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On démontre que si deux matrices réelles symétriques A et B vérifient B A 0, alors A -1 B -1 ; on le fait de manières différentes, en utilisant les ressources de l'algèbre linéaire ou bilinéaire, en suivant la voie de l'optimisation, en utilisant les résultats de calcul différentiel. Chaque manière de faire a son propre intérêt.

Introduction

Commençons par décrire le contexte de travail. Nous désignons par S n (R) l'ensemble des matrices symétriques réelles de taille n×n. Cet espace vectoriel est fait euclidien grâce au produit scalaire naturel U, V = trace(U V ) = n i,j=1 u ij v ij . A ∈ S n (R) est dite définie positive lorsque Ax, x > 0 pour tout x = 0 dans R n ; ., . désigne le produit scalaire usuel dans R n ; on notera cela (la définie positivité de A) simplement par : A 0. L'ensemble S > n (R) des matrices définies positives constitue un cône convexe ouvert de sommet (ou pointe) l'origine. Dit schématiquement, S > n (R) est à S n (R) ce que le cône R n > = {x = (x 1 , .., x n ) : x i > 0 pour tout i} est à R n . Plusieurs opérations matricielles préservent la définie positivité, mentionnons succinctement : l'addition (A + B est définie positive dès que A et B le sont) ; le passage à l'inverse (A est définie positive si et seulement si A -1 l'est) ; l'addition parallèle (A//B = (A -1 + B -1 )

-1 est définie positive lorsque A et B le sont). Parmi ces opérations, c'est certainement l'addition parallèle qui est la moins connue ; elle fut l'objet d'un problème de concours que nous avions concocté il y a quelques années ( [START_REF] Hiriart-Urruty | Première composition de mathématiques (Filière PC)[END_REF]). L'adhérence de S > n (R) est l'ensemble des matrices dites semidéfinies positives (on dit aussi positives) ; ce sont les matrices A ∈ S n (R) qui vérifient 1 Ax, x 0 pour tout x dans R n . A son tour, ce cône convexe fermé, noté S n (R), est à S n (R) ce que le cône R n = {x = (x 1 , .., x n ) : x i 0 pour tout i}, appelé parfois "orthant positif", est à R n . On notera la semidéfinie positivité de A par : A 0. L'ensemble S n (R), muni de , est un espace vectoriel (partiellement) ordonné.

Les sciences de l'ingéniérie et les applications des mathématiques (via les matrices de variances-covariances en Statistique, les fonctions de Lyapounov en Automatique, les noyaux en Apprentissage automatique (Machine learning), etc.) montrent sans ambigüité que les matrices semidéfinies positives (resp. définies positives) sont la généralisation (matricielle) la plus importante de la notion de réel positif ou de vecteur à coefficients positifs (resp. strictement positifs). L'article de synthèse ( [START_REF] Hiriart-Urruty | A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World[END_REF]) passe en revue les propriétés utiles, en insistant sur les caractérisations et les propriétés géométriques des cônes S > n (R) et S n (R). Une caractérisation inhabituelle de la définie positivité de A fait même répartir les contributions de A et A -1 sur un sous-espace vectoriel H et son orthogonal H ⊥ (cf. [START_REF] Hiriart-Urruty | Une nouvelle caractérisation des formes quadratiques définies positives sur R n[END_REF]). Par ailleurs, l'Optimisation, notamment celle qui apparaît en Statistique, est gourmande de l'utilisation de matrices définies positives ; nous avons eu l'occasion d'en proposer plusieurs exemples dans la rubrique Questions-Réponses de cette revue.

L'objet de la présente note est la transformation A → A -1 de S > n (R) dans lui-même, plus particulièrement sa décroissance stricte, c'est-à-dire : si B A (c'est-à-dire si B -A 0), alors A -1 B -1 . Comme une montagne qu'on aborde par plusieurs faces, cette propriété, certes connue, est démontrée de quatre manières différentes, en s'appuyant chaque fois sur des ressources (résultats, techniques) mathématiques différentes, ce qui en fait leur intérêt. 1ère méthode. Points d'appui : algèbre linéaire, algèbre bilinéaire. C'est certainement la manière de procéder la plus classique, celle qui vient à l'esprit en premier. Puisqu'il n'y a que deux matrices symétriques A et B en jeu, et que l'une est définie positive, on peut penser à utiliser la technique de réduction simultanée par congruence. La forme que nous en prenons est la suivante ([6, Theorem 7.6.4]) : il existe une matrice inversible P telle que

P T AP = diag(a 1 , ..., a n ) et P T BP = diag(b 1 , ..., b n ).
(1)

