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We present an experimental realisation of the virtual critical coupling in microwave, i.e. the virtual perfect absorption of
an incident wave by a resonant cavity, through the transient time modulation of its amplitude. The design of a waveform
matched to the ignition process of a plasma, characterised in a simplified way by two operating modes over time
(plasma off/plasma on) motivates this first step in the practical realisation of virtual critical coupling in microwaves.
We propose a time domain method for extracting the necessary parameters for the realisation of the virtual critical
coupling, especially the complex frequency called zero of the S-matrix. To this end, we start from the experimental
characterisation of a single-mode and single-access microwave cavity including metal protrusions for future plasma
ignition. Then, the method relies on the analysis of the harmonic response of the overcoupled cavity during three time
periods: the transient under excitation, the steady state under excitation, and the transient after the excitation cut-off.
Finally, an experimental demonstration of the virtual critical coupling is performed.

I. INTRODUCTION

Plasma source motivation and context: Plasma, fre-
quently defined as the fourth state of matter, is an ionised and
macroscopically electrically neutral gas1. The ignition of a
plasma can be achieved by using electromagnetic energy. This
energy is brought in different ways through devices called
plasma sources2. The particularity of such plasma sources
is their operation, i.e. the supply of energy, in two configu-
rations over time: plasma off (transient before ignition) and
plasma on (steady-state after ignition). Generally, the igni-
tion of the plasma can strongly modify the properties of the
plasma source3. In the context of RF or microwave plasma
sources, for instance the ignition of plasma into a microwave
cavity, it can lead to a mismatch between the cavity and the
energy generator, and in the worst case, to the extinction of
the plasma. This mismatch affects the efficiency of the energy
transfer between the generator and the cavity. As the powers
involved can be significant, the reflection caused by the mis-
match can be a problem for the components placed before the
cavity receiving the plasma. Strategies to overcome the reflec-
tion problem are then to absorb and dissipate this reflection by
adding isolators or circulators. More sophisticated matching
techniques are based on careful dimensioning or geometrical
adjustment of the structure, or the use of impedance matching
systems4. All these techniques rely on adjusting the system,
but not the excitation.

Recently, a new type of plasma source was developed.
Inspired by works about time reversal of electromagnetic
waves5, it is based on the spatio-temporal control of mi-
crowaves by the shaping of the temporal waveform transmit-
ted to a cavity. It allows the space-time steering of microwave
plasmas6,7. However, the design of this method mainly con-
siders the plasma-off configuration and does not lead to a
matched cavity in the two operating modes. On the other
hand, the idea of playing on the shape of the excitation of the
plasma source could be extended to match the generator sig-

nal during the ignition process, considering the cavity’s prop-
erties would evolve in time8. Moreover, the ignition phase is
transitory, which leads us to consider transient shapes of exci-
tations.

Towards a matched transient excitation: In this way, also
considering resonant systems such as cavities, the unusual
phenomena of wave scattering, characterised by spectral sin-
gularities, have received significant attention in recent years9.
We can for example mention the theory of reflectionless scat-
tering modes, a general theory for impedance matching of
waves in complex scattering structures and geometries (multi-
channel, overlapping modes, etc)10. Coherent perfect absorp-
tion can then be seen as a special case of this theory, for which
impedance matching is possible by adding dissipative losses
to the scattering system, leading to purely irreversible loss
mechanisms11. However, these concepts refer to stationary
phenomena, and some of them, such as coherent perfect ab-
sorption for which energy is dissipated, do not lead to a sig-
nificant electromagnetic energy rise of the resonator (that is
useful in order to ignite a plasma).

Lately, the idea of virtual absorption12 has provided a new
perspective on the transfer of energy from a generator to a res-
onant structure. This concept highlights transient phenomena
during the coupling of energy to the cavity. It allows to ob-
serve the excitation of a resonator without reflection or trans-
mission, with most of the incident energy stored inside for
the limited time of the excitation. It is based on the temporal
modulation of the resonant structure itself13,14, or on the tem-
poral modulation of the generator12,15–18. The latter option
has been studied experimentally for elastodynamic waves19

and water waves20. It has also been theoretically and numer-
ically applied to the excitation signal of a single-mode cavity
coupled to a single access. Referring to the well-known crit-
ical coupling21, this led to the formulation of the concept of
virtual critical coupling22 (note that a generalization to multi-
access resonator is possible). In this case, the modulation of
the oscillating incident signal consists in shaping an exponen-
tial growth of its amplitude, characterised by a precise com-
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plex frequency. These conditions make it possible to balance
the exponential growth of the signal amplitude that leaks from
the cavity during excitation by destructive interference. This
leads to the transient excitation of the resonant structure with-
out scattering. This compensation is achievable for a discrete
number of complex frequencies, called zeros of the S-matrix.
They are more generally part of what are called singularities
of the S-matrix9,23. Note that we will use the term real fre-
quency to refer to the usual frequency. This real frequency is
actually the real part of the complex frequency. Its imaginary
part reflects an exponential modulation of the signal ampli-
tude.

