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We consider, and study with elementary mathematics from Calculus, the polyhedral norms x (k) = sum of the k largest among the |x i |'s. Besides their basic properties, we provide various expressions of the unit balls associated with them, and determine all the facets and vertices of these balls. We do the same with the dual norm . * (k) of . (k) . The study of these polyhedral norms is motivated, among other reasons, by the necessity of handling sparsity in some modern optimization problems, as it is explained at the end of the paper.

Introduction

Ask a student about examples of norms in R n ... Very likely he will answer with the usual Euclidean norm . 2 or, with p 1, the general p -norms . p defined as follows:

R n x = (x 1 , x 2 , ..., x n ) → x p = n i=1 |x i | p 1 p .
Drawing the unit balls B p (0, 1) = x : x p 1 in two or three dimensions, seeing how they change when p increases, are interesting and standard exercises. One should however not hide the difficulty of a numerical calculation of x p , for large p, due to the opposition between the powers p and 1/p in the expression ( n i=1 |x i | p ) 1 p . The case p = 1 is a little apart since it is the only case where . p is polyhedral (one also says polytopal ): . 1 is the maximum of a finite number of linear forms, the associated unit ball B 1 (0, 1) is a polytope. Considering the limiting case, p → +∞, is also the opportunity of an interesting exercise: for all x = (x 1 , x 2 , ..., x n ) ∈ R n , lim p→+∞ x p = max i=1,...,n

|x i | .
This result is precisely the reason why the notation x ∞ is used for max i=1,...,n |x i |. Indeed, . ∞ is another norm, polyhedral like . 1 , called the max norm or even the Tchebychev3 norm. When p increases, x p decreases, so that we have the following string of inclusions between associated unit balls: whenever q > p, B 1 (0, 1) ⊂ ... ⊂ B p (0, 1) ⊂ B q (0, 1)... ⊂ B ∞ (0, 1).

All the "intermediate" norms, that are corresponding to p ∈ (1, +∞), are "smooth" ones, in the sense that the boundaries of B p (0, 1) are smooth surfaces. Another point: calculating the dual norm of . p leads to the norm . q , where p and q are related by the equation 1/p + 1/q = 1 (with its extension 1/1 + 1/∞ = 1), so that there is nothing new under the sun.

At this stage, the student we imagined at the start of the introduction to be asked about the norms in R n , could think that the essentials has been said, or even that is the end of the story. Actually, there is an infinity of ways to interpolate or deform . 1 into . ∞ ; one of them is very interesting for the structure and properties of obtained norms, all polyhedral. Their unit balls therefore are all polytopes. The objective of this paper is to study them (and their dual versions) with basic analysis and algebra tools from the undergraduate level. This is again an opportunity to see how mathematical aspects from various fields like linear algebra, convex geometry, combinatorics, real analysis blend harmoniously.

Basic definitions

For an integer k lying between 1 and n, we consider the following realvalued function N k defined on R n :

N k (x 1 , x 2 , ..., x n ) = max {|x i 1 | + |x i 2 | + ... + |x i k | : 1 i 1 < ... < i k n} .
(1) Clearly, N 1 is the . ∞ norm, while N n is the . 1 norm. Actually, N k is also a norm, "intermediate" between them: . ∞ N k . 1 ; it was introduced in [START_REF] Watson | Linear best approximation using a class of polyhedral norms[END_REF] as a tool to solve linear approximation problems. To prove that N k is a norm, the only axiom whose verification requires some reasoning is the triangle inequality. For that purpose, consider a k -uple i 1 < ... < i k for which

N k (x 1 + y 1 , ..., x n + y n ) = (|x i 1 + y i 1 |) + (|x i 2 + y i 2 |) + ... + (|x i k + y i k |) .

Applying the triangle inequality |x

i + y i | |x i | + |y i | for every = 1, 2, ..., k, one gets N k (x 1 + y 1 , ..., x n + y n ) (|x i 1 | + |x i 2 | + ... + |x i k |) + (|y i 1 | + |y i 2 | + ... + |y i k |) N k (x 1 , x 2 , ..., x n ) + N k (y 1 , y 2 , ..., y n ).
From now on, we use the following notations: . (k) for N k , and B (k) for the (closed) unit ball associated with . (k) . In order to avoid confusion and keep old habits, we continue to denote B ∞ (0, 1) (resp. B 1 (0, 1)) the unit ball associated with . ∞ (resp. with . 1 ).

