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Available online at www.sciencedirect.com

ScienceDirect
In the past decade, large-scale movements of DNA double

strand breaks (DSBs) have repeatedly been identified following

DNA damage. These mobility events include clustering,

anchoring or peripheral movement at subnuclear structures.

Recent work suggests roles for motion in homology search and

in break sequestration to preclude deleterious outcomes. Yet,

the precise functions of these movements still remain relatively

obscure, and the same holds true for the determinants. Here we

review recent advances in this exciting area of research, and

highlight that a recurrent characteristic of mobile DSBs may lie

in their inability to undergo rapid repair. A major future

challenge remains to understand how DSB mobility impacts on

genome integrity.
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Introduction
In eukaryotes, DNA is packaged into an incredibly com-

plex structure, chromatin, which is regulated by mecha-

nisms such as DNA methylation, histone modification,

histone variant incorporation and nucleosome remodel-

ing. A plethora of chromatin-binding proteins contribute

to chromatin folding thereby allowing the establishment

of a complex and multi-scale organization of the DNA,

ranging from kilobases (kb) DNA loops, to megabases

(Mb) topologically associated domains (TAD) [1]. From

the nucleosome scale to the 3D nuclear architecture,

chromatin acts as the cornerstone of all DNA organization

and regulation machineries, since it directly controls the

accessibility of the DNA sequence, the stiffness of the

fiber as well as its ability to explore the nuclear volume.

While the influence of nuclear organization and chroma-

tin structure on transcription is well established, we just

begin to appreciate its importance in the maintenance of

genome integrity.
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DNA experiences a wide range of damages, among the

most detrimental are DNA double-strand breaks (DSBs)

which can lead to severe genome rearrangements. DSBs

are repaired by two main pathways: homologous recom-

bination (HR) or non-homologous end joining (NHEJ)

[2]. While NHEJ directly ligates the two broken ends

with no or minimal end processing throughout the cell

cycle, homologous recombination depends on the gener-

ation of single stranded DNA (ssDNA) by a process called

resection in the S and G2 phases of the cell cycle. This is

followed by the assembly of a nucleoprotein filament that

searches for a homologous sequence to use as a template.

Recent studies established that the initial chromatin

properties of the damaged locus and its position within

the nucleus impact on the repair pathway and efficiency

(nicely illustrated in Refs. [3�,4], and for review see Ref.

[5,6]). Equally, the formation of a DSB also influences

chromatin compaction and DNA motion in the nucleus

[6]. These changes are likely in line with the chosen

repair mechanism in order to simultaneously favor the

desired outcome (such as homology search) and disfavor

potentially deleterious outcomes (such as translocation).

In this review, we will come back on the evidence that

pinpoint changes in chromatin motion following damage,

from a local, intra-TAD, level to a more global nuclear

scale and discuss their potential function during DSB

repair.

Alterations of the chromatin fiber within TAD
following DSB induction
Following DSB induction, one of the initial events con-

sists in the phosphorylation of the H2AX histone variant

in mammals and of H2A in yeast, referred to as gH2AX

and gH2A respectively. This modification spreads in a

bidirectional, although not necessarily symmetrical, man-

ner over large domains surrounding the breakpoint, span-

ning 1–2 Mb in mammals and 200–300 kb on the smaller

yeast genome [7,8], and giving rise to so-called ‘DNA

repair foci’. Even though the elements delineating

gH2AX domains remain poorly defined, they correlate

with the boundaries of chromosomal domains that exhibit

self-association properties, also known as TADs [9].

gH2AX and gH2A are respectively generated by the

PI3K-like kinases ATM and Tel1/Mec1. In mammals,

genome wide mapping unveiled that ATM is activated on

relatively restricted regions around DSBs ranging from

approximately 2 to 10 kb [10�]. The sharp discrepancy

between the distribution of the kinase (ATM) and its

product (gH2AX), led us to propose the ‘intra-TAD

model’ for gH2AX domain establishment (Figure 1;
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The «intra-TAD» model for gH2AX domain establishment.

Following DNA damage, ATM (in red) is recruited on small regions

flanking the DSB. We propose that the movement of chromatin within

a topologically associated domain (TAD) enables H2AX nucleosomes

to come in close contact with ATM, which would in turn phosphorylate

them (in green) leading to widespread gH2AX domains.
[11]). In this model, the flexibility and local movements of

the chromatin fiber inside the TAD bring distant nucleo-

somes within spatial proximity of ATM. Such a mecha-

nism would ensure the phosphorylation of any H2AX

containing nucleosomes within a TAD, if the signal is

sustained (i.e., if the break persists long enough). This

model is in agreement with the observation that neither

lower levels of H2AX nor a persistent DSB changes the

spreading capability of gH2AX [12]. In addition, the

ability of the yeast Mec1/Tel1 kinases to phosphorylate

undamaged nucleosomes in trans further supports this

model [8].

