject H1 NRG↛BTCN 

NRG→NNRG 0 1 1 0.1523 Reject H1 NRG↛NNRG 

NNRG→ACWI 1 1 2 0.1593 Reject H1 NNRG↛ACWI 

NNRG→SBND 1 1 2 0.6749 Reject H1 NNRG↛SBND 

NNRG→GRNB 1 1 2 0.5908 Reject H1 NNRG↛GRNB 

NNRG→IT 1 1 2 0.0657 Accept H1 0.98 

NNRG→KLD 1 1 2 0.1088 Reject H1 NNRG↛KLD 

NNRG→CLN 1 1 2 0.4225 Reject H1 NNRG↛CLN 

NNRG→INV 1 1 2 0.0345 Accept H1 0.91 

NNRG→BTCN 1 1 2 0.7525 Reject H1 NNRG↛BTCN 

NNRG→NRG 0 1 1 0.0002  Accept H1 0.92 

Note: To take into account the highest number of potential causal links while minimizing the risk of imprecision, a 10% 

significance level was used for all causality tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. TYDL causality test results and causal intensities during the COVID-19 crisis period (Quarter 

1, 2020) 
H1 hypothesis 

[X→Z] 
𝐈𝐦𝐚𝐱 𝐤 𝐩 = 𝐤 + 𝐈𝐦𝐚𝐱 Marginal significance levels of the TYDL Decision 𝐞𝐙𝐗 

ACWI→SBND 1 3 4 0.0004 Accept H1 0.80 

ACWI→GRNB 1 7 8 0.0000 Accept H1 0.73 

ACWI→IT 1 2 3 0.0438 Accept H1 0.91 

ACWI→KLD 1 2 3 0.0099 Accept H1 1.15 

ACWI→CLN 1 1 2 0.0004 Accept H1 0.67 

ACWI→INV 1 2 3 0.0458 Accept H1 0.86 

ACWI→BTCN 1 1 2 0.9670 Reject H1 ACWI↛BTCN 

ACWI→NRG 1 4 5 0.0213 Accept H1 0.90 

ACWI→NNRG 1 2 3 0.0051 Accept H1 1.05 

SBND→ACWI 1 3 4 0.0018 Accept H1 1.27 

SBND→GRNB 1 3 4 0.4308 Reject H1 SBND↛GRNB 

SBND→IT 1 3 4 0.0002 Accept H1 1.19 

SBND→KLD 1 3 4 0.0004 Accept H1 1.45 

SBND→CLN 1 2 3 0.1077 Reject H1 SBND↛CLN 

SBND→INV 1 2 3 0.1626 Reject H1 SBND↛INV 

SBND→BTCN 1 1 2 0.9490 Reject H1 SBND↛BTCN 

SBND→NRG 1 2 3 0.6125 Reject H1 SBND↛NRG 

SBND→NNRG 1 2 3 0.3469 Reject H1 SBND↛NNRG 

GRNB→ACWI 1 7 8 0.0000 Accept H1 1.37 

GRNB→SBND 1 3 4 0.0004 Accept H1 1.01 

GRNB→IT 1 5 6 0.0000 Accept H1 1.26 

GRNB→KLD 1 5 6 0.0000 Accept H1 1.54 

GRNB→CLN 1 3 4 0.0024 Accept H1 0.88 

GRNB→INV 1 2 3 0.0650 Accept H1 1.15 

GRNB→BTCN 1 2 3 0.4350 Reject H1 GRNB↛BTCN 

GRNB→NRG 1 2 3 0.1361 Reject H1 GRNB↛NRG 

GRNB→NNRG 1 2 3 0.5393 Reject H1 GRNB↛NNRG 

IT→ACWI 1 2 3 0.1890 Reject H1 IT↛ACWI 

IT→SBND 1 3 4 0.0004 Accept H1 0.84 

IT→GRNB 1 5 6 0.0040 Accept H1 0.80 

IT→KLD 1 2 3 0.0956 Accept H1 1.22 

IT→CLN 1 2 3 0.0106 Accept H1 0.74 

IT→INV 1 2 3 0.5258 Reject H1 IT↛INV 

IT→BTCN 1 2 3 0.2525 Reject H1 IT↛BTCN 

IT→NRG 1 4 5 0.0108 Accept H1 0.99 

IT→NNRG 1 2 3 0.0501 Accept H1 1.04 

KLD→ACWI 1 2 3 0.1249 Reject H1 KLD↛ACWI 

KLD→SBND 1 3 4 0.0007 Accept H1 0.68 