First properties of . (k) and B

(k) 2.1 Polyhedral norms . (k) Since |x i 1 | + |x i 2 | + ...+ |x i k | = max ε i ∈{-1,1} (ε 1 x i 1 + ε 2 x i 2 + ... + ε k x i k )
and since there are

n k = n! k!(n-k)! choices for the k -uples i 1 < ... < i k , . (k) is the maximum of H(n, k) = 2 k n k linear forms, that is: (x 1 , x 2 , ..., x n ) (k) = max 1 i 1 <...<i k n ε i ∈{-1,1} (ε 1 x i 1 + ε 2 x i 2 + ... + ε k x i k ). (2) 
. (k) is therefore a polyhedral norm. The string of inequalities

. ∞ = . (1) ... . (k) . (k+1) ... . (n) = . 1 (3) 
expresses that . (k) k=1,..,n is an increasing sequence of polyhedral norms

interpolating from . ∞ = . (1) to . (n) = . 1 .
Note incidentally that all the H(n, k) linear forms appearing in the righthand side of the formula (2) are relevant, none of them can be removed without affecting the function . (k) .

Just note that H(n, 1) = 2n and H(n, n) = 2 n .

Polyhedral unit balls B (k)

According to (2), the (closed) unit ball for .

(k) , B (k) = x : x (k) 1 , is defined via H(n, k) linear inequalities ε 1 x i 1 + ε 2 x i 2 + ... + ε k x i k 1. (4) 
B (k) is therefore a convex polyhedral set (we use the wording "a polytope").

The string of inclusions

B 1 (0, 1) = B (n) ⊂ ... ⊂ B (k+1) ⊂ B (k) ... ⊂ B (1) = B ∞ (0, 1) (5) 
expresses that B (k) k=1,..,n is an increasing sequence (in the sense of inclusion) of polytopes deforming B 1 (0, 1) into B ∞ (0, 1).

B 1 (0, 1) = B (n)
is the well-known cross-polytope, defined via 2 n linear inequalities

ε 1 x 1 + ε 2 x 2 + ... + ε n x n 1, (ε i ∈ {-1, 1} for all i = 1, ..., n) ,
with its 2n vertices ±e i = (0, 0, ..., ±1, ..., 0) (for i = 1, ..., n) . Its unit ball B (2) is the so-called rhombic dodecahedron or granatahedron (rhombic because all the facets are rhombuses (that is, diamond shaped polygons, from Greek rhombos)) ; it has exactly f 0 = 14 vertices, f 1 = 24 edges, f 2 = 12 facets 4 . According to its definition, i.e., (|x| + |y| 1, |y| + |z| 1, |x| + |z| 1), it can be viewed as the intersection of three mutually orthogonal cylinders with square sections; see the picture below by A. Esculier. More on this polytope can be found on the website mathcurve.com by R. Ferreol.

B (1) = B ∞ (0, 1) is the n-dimensional hypercube [-1, 1] n , defined via 2n linear inequalities ε i x i 1, (ε i ∈ {-1, 1} for all i = 1, ..., n) ,
We ask sometimes our students in Calculus to draw the part of B (2) which is on the positive orthant of R 3 , that is B +

(2) = (x, y, z) ∈ B (2) , x 0, y 0, z 0 ; they have difficulties... It is a polytope with vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1) and (1/2, 1/2, 1/2).

Figure 2. The unit ball B (2) between the hypercube and the cross-polytope.

For n = 4, the "intermediate" norm (x, y, z, t) (2) is also of interest. The associated unit ball B (2) is the so-called 24 -cell polytope (or icositetrachoron or hypergranatohedron), whose visual aspect (i.e., projections on 3-dimensional spaces) can easily be found on websites; it has exactly f 0 = 24 vertices, f 1 = 96 edges, f 2 = 96 two-dimensional faces (also called ridges), and f 3 = 24 facets. Just note on these two examples the illustration of Euler's formula (for polytopes in R 3 ) :

f 0 -f 1 + f 2 = 2 and Euler-Poincaré formula (for polytopes in R 4 ) f 0 -f 1 + f 2 -f 3 = 0.
2.4 Hausdorff distances between B 1 (0, 1) and

B (k) , between B (k) and B ∞ (0, 1) When a compact convex set C is included in another compact convex set D, the so-called Hausdorff (or Pompeiu-Hausdorff) excess of D over C, or Hausdorff distance between C and D, is ∆ H (C, D) = max x∈D d C (x), (6) 
where d C (x) denotes the distance from x to the set C, that is min y∈C x -y .