The reasons why such large chromosomal domains need

to be modified still remain mysterious, especially given

that H2AX is not essential in mice and dispensable for

repair [13], suggesting a more subtle function in the

maintenance of genome integrity. A potential role could

be to restrict DNA ends diffusion and prevent them to

drift away from each other. Computational modeling
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suggests that folding of the chromatin fiber contributes

to maintain the two DNA ends in close proximity [14]. In

agreement, the cohesin complex, with an established role

in chromosome folding [15], inhibits the joining of distant

DNA ends (�3 kb), but not close ends (�100 bp), sug-

gesting that cohesin, and by extension DNA loops, tightly

regulate DNA end trafficking within a chromosomal

domain [16]. Another putative role for the wide spreading

of gH2AX could be in promoting liquid demixing, a phase

separation event leading to a membrane-free compart-

mentalisation of repair foci [17�]. Since electrostatic inter-

actions are at the heart of these phases separation events

[18], extensive accumulation of negative charges caused

by the phosphorylation of H2AX on an entire TAD may

contribute to the formation of a liquid-like droplet. Liq-

uid demixing could thereby provide a special micro-

environment for repair and exclude non-repair proteins.

An alternative, non-exclusive, hypothesis is that wide-

spread gH2AX modification at the TAD level is associ-

ated to changes in chromatin compaction/condensation

regulating long-range trafficking of the damaged locus,

thereby fine tuning repair to maintain genome integrity

(see the following sections).

Modification of chromatin condensation
around DSBs
The exact links between chromatin modification and

DNA condensation are subjected to intense investiga-

tions, and have recently benefited from the use of high

resolution Hi-C and super-resolution microscopy (see for

example [19,20]). Upon DSB induction, multiple lines of

evidence pinpoint some changes in chromatin condensa-

tion. Chromatin undergoes a quick PARP1-dependent

and H2AX/ATM-independent relaxation immediately

after DSB induction [21–25,26�,27] followed by a

H2AX and ATM-dependent recondensation [21–25].

Importantly, this secondary condensation is required

for full DNA damage response (DDR) activation [25].

Together with the reported functions of heterochromatin

proteins in the DDR (reviewed in Ref. [28]), this argues

for a role of chromatin condensation in DSB repair.

Independently, several studies reported that nuclease

accessibility is enhanced at damaged chromatin, in yeast

and mammals, in an ATM and gH2A-dependent manner

[29,30], and that gH2AX foci exhibit a decondensed-like

structure when observed by electron microscopy [22,31].

A model that reconciles all these observations is still

awaited, but it is clear that structural changes of the

chromatin fiber are tightly regulated both in time and

space to fine tune repair events. Building such a model

will necessitate to carefully consider that the nuclear

volume occupied by a locus does not necessarily reflect

its accessibility to nuclease (Figure 2).

From chromatin structure to DSB mobility
Whether the condensation state of the chromatin fiber

directly translates into small or large-scale movement of
www.sciencedirect.com
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Figure 2
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Changes in DNA condensation state following DNA damage.

(A) Laser track induced DNA damage (in green) leads to a rapid (within 3 min) PARP-dependent local chromatin expansion at the damaged region.

This is followed by an ATM-dependent recondensation phase 20–30 min post-damage induction that is required for full DDR activation. (B) DNA

condensation, as defined by the nuclear volume occupied in the nucleus, does not necessarily correlate with chromatin accessibility to nuclease

treatment. Left panel shows a condensed DNA structure that is inaccessible to nuclease while the right panel shows the same level of

condensation that retains accessibility to nuclease treatments.
DNA loci in the nucleus is currently not clear. Neverthe-

less, previous studies argue for a direct relationship

between the compaction state and the ability of an

undamaged locus to roam within a large area [32]. In

the past decades, the mobility of DSBs has been recur-

rently investigated. In yeast, it is now well accepted that

DSB induction increases both the movement of undam-

aged chromosomes and of the DSB itself [33–36], even

though it may not stand true at very early time points [37].

In higher eukaryotes, the issue of DSB mobility has

however been controversial for many years caused by

conflicting results ([22,38–41], see also Ref. [42] for a

recent review). A plausible explanation for these discre-

pancies stems in the nature of the broken locus. This was

first hypothesized by Aten’s team who noticed that DSBs

induced by etoposide, a topoisomerase II inhibitor, were

substantially more mobile than irradiation-induced DSBs,

two methods that likely induce breaks at different posi-

tions throughout the genome [41]. Since then a number of

reports have supported this hypothesis. Differential

motion has been observed between subtelomeric DSBs

compared to a more internal DSB [43��] or between DSBs

induced in active genes compared to intergenic loci [44].