KLD→GRNB 1 5 6 0.0085 Accept H1 0.65 

KLD→IT 1 2 3 0.1116 Reject H1 KLD↛IT 

KLD→CLN 1 2 3 0.0075 Accept H1 0.60 

KLD→INV 1 2 3 0.3451 Reject H1 KLD↛INV 

KLD→BTCN 1 2 3 0.2781 Reject H1 KLD↛BTCN 

KLD→NRG 1 4 5 0.0042 Accept H1 0.80 

KLD→NNRG 1 2 3 0.0185 Accept H1 0.36 

CLN→ACWI 1 1 2 0.0056 Accept H1 1.49 

CLN→SBND 1 2 3 0.0001 Accept H1 1.14 

CLN→GRNB 1 3 4 0.0014 Accept H1 1.07 

CLN→IT 1 2 3 0.0579 Accept H1 1.34 

CLN→KLD 1 2 3 0.0835 Accept H1 1.66 

CLN→INV 1 3 4 0.2325 Reject H1 CLN↛INV 

CLN→BTCN 1 1 2 0.8965 Reject H1 CLN↛BTCN 

CLN→NRG 1 1 2 0.6802 Reject H1 CLN↛NRG 

CLN→NNRG 1 1 2 0.0072 Accept H1 1.41 

INV→ACWI 1 2 3 0.0114 Accept H1 1.17 

INV→SBND 1 2 3 0.0006 Accept H1 0.90 

INV→GRNB 1 2 3 0.0045 Accept H1 0.85 

INV→IT 1 2 3 0.0413 Accept H1 1.06 

INV→KLD 1 2 3 0.0090 Accept H1 1.31 

INV→CLN 1 3 4 0.1163 Reject H1 INV↛CLN 

INV→BTCN 1 1 2 0.6828 Reject H1 INV↛BTCN 

INV→NRG 1 1 2 0.9566 Reject H1 INV→NRG 

INV→NNRG 1 1 2 0.0689 Accept H1 1.11 

BTCN→ACWI 1 1 2 0.7735 Reject H1 BTCN↛ACWI 

BTCN→SBND 1 1 2 0.0036 Accept H1 0.52 



BTCN→GRNB 1 2 3 0.2698 Reject H1 BTCN↛GRNB 

BTCN→IT 1 2 3 0.0922 Accept H1 0.62 

BTCN→KLD 1 2 3 0.1136 Reject H1 BTCN↛KLD 

BTCN→CLN 1 1 2 0.9490 Reject H1 BTCN↛CLN 

BTCN→INV 1 1 2 0.7427 Reject H1 BTCN↛INV 

BTCN→NRG 1 1 2 0.3019 Reject H1 BTCN↛NRG 

BTCN→NNRG 1 1 2 0.9759 Reject H1 BTCN↛NNRG 

NRG→ACWI 1 4 5 0.0001 Accept H1 1.24 

NRG→SBND 1 2 3 0.0002 Accept H1 0.74 

NRG→GRNB 1 2 3 0.0053 Accept H1 1.02 

NRG→IT 1 4 5 0.0009 Accept H1 1.19 

NRG→KLD 1 4 5 0.0001 Accept H1 1.40 

NRG→CLN 1 1 2 0.6675 Reject H1 NRG↛CLN 

NRG→INV 1 1 2 0.4179 Reject H1 NRG↛INV 

NRG→BTCN 1 1 2 0.2365 Reject H1 NRG↛BTCN 

NRG→NNRG 1 2 3 0.0189 Accept H1 1.01 

NNRG→ACWI 1 2 3 0.0060 Accept H1 1.07 

NNRG→SBND 1 2 3 0.0210 Accept H1 0.82 

NNRG→GRNB 1 2 3 0.0233 Accept H1 0.80 

NNRG→IT 1 2 3 0.0149 Accept H1 0.99 

NNRG→KLD 1 2 3 0.0558 Accept H1 1.21 

NNRG→CLN 1 1 2 0.0009 Accept H1 0.74 

NNRG→INV 1 1 2 0.0022 Accept H1 0.93 

NNRG→BTCN 1 1 2 0.6954 Reject H1 NNRG↛BTCN 

NNRG→NRG 1 2 3 0.0372 Accept H1 0.97 

Note: To take into account the highest number of potential causal links while minimizing the risk of imprecision, a 10% 

significance level was used for all causality tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. TYDL causality test results and causal intensities during the Pre-Ukrainian-war period  
H1 hypothesis 