On extracting S-matrix zeros for experiment: Although
the singularities of the S-matrix have been described
theoretically9,23, many works are interested in how to extract
them for practical scattering systems. The Harmonic Inver-
sion technique24,25 is widely documented and used in order
to identify the resonances, i.e. the poles of the S-matrix, of
a scattering system which may be multi-channel and multi-
modal with overlapping26,27. However, the search for the ze-
ros of the S-matrix via this method is little mentioned28, or
even rejected because it seems less direct29. For the extraction
of the S-matrix zeros, in the article about coherent virtual ab-
sorption of elastodynamic waves19, the S-matrix of the exper-
imental device has been formulated analytically as a function
of frequency. However, the S-matrix of most scattering sys-
tems cannot be easily specified in this way. Recently, many
efforts have been made to encounter the zeros of the S-matrix
from experimental data. Most of them are in fact based on
parametric analysis and optimisation of the absence of scat-
tered waves for real frequencies, i.e. zeros placed on the real
axis. The parametrisation can be done by frequency and atten-
uation sweeps, leading to the extraction of zeros at arbitrary
real frequencies30,31. Other efforts have been made to fix the
real frequency of the zero, via the use of metasurfaces32–36.
However, these solutions imply modifying the resonator prop-
erties at each parametric variation (attenuation with localised
loss modulation or configuration change of the metasurface).
The generalization of these methods is difficult to consider in
order to find complex zeros of a given resonator, which are
sought to achieve virtual absorption. Moreover, the optimi-
sation time might be problematic for the purpose of adapting
the cavity (and not the generator signal) between plasma off
and plasma on configurations. Optimisation and analytical de-
scription are also used to try to identify and observe the coa-
lescence of several real zeros37,38. Finally, we must mention
the very recent work that seems to offer a way to extract the
zeros of the S-matrix from the experimental measurement of
the latter29,39. So far, this frequency method works for multi-
channel resonators and isolated resonances. These different
works show the complexity of the extraction of singularities
of the S-matrix from real practical scattering systems and ex-
perimental measurements. Yet, the realisation of virtual criti-
cal coupling for a given cavity relies on the knowledge of the
zeros of the S-matrix.

Organisation of the paper: The objective of the work pre-
sented in this paper is the experimental demonstration of vir-
tual critical coupling for a microwave resonant cavity. In

Sec. II, we present the single-mode and single-access cav-
ity including metal protrusions on which our experimental
demonstration is based. Sec. III recalls the theoretical bases
associated with the excitation of the S-matrix zero of our cav-
ity. To achieve our main objective, we propose in Sec. IV an
alternative time domain method to extract the complex fre-
quency associated with this zero. This time domain method is
based on the measurement of the resonator S-matrix and, on
the analysis of the harmonic response of the cavity, in line with
the study of virtual critical coupling in the article mentioned
above22. Finally, we show in Sec. V, the practical realisa-
tion of the excitation of a S-matrix zero of our cavity, in other
words, to the authors’ knowledge, a first experimental realisa-
tion of virtual critical coupling in the microwave domain.

II. PRESENTATION OF THE CAVITY

To study virtual critical coupling in practice, we choose a
single-access, single-mode cavity that works in a frequency
band suitable for the instrumentation available to us (see
Sec. V). Recently in our laboratory, B. Fragge et al. were in-
terested in the design of a plasma source at atmospheric pres-
sure in a microwave cavity for the ignition of liquid fuels40.
The microwave cavity for the realisation of a virtual criti-
cal coupling excitation is the one designed and characterised
in the cited article. This versatile aluminium cavity (AU4G
2017A), forms a rectangular parallelepiped, and is coupled to
a microwave generator through a copper coaxial probe partly
surrounded by PTFE. One of the original features of this cav-
ity is the possibility to place concentrators, i.e. metal rods fac-
ing each other, forming a gap in which the electric field is con-
centrated, which favours the ignition of plasma (see Fig. 1b).
For the excitation of the T E012 resonant mode, these are lo-
cated on a maximum electric field. This electric field is even
more concentrated in the gap. This has allowed the ignition of
non-equilibrium plasmas, in air and at atmospheric pressure,
for an incident power of 200 W40.