Hence we believe that the position of the DSB on the

genome will dictate immobility, small scale motion or

large-scale movement depending on (1) the initial mobil-

ity of the considered locus and (2) the repair kinetic and

pathway used at this specific locus.
www.sciencedirect.com 
What is the function of such large-scale movements of

DSBs? One obvious possibility is to ensure homology

search, supported by the fact that DSB mobility is abol-

ished/delayed in mutants impeding ssDNA generation

and nucleofilament assembly [33,35] and that long-range

mobility triggers contact between homologous sequences

[43��,44]. However, DSB mobility may also be required to

fulfill additional functions, such as promoting DSB clus-

tering and tethering to subnuclear structures, described

below.

DSB clustering: a wanted or unwanted side
effect of DSB mobility?
A potential outcome of DSB motion that has been

strongly debated, yet recurrently observed, is the ability

of DSBs to ‘cluster’ together. In yeast, the introduction of

two DSBs leads to the formation of a single Rad52 focus,

indicating that multiple DSBs can indeed coalesce within

a ‘repair focus’ [45]. For a while, the controversy about

DSB mobility in mammals fueled the debate on whether

or not this phenomenon is conserved in higher eukar-

yotes, but a significant amount of reports have now clearly

established that DSB clustering also exists in higher

organisms [10�,43��,46–49].

DSBs clustering is undoubtedly a tightly controlled pro-

cess, given the increased risk of translocations it elicits

[48], but its function remains enigmatic. DSB clustering
Current Opinion in Cell Biology 2017, 46:1–8
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may be an unscheduled consequence of the increased

DSB motion within the nucleus and the potential sticki-

ness or liquid droplet properties of repair foci (i.e., fusion

occurs when two foci encounter by chance). However,

DSB clustering could also contribute to the assembly of

repair foci by promoting the formation of liquid droplet,

thereby reinforcing the recruitment of repair factors.

Equally, clustered DSB foci may also reflect

‘sequestration bodies’ where DSBs exhibiting a delayed

repair response accumulate to remain isolated from the

rest of the genome while waiting for an adapted molecular

and cellular response. Notably, this latter hypothesis

echoes the intriguing behavior of persistent breaks in

nuclei described in the following section.

DSBs compartmentalization to subnuclear
structures
Interestingly, DSB mobility also closely relates to the

persistence of a break (reviewed in Refs. [6,42]). Studies

in both budding and fission yeast unveiled that unrepair-

able breaks move towards the nuclear periphery, at the

inner nuclear membrane (INM) via the SUN domain

containing protein Mps3 and at the nuclear pores

[50–53]. Similarly, DSBs induced in sequences inherently

difficult to repair, such as heterochromatin and ribosomal

DNA, display repositioning by moving towards the border

of their initial chromatin environment (i.e., heterochro-

matin focus and nucleolus respectively) both in yeast and

mammals [54,55,56��,57,58,59��,60,61]. Breaks in hetero-

chromatin can even travel longer distances in Drosophila
as they can relocate to the nuclear periphery in a Mps3

homologue and nuclear pore proteins-dependent manner

[62��]. At present, DSB positioning at the nuclear periph-

ery has yet not been observed in mammals, but this

clearly deserves further investigations. Indeed the

nuclear envelope invaginates upon damage induction

[31]. Moreover, the LINC complex which is embedded

within the nuclear envelope and which contains Mps3

homologues (SUN1/2) contributes to DSB mobility in

mouse cells [63��].

Why would persistent DSBs or DSBs inherently difficult

to repair need to be mobile? Several non-exclusive

hypotheses can be envisaged. First, placing a DSB in a

‘safe’ environment, that is, away from repeated copies of

the broken locus, could help to minimize ectopic recom-

bination, as frequently reported ([54,55,56��,57,59��,
62��]; reviewed in Ref. [42]). Second, studies in yeast

and mammals have brought to light that subnuclear

compartments could be specialized in dedicated types

of repair. Indeed, the nuclear envelope and the nuclear

pores act as hubs influencing the repair outcome (i.e.,

either in limiting illicit recombination or favoring error-

prone pathways, such as Break Induced Replication (BIR)

and Alt-NHEJ) [52,64,65�,66,67]. Confining error-prone

pathways to a dedicated nuclear space could limit their

use to non-repairable breaks only, thereby maintaining
Current Opinion in Cell Biology 2017, 46:1–8 
genome stability. Third, a hypothesis that has not been

given close attention is that targeting a DSB to the nuclear

envelope could transmit signals regarding nuclear events

to the cytoplasm in order to coordinate cellular responses

such as apoptosis. Importantly, the LINC complex

mediates the connection between the nucleoskeleton

and the cytoskeleton. In this scenario, a direct interaction

of DSBs with the LINC complex could trigger modifica-

tions of both the nuclear lamina and the cytoskeleton to

coordinate the cellular morphological changes associated

with apoptosis such as blebbing and cell shrinkage. A

precedent in this nuclear/cytoplasm connection already

exists since several studies have shown a role for chroma-

tin structure in cell migration, proposed to be mediated in

part via the transmission of mechanical forces through the

LINC complex (for review [68,69]).