[X→Z] 
𝐈𝐦𝐚𝐱 𝐤 𝐩 = 𝐤 + 𝐈𝐦𝐚𝐱 Marginal significance levels of the TYDL Decision 𝐞𝐙𝐗 

ACWI→SBND 1 1 2 0.0000 Accept H1 0.75 

ACWI→GRNB 1 2 3 0.0000 Accept H1 0.72 

ACWI→IT 1 1 2 0.1248 Reject H1 ACWI↛IT 

ACWI→KLD 1 2 3 0.3303 Reject H1 ACWI↛KLD 

ACWI→CLN 1 1 2 0.1459 Reject H1 ACWI↛CLN 

ACWI→INV 1 1 2 0.8009 Reject H1 ACWI↛INV 

ACWI→BTCN 1 1 2 0.1615 Reject H1 ACWI↛BTCN 

ACWI→NRG 1 1 2 0.2668 Reject H1 ACWI↛NRG 

ACWI→NNRG 1 1 2 0.0554 Accept H1 0.95 

SBND→ACWI 1 1 2 0.1966 Reject H1 SBND↛ACWI 

SBND→GRNB 1 1 2 0.5580 Reject H1 SBND↛GRNB 

SBND→IT 1 1 2 0.8318 Reject H1 SBND↛IT 

SBND→KLD 1 2 3 0.2376 Reject H1 SBND↛KLD 

SBND→CLN 1 1 2 0.3132 Reject H1 SBND↛CLN 

SBND→INV 1 2 3 0.0578 Accept H1 1.27 

SBND→BTCN 1 1 2 0.2737 Reject H1 SBND↛BTCN 

SBND→NRG 1 1 2 0.3630 Reject H1 SBND↛NRG 

SBND→NNRG 1 1 2 0.2993 Reject H1 SBND↛NNRG 

GRNB→ACWI 1 2 3 0.0246 Accept H1 1.39 

GRNB→SBND 1 1 2 0.6283 Reject H1 GRNB↛SBND 

GRNB→IT 1 2 3 0.4409 Reject H1 GRNB↛IT 

GRNB→KLD 1 2 3 0.1996 Reject H1 GRNB↛KLD 

GRNB→CLN 1 2 3 0.1287 Reject H1 GRNB↛CLN 

GRNB→INV 1 2 3 0.0071 Accept H1 1.29 

GRNB→BTCN 1 1 2 0.2148 Reject H1 GRNB↛BTCN 

GRNB→NRG 1 1 2 0.2578 Reject H1 GRNB↛NRG 

GRNB→NNRG 1 1 2 0.2676 Reject H1 GRNB↛NNRG 

IT→ACWI 1 1 2 0.7151 Reject H1 IT↛ACWI 

IT→SBND 1 1 2 0.0001 Accept H1 0.79 

IT→GRNB 1 2 3 0.0000 Accept H1 0.76 

IT→KLD 1 1 2 0.5422 Reject H1 IT↛KLD 

IT→CLN 1 1 2 0.1772 Reject H1 IT↛CLN 

IT→INV 1 1 2 0.4941 Reject H1 IT↛INV 

IT→BTCN 1 1 2 0.2899 Reject H1 IT↛BTCN 

IT→NRG 1 1 2 0.1567 Reject H1 IT↛NRG 

IT→NNRG 1 1 2 0.1109 Reject H1 IT↛NNRG 

KLD→ACWI 1 2 3 0.0213 Accept H1 0.83 

KLD→SBND 1 2 3 0.0001 Accept H1 0.66 

KLD→GRNB 1 2 3 0.0000 Accept H1 0.64 

KLD→IT 1 1 2 0.3090 Reject H1 KLD↛IT 

KLD→CLN 1 1 2 0.2744 Reject H1 KLD↛CLN 

KLD→INV 1 2 3 0.4064 Reject H1 KLD↛INV 

KLD→BTCN 1 1 2 0.3603 Reject H1 KLD↛BTCN 

KLD→NRG 1 1 2 0.4074 Reject H1 KLD↛NRG 

KLD→NNRG 1 1 2 0.0219 Accept H1 0.84 

CLN→ACWI 1 1 2 0.0325 Accept H1 1.17 

CLN→SBND 1 1 2 0.0009 Accept H1 1.01 

CLN→GRNB 1 2 3 0.0000 Accept H1 0.94 