Here, only the usual Euclidean distance . is invoked.

Consider therefore C = B 1 (0, 1) and D = B (k) . For symmetry reasons, the maximum in ( 6) is achieved for

x = ( 1 k , 1 k , ..., 1 k ), while d B 1 (0,1) (x) = x -( 1 n , 1 n , ..., 1 n
) . This is easy to accept with the expression, to be seen later (formula ( 14)), of

B (k) as the convex hull of B 1 (0, 1) ∪ B ∞ (0, 1 k ). An alternate argument, used for example in [7, Example 1.3.4] for getting at ∆ H (B 1 (0, 1), B ∞ (0, 1)) = n-1 √ n , is to use an expression of ∆ H (C, D) via the support functions σ C of C and σ D of D ([7, Theorem 3.3.6]): ∆ H (C, D) is the maximum of (σ D (d) -σ C (d)) over unit vectors d 5 . Anyway ∆ H (B 1 (0, 1), B (k) ) = n -k k √ n . (7) 
Similarly, ∆

H (B (k) , B ∞ (0, 1)) = (1, 1, ..., 1) -( 1 k , 1 k , ..., 1 k ) , that is ∆ H (B (k) , B ∞ (0, 1)) = √ n k -1 k . (8) 
Indeed

∆ H (B 1 (0, 1), B ∞ (0, 1)) = ∆ H (B 1 (0, 1), B (k) ) + ∆ H (B (k) , B ∞ (0, 1)), (9) 
which is fairly easy to understand, even "visually".

3. Norms, gauges, support functions. Applications to . (k) and its dual . * (k)

Some recalls

Norms are special examples of (finite) positive sublinear functions, that are positively homogeneous positive convex functions, studied in detail in [7, chapter C].

The gauge γ C of a compact convex set C ⊂ R n containing the origin in its interior is the function 

R n x → γ C (x) = inf (λ > 0 : x ∈ λC); we recover C by taking the sublevel-set at level 1 of γ C , that is C = {x : γ C (x) 1}. A norm . is indeed a gauge function, the gauge function of its unit ball B = {x : x 1} . The support function σ C of a compact convex set D ⊂ R n is defined as R n s → σ D (x) = max

Applications to . (k)

The dual norm of . 1 is . ∞ , the dual norm of . ∞ is . 1 . Stated in terms of balls, the polar set of B ∞ (0, 1) is B 1 (0, 1), the polar set of B 1 (0, 1) is B ∞ (0, 1). Expressed in terms of support functions, the support function of B ∞ (0, 1) is . Different paths can be followed for answering these questions... We choose one of them.

Theorem 1. Let Π (k) be the polytope in R n defined as the set of all (α 1 , α 2 , .., α n ) satisfying the following inequalities:

-1 α i 1 for all i = 1, ..., n n i=1 |α i | k. (11)
Then, its support function is precisely . (k).

Here are immediate consequences of Theorem 1 and some additional observations.

-Since (11) is sumarized as α ∞ 1 and

α 1 k
1 , according to what has been explained in § 3.1, the polar set of the unit ball

B (k) for . (k) is B * (k) = kB 1 (0, 1) ∩ B ∞ (0, 1). ( 12 
)
-Since the polytope defined in (12) is the unit ball for the dual norm . * (k) of . (k) (see again § 3.1), we have:

. * (k) = max . 1 k , . ∞ . (13) 
This formula (13) covers the two well-known "extreme" cases, that are for k = 1 and k = n. Indeed, since . ∞ . 1 , we get that

. * ∞ = . * (1) = max . 1 k , . ∞ = . 1 .
Similarly, since . 1 n . ∞ , we get that

