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Pythagoras’ Theorem for Areas

Jean-P. Quadrat, Jean B. Lasserre, and Jean-B. Hiriart-Urruty

The theorem of Pythagoras relating the squares of the lengths of the sides of a right
triangle is one of the key results in elementary geometry. At a more advanced level, one
learns that the Pythagorean theorem extends to prehilbert spaces, but it still expresses
a relation among lengths of vectors.

We incidentally came across a result relating the areas of the faces of a right tetra-
hedron whose analogy with the Pythagorean theorem is striking. Here it is.

Theorem 1.  Let O ABC be a tetrahedron with three perpendicular triangular faces
OAB, OAC, OBC, and “hypotenuse-face” ABC; see Figure 1. Let S, S, S denote

the areas of the perpendicular faces and let S denote the area of the hypotenuse-face.
Then

§? = 5%+ 52+ 82 (1)

.
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Figure 1. The right tetrahedron OABC

Theorem | is very easy to prove; we derive a generalized version in the n-
dimensional context. :

When we came across the result of Theorem 1, which we propose to call the
Pythagorean theorem for areas, we found it noteworthy and asked colleagues: is it
original (of course we thought no ...)? is it well-known (maybe ...)? does it bear a
name (who knows . ..)? After several unsuccessful attempts, we finally found mention
of this result; here is a brief historical account.

The result of Theorem 1 indeed appears in some old books of geometry, in chapters
devoted to “Applications of vector calculus to analytical geometry in 3-dimensional
space”; the areas are there calculated via vector products. A sample reference is [8,
pp. 121-123]. According to [4, p. 98], it was very likely known to R. Descartes.
Theorem 1 also appears in [7] (a “bible” for results in elementary geometry) where
(p. 911-912) it is attributed to J.-P. Gua de Malves (published in his memoirs of 1783).
However, the analogy with the Pythagorean theorem for lengths is nowhere pointed
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out. Later on, in his famous work [3], L.N.M. Carnot states the result of Theorem 1
and refers to it as a “known result” [3, section 263, p. 311]; he also provides an exten-
sion to any convex polyhedron ([3, section 268, p. 313]), which is a generalization of
the cosine theorem for triangles.

We now propose a generalization of Theorem 1 to n-dimensional spaces. Let the
standard Euclidean affine space R” be marked off with (O; ¢, e, ..., ¢,), where
{¢), ¢r. ..., ¢,} is an orthonormal basis of the vector space R". We consider there the
compact convex polyhedron (or polytope, or n-simplex) €2, described as follows:

n

Q= (x.,...,xn)eR":Zﬁg1,x,zo, fotallfes L, ..., " )

im1 i
where a; > O foralli =1, ..., n.
The “multi-orthogonal” €2, is just a generalized version of the right tetrahedron of

Theorem 1, and its structure from the convexity viewpoint is well-known ([1, p. 84],
[2, p. 77-79], [6, p. 53]). Indeed, £2,, has

* n + 1 vertices: the origin O and the n points A; defined as O A;= g;¢; for all i =
125 imen n.

n+ 1 (n — 1)-dimensional faces (also called facets): n of these facets contain the
origin (obtained as convex hulls of O and n — 1 points among the A;’s); we call
them facets issuing from the origin. One facet does not contain the origin (obtained
as the convex hull of the A;’s); we call it hypotenuse facet.

The (n — 1)-dimensional content of the facets of €2, is called area, in analogy with
the usual case with n = 3. The n-dimensional content of £2,,, called the “volume” V of
2, can be computed from the areas of facets by the following formula [1, p. 87]:

| . .
V = — (area of a facet) x (height from the vertex outside the considered facet). (3)
n

Theorem 2. (an n-Dimensional Version of the Pythagorean Theorem for Areas)
For the compact convex polyhedron Q, in (2), the square of the area of the hypotenuse
facet is equal to the sum of the squares of the areas of the n facets issuing from the
origin.

For example, with n = 4, Theorem 2 gives a relation among volumes (in the usual
sense of the word) of the four 3-dimensional faces: V? = V2 + Vi + Vi + V..

Proof. To follow the proof, the reader is invited to take n = 3 and keep in mind Fig-
ure 1. According to (3), if S; denotes the area of the facet issuing from the origin
“opposed” to the vertex A,

1 — 1
V = —S,' X HOA,” = —S,'Cl,'. (4)
n n

The height from the origin O to the hypotenuse facet is the distance from O to the
affine hyperplane whose equation is Y _;_, xi/a; = 1 (the one containing all the ver-
tices Ay, Ay, ..., A,); it equals (37, a; %72, Hence, if S denotes the area of the
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hypotenuse facet of €2,,, we infer from (3) that

I " =172
V = -S§Sx — .
n ; a? )
We infer from (4)
1
S,?:n?vz—z foralli = 1,...,n
a;
and from (5)
n 1
2 _ . 2y2
2 =n’v Z; . u
=1 %
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