CLN→IT 1 1 2 0.1025 Reject H1 CLN↛IT 

CLN→KLD 1 1 2 0.2044 Reject H1 CLN↛KLD 

CLN→INV 1 2 3 0.0090 Accept H1 1.18 

CLN→BTCN 1 1 2 0.9412 Reject H1 CLN↛BTCN 

CLN→NRG 1 1 2 0.6575 Reject H1 CLN↛NRG 

CLN→NNRG 1 1 2 0.0416 Accept H1 0.57 

INV→ACWI 1 1 2 0.2218 Reject H1 INV↛ACWI 

INV→SBND 1 2 3 0.0022 Accept H1 0.82 

INV→GRNB 1 2 3 0.0000 Accept H1 0.78 

INV→IT 1 1 2 0.1843 Reject H1 INV↛IT 

INV→KLD 1 2 3 0.2598 Reject H1 INV↛KLD 

INV→CLN 1 2 3 0.1850 Reject H1 INV↛CLN 

INV→BTCN 1 1 2 0.5265 Reject H1 INV↛BTCN 

INV→NRG 1 1 2 0.6738 Reject H1 INV↛NRG 

INV→NNRG 1 1 2 0.2094 Reject H1 INV↛NNRG 

BTCN→ACWI 1 1 2 0.5884 Reject H1 BTCN↛ACWI 

BTCN→SBND 1 1 2 0.2567 Reject H1 BTCN↛SBND 

BTCN→GRNB 1 1 2 0.1092 Reject H1 BTCN↛GRNB 



BTCN→IT 1 1 2 0.8631 Reject H1 BTCN↛IT 

BTCN→KLD 1 1 2 0.7440 Reject H1 BTCN↛KLD 

BTCN→CLN 1 1 2 0.2479 Reject H1 BTCN↛CLN 

BTCN→INV 1 1 2 0.1837 Reject H1 BTCN↛INV 

BTCN→NRG 1 1 2 0.1980 Reject H1 BTCN↛NRG 

BTCN→NNRG 1 1 2 0.6824 Reject H1 BTCN↛NNRG 

NRG→ACWI 1 1 2 0.3332 Reject H1 NRG↛ACWI 

NRG→SBND 1 1 2 0.7330 Reject H1 NRG↛SBND 

NRG→GRNB 1 1 2 0.1790 Reject H1 NRG↛GRNB 

NRG→IT 1 1 2 0.4387 Reject H1 NRG↛IT 

NRG→KLD 1 1 2 0.5426 Reject H1 NRG↛KLD 

NRG→CLN 1 1 2 0.1660 Reject H1 NRG↛CLN 

NRG→INV 1 1 2 0.1904 Reject H1 NRG↛INV 

NRG→BTCN 1 1 2 0.4647 Reject H1 NRG↛BTCN 

NRG→NNRG 1 1 2 0.5529 Reject H1 NRG↛NNRG 

NNRG→ACWI 1 1 2 0.2257 Reject H1 NNRG↛ACWI 

NNRG→SBND 1 1 2 0.7827 Reject H1 NNRG↛SBND 

NNRG→GRNB 1 1 2 0.7471 Reject H1 NNRG↛GRNB 

NNRG→IT 1 1 2 0.1739 Reject H1 NNRG↛IT 

NNRG→KLD 1 1 2 0.2426 Reject H1 NNRG↛KLD 

NNRG→CLN 1 1 2 0.0225 Accept H1 0.86 

NNRG→INV 1 1 2 0.0344 Accept H1 1.04 

NNRG→BTCN 1 1 2 0.4864 Reject H1 NNRG↛BTCN 

NNRG→NRG 1 1 2 0.9139 Reject H1 NNRG↛NRG 

Note: To take into account the highest number of potential causal links while minimizing the risk of imprecision, a 10% 

significance level was used for all causality tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6. TYDL causality test results and causal intensities during the Russia-Ukraine war period  
H1 hypothesis 