. * 1 = . * (n) = max . 1 n , . ∞ = . ∞ .
-By playing with simple calculus rules on polarity dealing with compact convex sets C and D containing the origin in their interior, like (see [3, §6]):

(C ∩ D) * = co(C * ∪ D * ), (co(C ∪ D)) * = C * ∩ D * , (rC) * = 1 r C * whenever r > 0,
where co(S) stands for the convex hull of S, we get from (12) an alternate expression of the unit ball B (k) of . (k) :

B (k) = co(B 1 (0, 1) ∪ B ∞ (0, 1 k )). ( 14 
)
This alternate formulation paves the way to the definition of a norm . (k) when k is no more an integer: for 1 k n, . (k) is the polyhedral norm whose unit ball is the polytope B (k) such as defined in (14). In doing so, we have a "continuous family of polyhedral norms"

. (k) 1 k n , decreasingly interpolating from . ∞ (which is . (1) ) to . 1 (which is . (n) )
, like in the "discrete" case [START_REF] Gaudioso | Feature selection in SVM via polyhedral k -norm[END_REF]. This is what has been studied in the recent work [START_REF] Deza | Polytopal balls arising in optimization[END_REF].

-We have another string of inclusions, a "dual string" to the one displayed in (5):

B ∞ (0, 1) = B * (n) ⊃ ... ⊃ B * (k+1) ⊃ B * (k) ... ⊃ B * (1) = B 1 (0, 1), ( 5 
* ) expressing that B * (k) k=1,..,n
is an decreasing sequence (in the sense of inclusion) of polytopes deforming B ∞ (0, 1) into B 1 (0, 1).

-There are still other expressions of . (k) , one of them being in terms of . 1 and . ∞ alone via the so-called infimal convolution (a sort of mixture) of convex functions. This operation on convex functions is a very basic one in Convex Analysis, as important as the mere addition of functions (cf. [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF]). Given two convex functions f and g, the infimal convolution of the convex functions f and g is a new convex function, denoted as f g, defined as

x → (f g)(x) = inf u+v=x {f (u) + g(v)} . ( 15 
)
When both f and g are sublinear functions, like norms, f g is also the convex envelope of the function min (f, g) ([7, Proposition 1.3.2 in Chapter C]). The construction in (15) is the one used in Functional Analysis to define a new norm "mixing" or "interpolating" two other ones. So, to say things shortly, using techniques from Convex Analysis, like the Legendre-Fenchel transformation on sublinear functions, one gets at

. (k) is the convex envelope of min ( . 1 , k . ∞ ) , (16) 
. (k) = . 1 k . ∞ , that is to say, x (k) = inf u+v=x { u 1 + k v ∞ } . ( 17 
)
The formulation (17) was observed and proved in ([2, Proposition IV.1.5]) 6 .

-In a way similar to what has been carried out in § 2.4, we measure the Hausdorff distance between B * (k) and B ∞ (0, 1), and that between B 1 (0, 1) and B * (k) ; indeed

∆ H (B * (k) , B ∞ (0, 1)) = n -k √ n ; (7*) ∆ H (B 1 (0, 1), B * (k) ) = k -1 √ n . ( 8 
*) Also, ∆ H (B 1 (0, 1), B * (k) ) + ∆ H (B * (k) , B ∞ (0, 1)) = ∆ H (B 1 (0, 1), B ∞ (0, 1)). ( 9 

*)

Proof of Theorem 1. We intend to prove that, for all x ∈ R n , sup

α∈Π (k) α, x = x (k) .
We provide a self-contained proof, using elementary techniques from Calculus.

Let x = (x 1 , x 2 , ..., x n ) ∈ R n . We consider 1 < k < n. Without loss of generality, we may suppose that

|x 1 | |x 2 | ... |x k | |x k+1 | ... |x n | . Let α = (α 1 , α 2 , .., α n ) ∈ Π (k)
, that is satisfying the inequalities in (11). We firstly intend to prove that α, x