En clair, modulo le changement de variables y = P -1 x, les deux formes quadratiques en jeu sont réduites à

diag(a 1 , ..., a n )y, y = n i=1 a i y 2 i et diag(b 1 , ..., b n )y, y = n i=1 b i y 2 i . Ici, comme A et B sont définies positives, les a i et b i sont des réels stric- tements positifs. Avoir B A se traduit facilement en diag(b 1 , ..., b n ) diag(a 1 , ..., a n ), c'est-à-dire b i > a i pour tout i = 1, ..., n. Par suite, 1 b i < 1 a i pour tout i, soit diag( 1 a 1 , ..., 1 an ) diag( 1 b 1 , ..., 1 bn ), ce qui, en faisant le che- minement matriciel inverse au précédent, conduit à A -1 B -1 .
Remarques. -Dans cette première méthode, nous avons délibérément contourné l'utilisation de la racine carrée C 1/2 d'une matrice semidéfinie positive C ; mais c'est aussi une voie possible, avec des variantes d'ailleurs.

-On peut facilement se faire piéger en pensant aux valeurs propres de A et B. Si B A 0, et que les valeurs propres respectives de B et A sont rangées en ordre décroissant, λ 1 ... λ n > 0 et µ 1 ... µ n > 0, certes on a λ i µ i pour tout i dès que B A, mais ceci n'est pas une caractérisation de B A.

2ème méthode ( [START_REF] Toda | Operator reverse monotonicity of the inverse[END_REF]). Points d'appui : propriétés du produit scalaire, calcul matriciel.

On se contente ici de démontrer que si B A 0, alors

A -1 B -1 . Puisque Au, u 0 pour tout u ∈ R n , choisissons u = A -1
x -y, où x et y sont quelconques dans R n . C'est évidemment là que réside l'astuce ! On a :

A(A -1 x -y), A -1 x -y 0 pour tout x et y dans R n .
En développant, puis en utilisant le fait que Ay, A -1 x = x, y , cela donne Ay, y -2 x, y + x, A -1 x 0 pour tout x et y dans R n .

Comme B A, on en déduit :

By, y -2 x, y + x, A -1 x 0 pour tout x et y dans R n . (2) 
Il suffit de choisir y = B -1 x dans (2) pour obtenir :

x, A -1 x x, B -1 x pour tout x dans R n .
3ème méthode. Points d'appui : techniques d'optimisation, de calcul différentiel.

Dois-je commencer par avouer que c'est ma méthode préférée ? L'idée est d'obtenir 1 2 A -1 p, p comme valeur optimale dans un problème d'optimisation très simple où apparaît 1 2 Ax, x . De manière plus précise, à partir de la fonction quadratique f : x → 1 2 A -1 x, x , on définit sa transformée de Legendre-Fenchel comme suit : 3 pour tout p ∈ R n (p est une pente de droite dans l'interprétation géométrique de cette transformation, p est un prix dans l'utilisation qu'en font les économistes),

f * (p) = sup x∈R n [ p, x -f (x)] . (3) 
Si, dans le problème de maximisation au-dessus, la fonction f est convexe différentiable et vérifiant lim x →+∞ f (x) = +∞, on arrive aisément à exprimer f * (p) : c'est p, x p -f (x p ), où x p est solution de l'équation ∇f (x) = p. Lorsque cette solution est unique, notée (∇f ) -1 (x), ce qui sera notre cas, on a f * (p) = p, (∇f

) -1 (x) -f (∇f ) -1 (x) . (4) 
C'est cette formulation (4) qu'utilise A.-M. Legendre dans la transformation qui porte son nom, et qui a été généralisée sous le format (3) à toute fonction par le géomètre W. Fenchel. La transformation f ; f * est ainsi appelée "de Legendre-Fenchel". C'est une belle involution dans la classe des fonctions convexes. Dans le cas qui nous préoccupe, elle prend une forme très simple : l'équation d'optimalité ∇f (x) = Ax = p a une seule solution qui est p = A -1 x ; il en résulte que f * (p) = 1 2 A -1 p, p . De par la définition (3), il est clair que f * g * dès que f g. Par conséquent :

1 2 A -1 p, p 1 2 B -1 p, p pour tout p ∈ R n dès que 1 2 Ax, x 1 2 Bx, x pour tout x ∈ R n .
Nous avons en fait démontré très rapidement que : (B A) ⇒ (A -1 B -1 ). Une remarque additionnelle simple permet de conclure à l'inégalité stricte

A -1 B -1 . En effet, si B A, p, x - 1 2 Bx, x < p, x - 1 2 Ax, x pour tout x = 0.
En particulier, pour p = 0, on peut prendre x = B -1 p pour lequel le membre de gauche (une fonction de x) atteint son maximum. On en déduit que sup

x∈R n p, x - 1 2 Bx, x < sup x∈R n p, x - 1 2 Ax, x .
D'où le résultat voulu.