[X→Z] 
𝐈𝐦𝐚𝐱 𝐤 𝐩 = 𝐤 + 𝐈𝐦𝐚𝐱 Marginal significance levels of the TYDL Decision 𝐞𝐙𝐗 

ACWI→SBND 1 1 2 0.0038 Accept H1 0.72 

ACWI→GRNB 1 1 2 0.0014 Accept H1 0.40 

ACWI→IT 1 2 3 0.5154 Reject H1 ACWI↛IT 

ACWI→KLD 1 2 3 0.6952 Reject H1 ACWI↛KLD 

ACWI→CLN 1 1 2 0.5942 Reject H1 ACWI↛CLN 

ACWI→INV 1 1 2 0.7660 Reject H1 ACWI↛INV 

ACWI→BTCN 1 1 2 0.7602 Reject H1 ACWI↛BTCN 

ACWI→NRG 1 1 2 0.0596 Accept H1 0.91 

ACWI→NNRG 1 1 2 0.0108 Accept H1 0.96 

SBND→ACWI 1 1 2 0.6789 Reject H1 SBND↛ACWI 

SBND→GRNB 1 1 2 0.2766 Reject H1 SBND↛GRNB 

SBND→IT 1 1 2 0.8180 Reject H1 SBND↛IT 

SBND→KLD 1 1 2 0.5689 Reject H1 SBND↛KLD 

SBND→CLN 1 1 2 0.8133 Reject H1 SBND↛CLN 

SBND→INV 1 1 2 0.7191 Reject H1 SBND↛INV 

SBND→BTCN 1 1 2 0.2409 Reject H1 SBND↛BTCN 

SBND→NRG 1 1 2 0.0198 Accept H1 1.29 

SBND→NNRG 1 1 2 0.7394 Reject H1 SBND↛NNRG 

GRNB→ACWI 1 1 2 0.3730 Reject H1 GRNB↛ACWI 

GRNB→SBND 1 1 2 0.0848 Accept H1 1.02 

GRNB→IT 1 1 2 0.4023 Reject H1 GRNB↛IT 

GRNB→KLD 1 1 2 0.2875 Reject H1 GRNB↛KLD 

GRNB→CLN 1 1 2 0.5449 Reject H1 GRNB↛CLN 

GRNB→INV 1 1 2 0.4032 Reject H1 GRNB↛INV 

GRNB→BTCN 1 1 2 0.2184 Reject H1 GRNB↛BTCN 

GRNB→NRG 1 1 2 0.0266 Accept H1 1.31 

GRNB→NNRG 1 1 2 0.7315 Reject H1 GRNB↛NNRG 

IT→ACWI 1 2 3 0.7824 Reject H1 IT↛ACWI 

IT→SBND 1 1 2 0.0159 Accept H1 0.75 

IT→GRNB 1 1 2 0.0063 Accept H1 0.74 

IT→KLD 1 1 2 0.8531 Reject H1 IT↛KLD 

IT→CLN 1 1 2 0.4536 Reject H1 IT↛CLN 

IT→INV 1 1 2 0.5712 Reject H1 IT↛INV 

IT→BTCN 1 1 2 0.9554 Reject H1 IT↛BTCN 

IT→NRG 1 1 2 0.0671 Accept H1 0.96 

IT→NNRG 1 1 2 0.0235 Accept H1 1.02 

KLD→ACWI 1 2 3 0.5752 Reject H1 KLD↛ACWI 

KLD→SBND 1 1 2 0.0025 Accept H1 0.69 

KLD→GRNB 1 1 2 0.0006 Accept H1 0.57 

KLD→IT 1 1 2 0.8801 Reject H1 KLD↛IT 

KLD→CLN 1 1 2 0.3388 Reject H1 KLD↛CLN 

KLD→INV 1 1 2 0.6849 Reject H1 KLD↛INV 

KLD→BTCN 1 1 2 0.7395 Reject H1 KLD↛BTCN 

KLD→NRG 1 1 2 0.1736 Reject H1 KLD↛NRG 

KLD→NNRG 1 1 2 0.0214 Accept H1 0.84 

CLN→ACWI 1 1 2 0.0908 Accept H1 1.38 

CLN→SBND 1 1 2 0.0938 Accept H1 0.98 