We propose to consider the cavity in the presence of cylin-
drical concentrators for this study, which sets the resonance of
the desired mode around 2.41 GHz. Moreover, this configura-
tion makes it difficult to express its S-parameters analytically.
This makes us consider an alternative method for the extrac-
tion of S-matrix singularities of this cavity necessary for the
realisation of virtual critical coupling (see Sec. IV). Fig. 1a il-
lustrates the cavity through the 3D electromagnetic simulation
software HFSS. It gives the reader an idea of the architecture
of the structure and the electric field distribution for the T E012
resonant mode.

III. THEORETICAL BACKGROUND

The main objective of this paper is to excite the desired
resonant mode of the cavity described in the previous section
with transient suppression of reflection of the incident signal.
The careful design of the excitation should thus lead to the
full transfer of the incident energy to our cavity. This cavity
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(a)

(b)

FIG. 1: (a) Electric field calculated by the HFSS solver for
resonant cavity excitation around 2.41 GHz. This versatile
cavity for plasma ignition at atmospheric pressure, widely
described in40, measures 136×86×43 mm3 here, and is
excited through a 14 mm long coaxial feeding to allow

overcoupling. Two 20 mm long cylindrical concentrators are
positioned 30 mm from the right wall, at the location of an

electric field peak. The physical parameters to be considered
for the analytical study of the temporal dynamics are also
illustrated. (b) Photograph of the cavity considered in this

paper, with a side face removed. We can identify the
concentrators, also called "initiators" in the article already

mentioned40.

is coupled to a single access, is single-mode in the real fre-
quency band of interest (presence of a single resonance), and
has intrinsic losses.

The temporal coupled mode theory (TCMT)41,42 synthe-
sises, through two equations, the energy exchanges between
the scattering system’s eigenmodes and the coupling of these
modes to one or more incident signals. As detailed in the
literature9,14,22, it can be used to describe the scattering prop-
erties of our cavity over time. Thus, applied to our single-
mode and single-access cavity, we write the dynamic equation
of the resonance amplitude of the mode :

da(t)
dt

= ( jω0 − γint − γext)a(t)+κsinc(t) (1)

and the equation for the global reflected signal :

sre f (t) =−sinc(t)+κa(t) (2)

Fig. 1a illustrates the intrinsic characteristics of the cavity and
those related to the coupling of a signal through its unique ac-
cess. The cavity is characterised by a resonant normal mode
at the angular real frequency ω0 and a decay rate γ . The latter
specifies the way in which the energy stored in the cavity is
lost. A distinction is made between intrinsic losses by dissi-
pation at the walls (γint ) and external losses by the leakage of
energy from the resonator to the coaxial feed (γext ). Each de-
cay rate is associated with a quality factor according to the ex-
pression Q =ω0/2γ . We write a(t) the resonance amplitude41

of the mode, and |a(t)|2 defines the energy stored over time.
Finally, we provide energy via the incident signal sinc(t), and
characterise the coupling of this signal to the cavity by the κ

coefficient. The latter is directly related to the external de-
cay rate by42 κ =

√
2γext . The reflected signal that may result

from this coupling is denoted sre f (t). The squared modulus of
these signals describes the incident and reflected powers re-
spectively. With these details, we see that Eq. (2) describes
the reflected signal as the superposition of two contributions.
The first is linked to the direct reflection of the incident sig-
nal at the cavity access. The second is related to the energy
leakage from the cavity to the coaxial cable.