= n i=1 α i x i k i=1 |x i | = x (k) .
For that, we begin by noticing that

k i=1 (1 -|α i |) n i=k+1 |α i | , because n i=1 |α i | k. (18) Furthermore, n i=k+1 α i x i n i=k+1 |α i | . |x i | n i=k+1 |α i | |x k | (19) n i=k+1 α i x i k i=1 (1 -|α i |) |x k | , because of (18) n i=k+1 α i x i k i=1 (1 -|α i |) |x i | (20) because |x k | |x i | for all i = 1, ..., k. Consequently, n i=1 α i x i = k i=1 α i x i + n i=k+1 α i x i k i=1 |α i | |x i | + n i=k+1 α i x i k i=1 |α i | |x i | + k i=1 (1 -|α i |) |x i | because of (20), k i=1 |x i | .
We therefore have proved that sup α∈Π (k) α, x x (k) . Consider now a specific α ∈ Π (k) with    α i = 0 for i = k + 1, ..., n α i = 1 or -1 for i = 1, ..., k, according to whether x i 0 or x i 0. 

Thus, α, x = n i=1 α i x i = k i=1 |x i | = x (k) . 3 
Its unit ball B * (2) is the so-called cuboctahedron or heptaparallelohedron (or even dymaxion by some architects); it has exactly f 0 = 12 vertices (of Cartesian coordinates (±1, ±1, 0), with permutations, f 1 = 24 edges, f 2 = 14 facets (8 triangles and 6 squares) ; see the picture below by L. Pournin. (2) between the cross-polytope and the hypercube.

More on this polytope can be found on the website mathcurve.com by R. Ferreol.

For n = 4, something very interesting happens: B * (2) has the same number of vertices, edges, ridges and facets as the 24-cell polytope B (2) . The reason is that one can transform B (2) into B *

(2) via a simple affine transformation in R 4 (a rotation followed by a dilation).

Extreme points, facets, of B (k) and of its dual B * (k)

Due the "polarity relation" between vertices and facets of a polytope and of its polar polytope ([3, Theorem 9.1 and Theorem 9.8]), once we have the number of facets (resp. of vertices) of B (k) , we have the number of vertices (resp. of facets) of B * (k) . There are several paths of getting at them. We choose one, the shortest one we believe; we pull the right thread from the spool, and everything unwinds.

We begin with facets of B (k) and vertices of B * (k) .

Theorem 2. -B (k) has exactly H(n, k) = 2 k n k facets. -B * (k) has exactly H(n, k) = 2 k n k vertices. They are α = (α 1 , α 2 , ..., α n )
in R n in which all the coordinates α i are zero except k of them which are ±1.

Proof. We have observed from the beginning (see § 2.2) that B (k) is defined via H(n, k) linear inequalities

ε 1 x i 1 + ε 2 x i 2 + ... + ε k x i k 1,
built up from k -uples i 1 < ... < i k and ε i ∈ {-1, 1}. None of these inequalities can be removed without affecting B (k) . So, when we have a representation like this, say, for C, Proof. We start with the formulation of B * (k) seen in ( 12):

v i , x 1 
B * (k) = kB 1 (0, 1) ∩ B ∞ (0, 1).
Because 1 < k < n, the intersection operation cannot be removed above. Hence, B * (k) is defined via a conjunction of two series of (irredundant) linear inequalities: the ones defining kB 1 (0, 1) (there are 2 n ) and the ones defining B ∞ (0, 1) (there are 2n). In an explicit format, they are:

± 1 k , ± 1 k , ..., ± 1 k , x 1, 
(0, 0, ..., ±1, ..., 0) , x 1.

Accordingly, we get at all the vertices of B * -First way (a usual one). A way to prove that a given set of points {x 1 , x 2 , ..., x p } provides the vertices of a polytope C is: to show that every element in C is a convex combination of these points, and that none of the points is a convex combination of the others ([3, Theorem 7.2]). Here, due to the representation 14)), the process can be carried out with the points x i = (0, 0, ..., ±1, ..., 0) and ± 1 k , ± 1 k , ..., ± 1 k , with their permutated versions.

(k) * = B (k) .
B (k) = co(B 1 (0, 1) ∪ B ∞ (0, 1 k )) (cf. (
-Second way (based on Linear Algebra). By using a representation of B (k) in the form Ax b like it is done in Linear Programming. Let therefore C be a polyhedron in R n described as follows:

C = {x ∈ R n : Ax b} , (22) 
where A ∈ M m,n (R), m n, none of the row vectors a i is null, and b ∈ R m . For a nonempty subset I of {1, 2, ..., m} (with elements for example), we denote Let x be on the boundary of C; we denote by I(x) the set of indices i ∈ {1, 2, ..., m} corresponding to the so-called active inequality constraints at x, that is

I(x) = {i : a i , x = b i } .
Then, x is a vertex of C if and only if the rank of A I(x) equals n. The method is a bit heavy to apply in the case of C = B (k) in R n for large n and k. An interesting exercise is however to do that when n = 3 and k = 2. Then the 14 vertices of B (2) in R 3 are detected. See below.