Is DNA motion sustained by random diffusion
or by a directed mechanism?
One burning issue in the field is to determine how motion

of damaged loci is achieved. Two opposite views face off,

which are not necessarily exclusive in our opinion.

Following DSB induction, the chromatin assembled at

the damaged locus undergoes massive modifications lead-

ing to changes in its condensation state. In the first view,

these events contribute to the increased ability of a

damaged locus to roam through random diffusion within

the nucleus. Increased mobility could be provoked by

changes in the entropy of DNA created by the break

itself. Modeling the chromatin fiber as a looped-polymer,

revealed that faster movement, larger roaming area and

even relocalization at the periphery of a subcompartment,

could be explained by the increased degree of freedom of

DNA ends [14]. Another possibility for an increase in

random diffusion could arise from alteration of physical

constraints through the release of anchoring points. This

view is supported by a compelling study from Durocher’s

group, who showed that disruption of the chromosome

anchorage to the spindle pole body is a key determinant

of DSB mobility in yeast [70��]. Finally, modifications of

chromatin structure could also increase local DNA diffu-

sion, as clearly established by the Gasser’s laboratory who

demonstrated direct links between ATP-dependent

remodeling of the local chromatin structure and large-

scale mobility [36,64].

In the second view, DSB mobility is rather driven by a

‘directed’, filament-driven, mechanism. The most con-

vincing evidence is the directed movement over micron-

range distances observed at damaged subtelomeric

regions [43��], one of the first directional DNA motions

ever identified in nuclei (see also Refs. [71–73]). Here,

the directional movement appears to be sustained by a

Rad51 filament, whose role is to seek for a homologous

sequence and synapse with a stationary ‘recipient’ telo-

mere. This evokes the RecA (Rad51 bacterial homolog)
www.sciencedirect.com
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bundle recently observed following DSB induction in

Escherichia coli [74]. Another type of directional

movement could involve nuclear actin, previously

proposed to sustain directed and micron-range motion

of undamaged chromosomes [71,75]. Although its

existence as a filamentous form is still vigorously

debated (reviewed in Ref. [76]), a recent study reported

that actin polymerizes in the nucleus following damage

[77��]. Interestingly, a small fraction of DSBs was shown

to touch nuclear filaments but their actual movement by

live imaging could not be addressed [77��]. Thus, the

possible involvement of a nuclear actin network in DSB

mobility definitely deserves future investigations.

Finally, there are evidences implicating the microtubule

network (MT) in DSB motion in Schizosaccharomyces
pombe and mammalian cells, highlighted through the
Figure 3
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use of MT-destabilizing drugs [53,63��]. In addition,

several kinesins (MT-motor molecules) are also involved

in DSB repair [66,78,79]. It is believed that the MT

network functions on DSB mobility through LINC-

dependent forces transmission between cytoplasmic

MT and chromatin. However, nuclear MT formation

has also been reported in yeast outside of mitosis [80],

raising the need to investigate more thoroughly whether

short nuclear MT (although not yet detected) could also

sustain damaged DNA motion.

Overall, while ‘filament’ driven mechanisms in long-

range DSB motion represent exciting possibilities, exten-

sive additional work will be required to fully appreciate

their contribution, or to definitely exclude their involve-

ment in damaged DNA trafficking.
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Toward a unified model for DSB motion
Although subjected to intense investigations, our view of

the organization of DSB repair within the nuclear space is

still fragmented. A fundamental principle of DSB move-

ment may however reside in the ease of particular breaks

to be repaired (Figure 3). We propose that loci inherently

difficult to repair (such as repeated sequences, over-

compacted chromatin, over-transcribed regions . . . ) lead

to a sustained DDR activation. This triggers profound

changes in chromatin properties surrounding the DSB,

which further sets off long-range motion. Accordingly, the

ATM/Tel1-Mec1 kinases, which are at the heart of chro-

matin remodeling following DSBs, have been repeatedly

involved in the DSB mobility events described in this

review [10�,33,36,44,50,54,56��,57,58,70��,81]. Large-

scale movements could promote the use of an adequate

repair pathway and substrate, the physical sequestration/

isolation of unrepaired broken loci, and the signaling to

the cytoplasm in order to elicit the adequate cellular

response. The use of super-resolution and advanced

time-lapse microscopy, as well as high resolution

genome-wide approaches such ChIP-seq and Hi-C, com-

bined with the expanded toolbox to induce targeted

DSBs at different genomic locations should rapidly give

exciting insights into how DSB mobility impacts on

genome stability.
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