From these two equations, we can establish the conditions
for cancellation of the reflected signal in time. For a time
convention in e jωt (sinc(t) ∼ e jωt ), and assuming the com-
plex angular frequency plane with ω = ω ′ + jω ′′, we adopt
from the literature the expression of the reflection coefficient
r = sre f /sinc as a function of the excitation complex angular
frequency22 :

r
(
ω

′,ω ′′)= (γext − γint +ω ′′)− j (ω ′−ω0)

(γext + γint −ω ′′)+ j (ω ′−ω0)
(3)

We then see the existence of the singular complex angular
frequency ω = ω0 + j (γint − γext) which allows the cancel-
lation of the numerator of Eq. (3). It thus gives a condition
on the incident signal to achieve cancellation of the reflected
signal during the excitation. This complex angular frequency
is one of the singularities of the reflection coefficient. Since
our cavity has only one access, studying this reflection coef-
ficient is in fact the same as being interested in the S-matrix
of the resonator. This complex angular frequency is then gen-
eralizable as a singularity of the S-matrix, and is called zero
of the S-matrix9. We can write it ωzero. It satisfies the ingo-
ing boundary condition9,23. Thus, an excitation signal of the
form sinc(t)∼ e jω0te(γext−γint )t , should theoretically allow us to
transfer energy to the cavity without reflection, and more gen-
erally without back-scattering, for the time of the excitation.

For γint = γext , this complex angular frequency becomes
pure real and we find the so-called critical coupling condition.
In this case, a sinusoidal excitation (CW) fulfils the ingoing
boundary condition. In order to obtain this equality, it is nec-
essary, for example, to modify the length of the coaxial feed in
the cavity (modification of γext ), or to add absorbers in the cav-
ity (modification of γint ). However, it has been shown that this
excitation is not necessarily the most efficient in terms of en-
ergy stored in the resonant system compared to the amount of
incident energy (excitation efficiency22). In fact, a large part
of the latter is directly dissipated22. Also, during the transient
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phase of the excitation, i.e. a thousand periods of the incident
signal (about 450 ns) for our cavity with the adjusted size of
the monopole, this coupling presents an important part of re-
flected energy. Nevertheless, this strategy is usually sought
and implemented when one wishes to transfer energy to a res-
onant device43.

The originality recently highlighted consists in understand-
ing that even if the cavity is not matched in the classical sense
of the term, i.e. with different intrinsic and external quality
factors, it is possible via the temporal modulation of the exci-
tation, to force the transient absorption of the excitation signal
by the cavity22. Specifically, in the case where γint < γext , for
which the cavity is said to be overcoupled, the time modula-
tion consists of generating an incident signal with an expo-
nentially increasing amplitude over time. We then speak of
virtual absorption12,15–17,19, or in reference to the usual case
mentioned above, of virtual critical coupling22. An excitation
whose amplitude increases exponentially does not seem to be
sustainable over long periods of time. However, it presents
the advantage of not necessarily having to seek to modify the
resonant system to limit the reflection. Also, virtual critical
coupling seems to pave the way to the matching of the excita-
tion signal to a cavity whose properties would evolve in time,
for example during the ignition of a plasma8. Unlike the clas-
sical critical coupling, it allows an excitation efficiency close
to unity22.

Moreover, let us note that the complex angular frequency
ω = ω0+ j (γint + γext) makes it possible to cancel the denom-
inator of Eq. (3). We have here a new singularity of the S-
matrix, called the pole, and satisfying the outgoing boundary
condition9,23. In other words, the cut-off of the excitation,
thus the absence of incident wave on our cavity, will lead to
the release of the energy stored in the cavity during the ex-
citation period. This takes place according to an exponential
decay at this complex angular frequency.

Finally, in the case of a cavity with no intrinsic losses (γint =
0), time-reversal symmetry imposes that the poles and zeros
of the S-matrix are conjugate. When the cavity has intrinsic
losses, as in the case of our cavity, this symmetry is broken
and the poles and zeros are no longer conjugate9.

IV. TIME DOMAIN METHOD TO EXTRACT S-MATRIX
SINGULARITIES OF THIS CAVITY FROM THE
EXPERIMENTALLY MEASURED S-MATRIX

Now that we have recalled some theoretical bases, we wish
to determine the pole and the zero of the S-matrix for the
T E012 resonant mode of our cavity. The final objective is to
excite the zero and realise virtual critical coupling. It requires
the extraction of the intrinsic and external decay rates associ-
ated with our scattering system, consisting of the cavity and
its coaxial feed, and for the resonant mode considered. In
this section, we propose a time domain method for extracting
these complex angular frequencies from the S-matrix of the
cavity. This approach is based on several steps summarised in
Table I which we will detail through the direct application to
the cavity described previously.

TABLE I: Proposed time domain method for the extraction
of the S-matrix singularities of our cavity for the purpose of

exciting a S-matrix zero. F refers to Fourier transform.