At a vertex x of C, one has Card I(x) n; when Card I(x) > n, x is called a degenerate vertex.

The evoked result is a beautiful example of an interplay between Linear Algebra and Geometry of convex sets. Let us see how it applies when n = 3 and k = 2. Our C = B (2) is expressed like in (22) with

A =                     1 1 0 1 -1 0 -1 1 0 -1 -1 0 1 0 1 1 0 -1 -1 0 1 -1 0 -1 0 1 1 0 1 -1 0 -1 1 0 -1 -1                     ∈ M 12,3 (R),
and b = (1, 1, ..., 1) ∈ R 12 .

Take for example x = (1, 0, 0). They are 6 points of that type. We have I(x) = {1, 2, 5, 6}, so = 4, and

A I(x) =     1 1 0 1 -1 0 1 0 1 1 0 -1     ∈ M 4,3 (R).
Indeed, A I(x) is of rank 3. Hence, x = (1, 0, 0) is a vertex of B (2) , a degenerate one (because Card I(x) = 4 > 3 = n).

Take now x = ( 1 2 , 1 2 , 1 2 ). They are 8 points of that type. We have I(x) = {1, 5, 9}, so = 3, and

A I(x) =   1 1 0 1 0 1 0 1 1   ∈ M 3,3 (R). Indeed, A I(x) is of rank 3. Hence, x = ( 1 2 , 1 2 , 1 2 ) is a vertex of B (2) , a nondegenerate one (because Card I(x) = 3 = n).
-Third way (a more advanced one). We know that the support function of

B (k) is the nonsmooth convex function d → σ B (k) (d) = max d 1 k , d ∞ .
The subdifferential, in the sense of Convex Analysis, of σ B (k) at d = 0 is exactly the face of B (k) exposed by the direction d (see [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF]Chapter D]). So, having this exposed face reduced to a singleton (i.e., a vertex of B k and . ∞ have to be taken into account in the "max expression" of σ B (k) above: their gradients yield ± 1 k , ± 1 k , ..., ± 1 k and (0, 0, ..., ±1, ..., 0), with permutations. Remark 4.2. It is a bit surprising that the number of vertices of B (k) does not depend on k... One does not see that, at the first glance, in the definitions given in § 2.2; the intuition for that is more supported by the expression (14) of B (k) .

For more on the combinatorial and geometric properties of the polytopes B (k) , like their k -dimensional faces, their volume and the volume of their boundary, see the full-fledged research paper [START_REF] Deza | Polytopal balls arising in optimization[END_REF].

Links with the search of sparse solutions in optimization problems

In several areas of Applied Mathematics, one has to bound, to control, to optimize, etc. the largest or the sum of a sample of (positive) data x 1 , x 2 , ..., x n ; but it also happens that one has to deal with the sum of the k largest among these x i 's. This occurs in Numerical Analysis, Statistics, Optimization. We precisely focus here on one of these topics, namely the search of sparse solutions in optimization problems. A very recent texbook on sparse solutions of undetermined linear systems and their applications is [START_REF] Lai | Sparse solutions of undetermined linear systems and their applications[END_REF].

Indeed, in various applications of modern Optimization, one is faced with the so-called sparsity constraint on solutions. This happens in data science and machine learning, mathematical imaging (in Astronomy for example), Statistics, but not solely. A measure of sparsity of a solution vector x = (x 1 , x 2 , ..., x n ) in R n is the number of non-zero components x i of x. More specifically, either in the objective function or in the functions defining the constraints of the optimization problem, one has to deal with

x = (x 1 , x 2 , ..., x n ) ∈ R n → Card {i : x i = 0} . (23) 
Various namings and notations are used in the literature for this function: cardinality function, counting function, nnz(x) (the number of non-zeros in x), even pseudo-norm . 0 . This last naming and notation are somehow misleading: . 0 is not a norm, not even a quasi-norm... The notation could let us think that x 0 is the limit of the usual p -norm of x, x p , when p > 0 tends to 0. This is not the case, we however note that x 0 is the limit of x p p when p > 0 tends to 0. Since this notation . 0 is very much spread in the literature, we agree to use it in this section.