La même définition (3) a d'autres conséquences immédiates, comme celle d'avoir f * (p) + f (x) p, x pour tout (p, x) ∈ R n × R n . Dans le cas de notre exemple, cela donne une inégalité bien connue :

A + A -1 2I n .
Remarque. Une autre voie, toujours dans le même esprit, celui d'exprimer A -1 p, p comme valeur optimale dans un problème d'optimisation simple où apparaît Ax, x est comme suit ([2, Exercice 7.15]) :

Pour tout p = 0, 1 A -1 p, p = inf x∈R n , p,x =0 Ax, x ( p, x ) 2 .
(

La valeur optimale dans le membre de droite de (5) est obtenue pour x = A -1 p. 4ème méthode. Points d'appui : techniques de calcul matriciel, de calcul différentiel.

Soit I un intervalle de R et t ∈ I → A(t) ∈ S n (R) une application dérivable. Il est clair que A (t), limite de matrices symétriques, est à son tour symétrique.

Supposons A (t) 0 pour tout t ∈ I, et voyons ce qu'on peut en tirer.

-Première conséquence : t ∈ I → A(t) est strictement croissante, c'està-dire :

t 1 < t 2 =⇒ A(t 2 ) A(t 1 ). (6) 
Démonstration. Soit, pour x = 0 dans R n , la fonction q x : t ∈ I → q x (t) = A(t)x, x . Alors, q x est dérivable sur I avec q x (t) = A (t)x, x . Comme q x (t) > 0 pour tout t ∈ I (cf. hypothèse faite sur A (t)), q x est strictement croissante sur I. Ainsi,

t 1 < t 2 =⇒ A(t 2 )x, x > A(t 1 )x, x .
Ceci étant assuré pour tout x = 0, on a bien [START_REF] Horn | Matrix Analysis[END_REF]. -Deuxième conséquence. On suppose, de plus, que A(t) est inversible pour tout t ∈ I. Alors, l'application A -1 : t ∈ I → [A(t)] -1 est strictement décroissante, c'est-à-dire :

t 1 < t 2 =⇒ [A(t 1 )] -1 [A(t 2 )] -1 . Démonstration. L'application A -1 est dérivable, comme composée d'ap- plications dérivables, avec (A -1 ) (t) = -[A(t)] -1 A (t) [A(t)] -1 . Comme A (t) est définie positive, il en est de même de [A(t)] -1 A (t) [A(t)] -1 puisque [A(t)] -1 A (t) [A(t)] -1 x, x = A (t) [A(t)] -1 x, [A(t)] -1 x .
Comme précédemment, on en déduit que t ∈ I → [A(t)] -1 est strictement décroissante.

-Une application. Choisissons B A 0 et considérons t ∈ [0, 1] → A(t) = A+t(B -A). Cette application est dérivable, avec : A (t) = B -A 0 pour tout t ∈ [0, 1]. De plus, A(t) est définie positive (comme barycentre convexe de deux matrices définies positives), donc inversible pour tout t ∈ [0, 1]. En conséquence, vu ce qui a été démontré plus haut, l'application

A -1 : t ∈ [0, 1] → [A(t)] -1 = [A + t(B -A)] -1 est strictement décroissante ; en particulier [A(0)] -1 [A(1)] -1 , soit A -1 B -1 .

Conclusion

L'analogie de S n (R) avec R, celle de S n (R) avec R , celle des opérations sur les matrices avec celles correspondantes sur les réels, sont tentantes... mais il faut parfois s'en méfier. C'est l'occasion de signaler quelques ressemblances et dissemblances, pour n 2, ([1], [START_REF] Horn | Matrix Analysis[END_REF]) :

-Le théorème de la borne supérieure comme de la borne inférieure tombent en défaut dans (S n (R), ) .

-Toute suite croissante majorée dans S n (R) converge.

-L'application M → M 2 de S n (R) dans lui-même n'est pas croissante.

-L'application M → M 1/2 de S n (R) dans lui-même est croissante. La décroissance stricte de l'application de M → M -1 de S > n (R) dans luimême est vraie, c'était l'objet de cette note que de la montrer par quelques voies différentes.

-La fonction A 0 → ln(det A), de S > n (R) dans R, est la cousine matricielle de la fonction logarithme usuelle a > 0 → ln a. Elle est strictement concave et son gradient en A, dans l'espace euclidien (S n (R), ., . ), est A -1 ; belle analogie avec ln (a) = 1 a . Toutefois, contrairement au cas où n = 1, cette stricte concavité ne permet d'accéder qu'à une "décroissance sur les produits scalaires", c'est-à-dire : pour deux matrices A et B différentes de S > n (R), comparables ou pas, on a

B -1 -A -1 , B -A 0. ( 7 
)
Signalons pour terminer que la deuxième et troisième manières de faire sont valables en dimension infinie : si A et B sont deux applications linéaires continues, auto-adjointes, bijectives, d'un espace de Hilbert H dans lui-même, alors : (B A) ⇐⇒ (A -1 B -1 ). Références 1. J.-M. Exbrayat, Réponse P23. Revue de Mathématiques Spéciales 8 (avril 1996).