Step Description

A. Identification of
ω0

S11 overcoupled
→ Choice of ω1
→ sre f (t) = exp( jω1t)∗ s11(t)
→ F

[
sre f cut−o f f (t)

]
→ ω0

B. Identification of
γint and γext

r(t) = sre f (t)/exp( jω0t)
→ tr=0 and r∞

→ γint and γext

C. Verification of
zero reflection

ωzero = ω0 + j (γint − γext)
ωpole = ω0 + j (γint + γext)

→ Plot of sre f (t) = exp( jωzerot)∗ s11(t)

A. Identification of pole and zero real part ω0

As seen in Table I, the identification of ω0 is done through
different operations. Recall that the theory expresses ω0 as the
real part of the pole and zero of the single-mode cavity. The
first step consists in acquiring the spectrum of the S-matrix.
Here, it involves measuring the modulus and phase of S11(ω)
in the frequency band of interest. Fig. 2 illustrates the spec-
trum of S11 that we measured with the Keysight E5071C Vec-
tor Network Analyser (VNA) over the 2.2 to 2.6 GHz band.
The modulus indicates a cavity resonant mode around 2.41
GHz, with a minimum at −1.2 dB. This means a significant
steady-state reflection level for CW excitation. We are clearly
not in the presence of a critically coupled cavity, for which this
modulus of the reflection coefficient would be much lower.
The phase must then be observed to understand that we are
in the presence of an overcoupling of the cavity. Indeed, for
an undercoupling regime, it is the contribution of the direct re-
flection at the access that dominates. This contribution and the
incident signal are 180◦ out of phase. Thus, the phase of S11
at resonance on the spectrum remains at ±π . In contrast, for
a case of overcoupling such as this one, it is the contribution
of the leakage from the cavity to the coaxial cable that con-
stitutes the major part of the global reflected signal. Then we
see around the resonance a continuous evolution of the phase
between +π and −π . It is particularly the phase transition
through 0 that is of interest for the excitation of the zero of the
S-matrix.

Two intermediate steps are necessary to obtain the real part
of the pole and the zero. We know that the pole associated
with the excited mode corresponds to the complex angular
frequency of the release signal observed in the absence of an
incident wave (outgoing boundary condition23). This com-
plex angular frequency is unique whatever the real or com-
plex angular frequency of the initial mode excitation signal,
considering a single-mode resonator (see supplementary ma-
terials, sec. I). To obtain the release signal associated with the
mode, the first of these steps is to fill the cavity. For example,
we choose a harmonic excitation sinc(t) = e j2π f1t at the real
frequency f1 = 2.4085 GHz corresponding to the zero phase
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FIG. 2: Measured reflection coefficient S11 spectrum of the
electromagnetic cavity.

of the measured S11. The response sre fnum(t) of the cavity to
this excitation, using the measured S11 as a transfer function,
can be written sre fnum(t) = sinc(t) ∗ s11(t) in the time domain,
which gives in the frequency domain by application of the
Fourier transform F :

F
[
sre fnum(t)

]
= F [sinc(t)] ·S11( f ) (4)

We numerically construct this signal in the time domain by in-
verse discrete Fourier transform. We obtain a response similar
to the one plotted on Fig. 3 (not for f1 in this figure, see sup-
plementary materials sec. I for the one corresponding to the
f1 excitation). Note that for all such chronogram in the article,
the yellow part corresponds to the reflected signal before exci-
tation cut-off, i.e. the time interval during which the incident
signal in blue is different from zero. The red one corresponds
to the reflected signal after excitation cut-off (the incident sig-
nal is zero). For each of the figures, the reflected signal is cal-
culated or measured at once, the colour differentiation (yellow
and red) being only a visual distinction. Moreover, the cho-
sen time interval does not allow the oscillations of the signals
(with a period of about 0.4 ns) to be visually distinguished.

Then, to identify the real part of the pole, we carry out a
spectral study of the signal scattered by the cavity after exci-
tation cut-off (in red). The observed exponential decay, char-
acterised by a time constant of 15.59 ns, is displayed in Fig. 4
as a Lorentzian in the frequency domain. This is centred on
a real frequency, invariant to the way the cavity mode was
excited (real or complex angular frequency - see supplemen-
tary materials sec. I). It is the real part of the pole of the
S-matrix, and by identification thanks to the theory for our
case, that of the zero. We note it ω0 = 2π f0, with in our case
f0 = 2.41135 GHz. Let us add that the linewidth ∆ω = 2π∆ f
of the Lorentzian is proportional to the imaginary part of the
pole (∆ω = 2Im[ωpole]), and inversely proportional to the time
constant of the decay (τ = 1/Im[ωpole]).