A weakness of . 0 is its zero-homogeneity: components like x i = 10 -6 and x i = 10 5 contribute in the same way (by 1) to the number x 0 ; so, one has to bound the considered vectors x in some way or another. To alleviate the wording, we say that a vector x ∈ R n is k-sparse whenever x 0 k.

The questions raised here are: what are the relations between . 0 and . (k) or B (k) ?

One sometimes reads in papers that " . 1 is the best relaxed convex form (that is to say, the convex envelope) of . 0 ". This is wrong, since the convex envelope of the . 0 function on R n is just the (everywhere) zero function... To get something of interest, one has to restrict to balls defined by . ∞ norms. What is behind the alluded to statement is the following relaxation result by M. Fazel (PhD thesis, Stanford University, 2002): the convex envelope of . 0 on the ball {x : . ∞ R} is the function 1 R . 1 (restricted to the same ball). Actually, the result remains true for the quasiconvex envelope (an operation consisting in convexifying all the sublevel-sets of the original function), see [START_REF] Hiriart-Urruty | Convexifying the set of matrices of bounded rank: applications to the quasiconvexification and convexification of the rank function[END_REF] and references therein.

Here are the answers to raised questions, in two forms:

-We have, from [8, Theorem 1]:

co {x : x 0 k, x ∞ 1} = { x 1 k, x ∞ 1} = B * (k) . (24) 
In other words, the convex hull of the set of bounded (by 1) k-sparse vectors x is exactly the unit ball of the dual norm . * (k) of . (k) . There is another "k-norm" which has recently been introduced (in [START_REF] Argyriou | Sparse prediction with the k -support norm[END_REF]) for sparse prediction problems, it is basically defined via its unit ball:

C (k) = co {x : x 0 k, x 2 1} . ( 25 
)
The difference with (24) is the use of the smooth (Euclidean) norm . 2 instead of the polyhedral norm . ∞ for bounding k -sparse vectors. Hence, the norm whose unit ball is C (k) , called "k -support norm" in [START_REF] Argyriou | Sparse prediction with the k -support norm[END_REF], is no more polyhedral, we could qualify it as "semismooth".

-We clearly have that . (k) . ( ) whenever > k. In such a case, it is easy to check (and was observed in [START_REF] Gotoh | DC formulations and algorithms for sparse optimization problems[END_REF]) that

x (k) -x ( ) = 0 (or 0) ⇐⇒ x 0 k. ( 26 
)
In particular, since . (n) = . 1 ,

x (k) -x 1 = 0 (or 0) ⇐⇒ x 0 k.

Said in words, k-sparse vectors are exactly those on which two norms like . (k) coincide. We therefore can substitute the equality constraint c(x) =

x (k) -x 1 = 0 for the "k -sparsity constraint" x 0 k. This is not a relaxation of the sparsity constraint, but an equivalent reformulation indeed.The advantage is that c is the difference of two polyhedral norms (hence convex functions), whose subdifferentials in the sense of convex minimization are amenable to numerical computation. This was the objective in [START_REF] Gotoh | DC formulations and algorithms for sparse optimization problems[END_REF], and in [START_REF] Gaudioso | Feature selection in SVM via polyhedral k -norm[END_REF] for feature selection in SVM.

Conclusion

In this paper, we carried out a pedagogical approach of a collection of polyhedral norms interpolating . 1 into . ∞ , namely the norms . (k) and their dual ones . * (k) . We determined all the facets and vertices of the unit balls associated with them. A motivation for that study was the necessity of handling the so-called sparsity constraint in modern optimization problems (coming from data science and machine learning).

Everything has been done with mathematical knowledge acquired at the undergraduate level.
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 2 vertices (±1, ±1, ..., ±1, ..., ±1).

2. 3

 3 The special case of n = 3 or 4 and k = 2 For n = 3, the only "intermediate" norm is, for k = 2, (x, y, z) (2) = max (|x| + |y| , |y| + |z| , |x| + |z|) .