CLN→GRNB 1 1 2 0.0453 Accept H1 0.96 

CLN→IT 1 1 2 0.1957 Reject H1 CLN↛IT 

CLN→KLD 1 1 2 0.1824 Reject H1 CLN↛KLD 

CLN→INV 1 2 3 0.6656 Reject H1 CLN↛INV 

CLN→BTCN 1 1 2 0.0811 Accept H1 2.01 

CLN→NRG 1 1 2 0.0115 Accept H1 1.25 

CLN→NNRG 1 1 2 0.0310 Accept H1 1.30 

INV→ACWI 1 1 2 0.0906 Accept H1 1.11 

INV→SBND 1 1 2 0.0614 Accept H1 0.79 

INV→GRNB 1 1 2 0.0332 Accept H1 0.78 

INV→IT 1 1 2 0.2225 Reject H1 INV↛IT 

INV→KLD 1 1 2 0.1747 Reject H1 INV↛KLD 

INV→CLN 1 2 3 0.7712 Reject H1 INV↛CLN 

INV→BTCN 1 1 2 0.0128 Accept H1 1.69 

INV→NRG 1 1 2 0.0099 Accept H1 1.01 

INV→NNRG 1 1 2 0.0184 Accept H1 1.06 

BTCN→ACWI 1 1 2 0.7849 Reject H1 BTCN↛ACWI 

BTCN→SBND 1 1 2 0.7287 Reject H1 BTCN↛SBND 

BTCN→GRNB 1 1 2 0.4320 Reject H1 BTCN↛GRNB 



BTCN→IT 1 1 2 0.8224 Reject H1 BTCN↛IT 

BTCN→KLD 1 1 2 0.6462 Reject H1 BTCN↛KLD 

BTCN→CLN 1 1 2 0.5723 Reject H1 BTCN↛CLN 

BTCN→INV 1 1 2 0.3837 Reject H1 BTCN↛INV 

BTCN→NRG 1 1 2 0.3282 Reject H1 BTCN↛NRG 

BTCN→NNRG 1 1 2 0.2736 Reject H1 BTCN↛NNRG 

NRG→ACWI 1 1 2 0.5967 Reject H1 NRG↛ACWI 

NRG→SBND 1 1 2 0.2100 Reject H1 NRG↛SBND 

NRG→GRNB 1 1 2 0.2135 Reject H1 NRG↛GRNB 

NRG→IT 1 1 2 0.9248 Reject H1 NRG↛IT 

NRG→KLD 1 1 2 0.8256 Reject H1 NRG↛KLD 

NRG→CLN 1 1 2 0.5482 Reject H1 NRG↛CLN 

NRG→INV 1 1 2 0.8321 Reject H1 NRG↛INV 

NRG→BTCN 1 1 2 0.6792 Reject H1 NRG↛BTCN 

NRG→NNRG 1 1 2 0.3509 Reject H1 NRG↛NNRG 

NNRG→ACWI 1 1 2 0.6559 Reject H1 NNRG↛ACWI 

NNRG→SBND 1 1 2 0.3422 Reject H1 NNRG↛SBND 

NNRG→GRNB 1 1 2 0.4079 Reject H1 NNRG↛GRNB 

NNRG→IT 1 1 2 0.8375 Reject H1 NNRG↛IT 

NNRG→KLD 1 1 2 0.8979 Reject H1 NNRG↛KLD 

NNRG→CLN 1 1 2 0.4884 Reject H1 NNRG↛CLN 

NNRG→INV 1 1 2 0.9148 Reject H1 NNRG↛INV 

NNRG→BTCN 1 1 2 0.4947 Reject H1 NNRG↛BTCN 

NNRG→NRG 1 1 2 0.7192 Reject H1 NNRG↛NRG 

Note: To take into account the highest number of potential causal links while minimizing the risk of imprecision, a 10% 

significance level was used for all causality tests. 

 
 
 
 
 
 