FIG. 3: Numerical construction of the temporal response of
the cavity from a CW excitation at the real part of the

frequency of the singularities at the studied resonance. In the
legends, ωexci = 2π fexci refers to the frequency of the

incident excitation signal.

FIG. 4: Frequency spectrum of the scattered signal after the
CW excitation cut-off (in red on Fig. 3). The centre

frequency of the Lorentzian corresponds to the real part of
the pole (and consequently the zero),

ω0 = 2π.Re[ fpole] = 2π f0. The imaginary part of the pole is
estimated here from the Lorentzian linewidth ∆ f .

B. Identification of the decay rates γint and γext

Now, let us consider the peculiar case of the harmonic
excitation of the cavity at the real part of the pole and the
zero, sinc(t) ∼ e jω0t , without stored energy at t = 0. Eqs. (1)
and (2) of the TCMT applied to our cavity allow us to for-
mulate the temporal evolution of the reflection coefficient



6

r(t) = sre f (t)/sinc(t) as a function of the decay rates:

r(t) =
2γext

γext + γint

(
1− e−(γext+γint )t

)
−1 (5)

We can also build up the reflected signal during excitation as-
sociated with this special case, using the numerical method
described earlier. Fig. 3 shows the result of this construction.
The signals are normalised by the maximum amplitude of the
incident signal. The envelope of the normalised reflected sig-
nal (in yellow) then represents the time evolution of the re-
flection coefficient. This evolution is expressed analytically
by Eq. (5). We can observe a transient period characteristic of
overcoupling22. Indeed, the reflection decreases until an in-
stant of zero reflection, before increasing to reach the steady
state. At the cut-off of the excitation, we find the exponen-
tially decaying amplitude signal associated with the pole of
this cavity resonance (in red). Note that this type of response
to CW excitation, including during the transient phase, could
be observed through the experimental set-up described in the
next section, and can be used directly to fit the theory at the
cost of more noise and uncertainty (see supplementary mate-
rials sec. II).

Then, from Eq. (5), we derive a system of two equations
with two unknowns to calculate γint and γext . A first equation
comes from the knowledge of the instant tr=0 for which the
reflection coefficient cancels during the transient phase, r(t) =
0. The second equation is found by considering the reflection
coefficient in the steady state, i.e. the measurement of r∞ for
t →∞ during the excitation. From these equations, we identify
the intrinsic decay rate:

γint =
1− r∞

2tr=0
ln
(

1+ r∞

r∞

)
(6)

and the external decay rate :

γext =
1+ r∞

2tr=0
ln
(

1+ r∞

r∞

)
(7)

Finally, the knowledge of these decay rates leads us to find
the imaginary part of the pole (which could already be cal-
culated using the spectral analysis of the exponential decay
of the cavity leakage signal at the excitation cut-off) ω ′′

pole =
γext + γint , and to calculate the imaginary part of the zero
ω ′′

zero = γint − γext , which we are mainly interested in. Table II
summarises the quantities calculated through our extraction
time domain method.

C. Verification of zero reflection with a plot

The last step is to verify the validity of the identified zero by
a new numerical construction. As before, we calculate from
the spectrum of S11 measured with the VNA, the signal re-
flected over time by the cavity for the ideal excitation of the
zero of the S-matrix. This ideal incident signal, constructed
numerically, is of the form sinc(t) = s0e j(γext−γint )te jω0t , with
s0 the amplitude of the incident signal at t = 0. The result is

TABLE II: Characteristics of the cavity found by our
extraction time domain method. Here, the sign of the

imaginary parts of the pole and the zero is imposed by our
convention in e jωt . Injected into this, we find an

exponentially decaying amplitude for the pole, growing for
the zero23.

ω0 2π·(2.41135 GHz)
tr=0 11.86 ns
r∞ 0.8773
Qint = ω0/(2γint) 1926
Qext = ω0/(2γext) 126
ω ′′

pole 2π·(0.01021 ·109) Np/s
ω ′′

zero -2π·(0.00896 ·109) Np/s
τ 15.59 ns

FIG. 5: Numerical construction of the temporal response of
the cavity from the zero excitation. Here, the initial peak
amplitude of the incident signal is set to 0.5 mV, and the

duration of the excitation is set for a final peak amplitude of
0.3 V.

plotted in Fig. 5. We observe the absence of reflected signal
during the excitation period (in yellow), confirming the possi-
bility of exciting a zero of the S-matrix of our cavity. Finally,
at the cut-off of the excitation, we observe, as in the case of the
CW excitation, the decaying signal that leaks out of the cavity
through the pole associated with the resonance under study.
The observed exponential decay has the same time constant
as in Fig. 3, also calculated in Table II.