Figure 1 .

 1 Figure 1. The unit ball B (2) (right) as the intersection of 3 orthogonal cylinders (left).

  s∈D s, x ; here, we recover D by collecting the slopes s of all linear functions minorizing σ D , that is D = {s : s, x σ D (x) for all x}. A norm . is also a support function, that ofB * = {s : s, x1 for all x in the unit ball B of . } .This set B * is called the polar set of B, it is also denoted as B• in the literature. It is actually the unit ball of another norm, called dual norm of . , denoted as . * , and defined ass * = sup x∈B s, x .(10)All these correspondences are explained in [7, pages 146 -151]. The following scheme clarifies and summarizes everything. Norm -→ Take the sublevel-set at level 1 -→ Unit ball B Take the support function ↑ Polarity between unit balls ↓ Take the support function Unit ball B * ←-Take the sublevel-set at level 1 ←-Dual norm The game ends here since (B * ) * = B and ( . * ) * = . .

  1 , the support function of B 1 (0, 1) is . ∞ . So, what about . (k) ? The question which naturally arises is: -. (k) is the support function of what polytope? or, equivalently, -what is the polar polytope of B (k) ? or, equivalently, -what is the dual norm . * (k) of . (k) ?

  .3 The special case of n = 3 or 4 and k = 2 For n = 3 and k = 2, (x, y, z) * (2) = max |x| + |y| + |z| 2 , |x| , |y| , |z| .

Figure 3 .

 3 Figure 3. The unit ball B *(2) between the cross-polytope and the hypercube.

Theorem 3 .

 3 for all i = 1, 2, ..., , C has facets, the polar set C * of C is co {v i : i = 1, 2, ..., }, and all the v i 's are vertices of C * ([3, Theorem 9.1]).Actually, we have seen that in another way of proving Theorem 1: the polar set B * (k) , whose support function is . (k) , is the polytope Π (k) evoked in Theorem 1; its vertices are all the α = (α 1 , α 2 , ..., α n ) ∈ R n in which all the coordinates α i are zero except k of them which are ε i . Now it's the turn of facets of B * (k) and vertices of B (k) . We already know the situation for the two "extreme" k: the cross-polytope B *(1) = B 1 (0, 1) has 2 n facets and 2n vertices; the hypercube B * (n) = B ∞ (0, 1) has 2n facets and 2 n vertices. Let 1 < k < n. Then:-B * (k) has exactly 2n + 2 n facets. -B (k) has exactly H(n, k) = 2n + 2 n vertices. They are (0, 0, ..., ±1, ..., 0) and ± 1 k , ± 1 k , ..., ± 1 k , with their permutated versions.

Remark 4 . 1 .

 41 There are three other ways to find the vertices of B (k) (or B * (k) ). Let us briefly present them for B (k) .

A

  I the matrix extracted from A by keeping only the rows i ∈ I (hence A I ∈ M ,n (R)); b I the vector extracted from b by keeping only the coordinates corresponding to i ∈ I (hence b I ∈ R ).

1 k

 1 (k) ) amounts to the differentiability of σ B (k) at d = 0. It therefore remains to collect all the gradients of the function d → σ B (k) (d) = max d , d ∞ whenever they exist. When 1 < k < n, the two functions . 1
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For faces of a convex set C, we follow the terminology from [7, p. 42 -46]: 0dimensional faces are called vertices (or extreme points) of C; 1-dimensional faces are called edges of C; and so until (n -1)-dimensional faces called facets of C.

As it will be explained in detail later, σ B(0,1)(d) = d ∞ and σ B (k) (d) = max d 1 k , d ∞ .

We even can prove that the infimal convolution is exact at all x ∈ R n , that is to say: the infimum in (17) is achieved. This is a property of utmost importance in treating properties of the inf-convoluted function. For that, consider, without loss of generality, that x 1 x 2 ... x k x k+1 ... x n > 0. Then, for u x = (x 1 -x k , x 2 -x k , ..., x k -x k , 0, .., 0) and v x = (x k , x k , ..., x k , x k+1 , .., x n ), we note that u x 1 + k v x = ( . 1 k . ∞ )(x).