In this section, we have shown a time domain method for
extracting the pole and the zero of a single-channel, overcou-
pled, single-mode cavity over a fairly wide frequency band.
This extraction has been carried out from the S-matrix via its
spectral measurement with a VNA. This time domain method
enables to verify that proper design of the incident signal
should allow the virtual critical coupling to be achieved, even
in the presence of intrinsic losses. It relies on the analysis
of the temporal waveform of the reflected signal in order to
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extract S-matrix singularities, with the theory hypothesis that
the pole and zero real parts are similar (see Eq. (3)). Hence,
it seems of particular interest for analysing time-varying cav-
ities, such as cavities used for plasma ignition3,8. It is the
practical way of shaping the incident signal that will interest
us in the following part in order to really excite this zero.

V. EXPERIMENTAL GENERATION OF THE CAVITY
S-MATRIX ZERO

A. Experimental set-up

Fig. 6 shows a schematic and a picture of the experimen-
tal set-up for the purpose of performing and characterising the
zero excitation for mode T E012 of the cavity presented in the
plasma context, around 2.41 GHz. For this purpose, our ex-
perimental work relies on Keysight’s 33600A Arbitrary Wave-
form Generator (AWG), offering a bandwidth of 120 MHz.
This generator is used to design the envelope of the incident
signal. This envelope can be found in green in Fig. 7. A Tek-
tronix TSG4104A RF signal generator is used to generate the
carrier of the incident signal. With a resolution of 1 µHz in the
950 kHz - 4 GHz band, it will be able to generate the harmonic
signal at the real part of the zero with the required accuracy.
The final construction of the incident signal goes through a
Polyphase QM2040A modulator, operating between 2 and 4
GHz. It receives the AWG envelope on the I channel, with the
Q channel shorted, and performs the carrier modulation.

To characterise the validity of the zero excitation, we wish
to measure the signals incident on and reflected by the cavity.
We have therefore chosen to create two measurement chan-
nels, incident and reflected, by the presence of a power split-
ter, operating between 2 and 4.2 GHz. The information carried
by the signal at the output of the modulator is therefore found
on both channels, but attenuated by about 3 dB. The output
of the power splitter to the incident channel is fed directly to
the oscilloscope through coaxial cables. The signal output on
the other channel of the power splitter should be directed to
the cavity. A circulator operating between 2.4 and 2.6 GHz
is placed just before the cavity to direct the reflected signal
to the oscilloscope. It also isolates this measurement from a
contribution from the incident signal. An isolator is placed
between the power splitter and the circulator to isolate the in-
cident channel from a possible return of the reflected signal
from the cavity. This isolation is 32 dB at 2.41 GHz. There-
fore, this experimental set-up allows us to measure incident
and reflected signals that are not affected by external contri-
butions. Finally, the Keysight MSO9254A oscilloscope with
a bandwidth of 4 GHz and a sampling frequency of 20 GSa/s
makes it possible to measure our signals with a vertical reso-
lution of 1 mV and a horizontal resolution of 1 ps.

The modulator accepts on its channel I a signal with a max-
imum peak amplitude of 0.32 V. It constrains the exponential
growth of the incident signal amplitude (characterised by the
envelope generated by the AWG) to stop once this value is
reached. In addition with the oscilloscope resolution that con-
strains the initial amplitude of the incident signal, this also

limits the duration of the excitation, which is about a hun-
dred nanoseconds according to the numerically constructed
signal, seen Fig. 5. Characterisation of the different elements
of the microwave circuit (consisting, as shown in Fig. 6, of an
isolator, a circulator, coaxial cables, ...) has been conducted,
in term of losses and time delay. Therefore, we recover the
amplitudes of the incident and reflected signals at the coax-
ial connector of the cavity access. Temporal synchronisation
was achieved by generating a CW signal at the real part of the
zero over 400 ns, and for the cavity replaced by a short cir-
cuit. The signal measured on the reflected channel is then the
180◦ out of phase image of the signal measured on the inci-
dent channel, and delayed by 2.4 ns, more or less two periods
(±0.83 ns). Taking into account these effects, the incident
and reflected signals at the cavity access can be plotted and
compared in term of amplitude and time delay. Thanks to the
temporal resolution of the oscilloscope, we can also verify the
phase correspondence of the signals.

B. Practical results

Fig. 7 illustrates the result of our measurements with the ex-
perimental set-up, for the excitation of a zero of the S-matrix
of our cavity. In a similar way to the figure constructed nu-
merically earlier, we observe a reflected signal that is almost
zero during the excitation, whereas the incident signal sees its
amplitude increasing over time. It therefore brings more and
more energy to the cavity. We show here the feasibility of the
excitation of a zero of the S-matrix for a microwave device
and then the realisation of virtual critical coupling.

The incident signal used for this experimental demonstra-
tion has a complex frequency fexci = 2.4090− j0.0090 GHz.
Recall that for our e jωt convention, this complex frequency
with negative imaginary part corresponds to an exponentially
growing amplitude. The real part has been slightly tuned to
clearly identify the time tr=0 for an harmonic excitation. For
real frequencies different from even 1 MHz, the reflection was
no longer exactly zero at this time (see supplementary mate-
rials sec. III). However, we found an imaginary part of the
complex excitation frequency similar to the one previously ex-
tracted, thus validating our extraction time domain method.

We show the envelope generated by the AWG, duplicated
for negative amplitudes in Fig. 7. The amplitude of this en-
velope takes into account the correction related to the atten-
uations undergone if it propagated to the cavity access. The
cut-off of the excitation is represented by the vertical dotted
line. It serves as a reference for identifying the signal reflected
during the excitation (in yellow) and the one measured once
the excitation is cut off (in red). Thus, we can see that for the
time during which the incident signal can be shaped accord-
ing to the zero, the measured reflected signal has an amplitude
in the measurement noise. This can be viewed as the absence
of scattering sought by the virtual critical coupling. As soon
as the incident signal returns to zero, the energy stored in the
cavity is released. The associated signal measured on the os-
cilloscope follows an exponentially decaying amplitude. It is
characterised by a time constant identical to that calculated by
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(a)

(b)

FIG. 6: (a) Scheme and (b) photograph of the experimental
set-up.

the numerical reconstruction. The decay therefore seems to
take place for the pole associated with this resonance mode.

VI. CONCLUSION

The experimental implementation of virtual critical cou-
pling to a microwave resonant cavity has been demonstrated.
To achieve this, we proposed a time domain method for ex-
tracting the scattering system parameters. This relies on the
S-matrix measurement and the analysis of the cavity harmonic
response over time. It allows the calculation of the singular
complex angular frequencies that are the poles and zeros of the
S-matrix, taking into account the effect related to the losses in
the cavity. The cavity used was not specifically designed for
the needs of this experiment. It is therefore possible to repli-
cate our approach for other types of single-access overcoupled
cavities of arbitrary shape, in a frequency band in which the

FIG. 7: Observation of a zero of the S-matrix of our cavity
through our practical set-up.

resonance modes are isolated.
Moreover, the experimental demonstration of the excitation

of an overcoupled cavity without reflection can lead us to con-
sider the principle of a new efficient strategy of plasma igni-
tion in cavity and maybe to a transient time control of the cav-
ity behaviour during plasma ignition process. This strategy
would no longer be based on a modification of the system2,4,
but rather on a temporal modulation of the energy generator.
This principle reinforces the need to overcome the lossless
hypothesis for the realisation of virtual absorption. The cavity
will indeed see its load changing during the ignition process,
and through it, the intrinsic losses of the cavity and the cou-
pling regime. In addition to the implementation of this match-
ing strategy, the temporality of the excitation and the power
level to be reached for the plasma breakdown seem to be ma-
jor additional challenges to be met, notably from a hardware
point of view. A detailed and comparative energy analysis of
the different coupling options (critical coupling, virtual criti-
cal coupling), among others in the presence of intrinsic losses,
may help to better define the limits. This study for the igni-
tion of plasmas in resonant cavities should be the object of our
future work.

SUPPLEMENTARY MATERIALS

See (supplementary materials link) for a detailed study of
the scattered signal at the excitation cut-off. We also show
the measurements made for CW excitation using our experi-
mental set-up. We complete our experimental results on the
zero excitation by a comparison with excitations at complex
frequencies close to the zero.
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