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Abstract

Dung’s Abstract Argumentation Framework has been generalized in
various directions. We combine two of these generalizations: Bipolar
Argumentation Frameworks (BAFs), where a relation representing
supports between arguments is added, and Incomplete Argumen-
tation Frameworks (IAFs), where the existence of arguments and
attacks may be uncertain. We discuss how the notion of comple-
tion of IAFs can be adapted to take into account the nature of the
support relation, providing a couple of alternative definitions. After
that, we analyse the impact of choosing among these alternatives on
the complexity of argument acceptability problems. Finally, we give
a logical encoding of our new framework in the Dynamic Logic of
Propositional Assignments.
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1 Introduction

Formal argumentation has become an essential approach to reasoning in Artifi-
cial Intelligence in recent decades, finding applications in many contexts (e.g., in
multi-agent systems [10]). These studies have been deeply influenced by the Ab-
stract Frameworks (AFs) introduced by Dung in [20], where nodes of a graph are
used to represent arguments while the edges represent an attack relation among
them. In this context, different semantics are used for selecting extensions from
a given AF, i.e. sets of arguments considered jointly acceptable because they
satisfy some intuitive requirements.

Since the seminal work of Dung, many extensions of the original model have
flourished. Here, we focus on two families of such generalisations. First, the
addition of new kinds of interactions among arguments: among others, support
relations ([32, 9, 33]), higher-order frameworks [5, 11] (where attacks might
target other attacks, not only arguments), or collective interactions (where the
source of attacks might be a set of nodes, instead of a single one). Second, the
addition of uncertainty to the model, which can be done either by the intro-
duction of weights and preferences over arguments and interactions [1, 4], or
by taking into account uncertainty about the presence of the different elements
(both in a qualitative [31] and a probabilistic fashion [26]).

More specifically, we focus on the computational study of the crossroads be-
tween one approach of each family: the addition of support relations (BAFs),
and the consideration of qualitative uncertainty about the involved elements
(IAFs). Our main reason to use BAFs is that they can be a practical and more
realistic tool for representing some situations (an example for decision-making
in the medical domain can be found in [27]). We restrict our attention to two
specific interpretations of BAFs: necessary BAFs [32] and deductive BAFs [9].
Although other proposals can be found in the literature (e.g., evidential BAFs
[33]), we ground our choice on simplicity (w.r.t. other proposals), and similarity
among the chosen ones (there is a known duality between necessary and deduc-
tive supports [13]). As for the reason to use IAFs, it is obvious that arguments
and their interactions cannot always be considered certain. This is particularly
clear in multi-agent scenarios when an agent is not sure of the argumentative
background information of its interlocutors. Additionally, human beings are
able to reason with uncertain data and if we want formal argumentative tools
for assisting them, then these tools must take into account the mentioned un-
certainty. Finally, it is very important to know the impact of this uncertainty
from a computational point of view, particularly when one wants to produce
an efficient tool. The following example illustrates the kind of situations that
motivates our study:

Example 1 The pension reform wanted by the government is the main topic
of a heated discussion between people. The following arguments are exchanged:

a0 : The pension reform is important and must be implemented.

a1 : Indeed. Because the pension financing system is in deficit (a1 supports a0).
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a3 : This reform is the only way to avoid a reduction in the amount of pensions
(a3 supports a0).

a4 : It would be surprising if this reform were the only way to avoid this reduc-
tion (a4 attacks a3).

a5 : Indeed, an increase in contributions would also prevent a reduction in the
amount of pensions (a5 supports a4).

a6 : This reform is too premature; there are other reforms in progress and we
do not yet know their impact (a6 attacks a0).

Clearly, uncertainty and incompleteness exist in this exchange. First, several
politicians consider that the deficit of the pension system is not the real mo-
tivation of the government for reforming (so the support from a1 to a0 would
be uncertain); secondly, the argument a4 is clearly a non-convincing argument;
and finally, perhaps the impact of the previous reforms on the new one (so the
attack from a6 to a0) may have already been considered by the government. □

This paper defines and studies Incomplete Bipolar AFs (IBAFs), which allow for
modelling cases like the one we just showed. Our contribution w.r.t. this new
formalism is threefold. On the conceptual side, we provide two alternative def-
initions of completions (the hypothetical removal of uncertainty typically used
to reason about IAFs). We discuss how these definitions encode two different
intuitions: whether support is to be considered “prior” (in the sense of more
important) to uncertainty, or the other way around. On the complexity side,
we draw a map of how hard argument acceptability problems are w.r.t. our
new model, hence showing what is the impact of choosing among the different
notions of completion. More precisely, we show that assessing the acceptabil-
ity of arguments has the same complexity as in the case of (non-bipolar) IAFs
when uncertainty is prior to support, while the other option induces a higher
complexity. Finally, we provide a logical encoding of these problems in the
Dynamic Logic of Propositional Assignments (DL-PA) [2], a well-behaved vari-
ant of propositional dynamic logic that has been proven useful to reason about
argumentation in recent years.

The rest of this paper is organized as follows: Sec. 2 gives the background
on argumentation and on logics; the definition of IBAF is given in Sec. 3; the
complexity results are presented in Sec. 4 and the logical encoding of IBAF in
Sec. 5; Sec. 6 concludes the paper by giving some perspectives. Note that the
proofs of our results can be found in Appendix A.

2 Background

2.1 Abstract Argumentation Frameworks without uncer-
tainty

Basic notions of abstract argumentation. We suppose the existence of
a finite set of arguments A. An argumentation framework (AF) is a pair
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F = ⟨A,R⟩ with A ⊆ A the set of arguments and R ⊆ A × A the set of
attacks. For a, b ∈ A, we say that a attacks b if (a, b) ∈ R (and we sometimes
use the infix notation aRb). If b attacks some c ∈ A, then a defends c against
b. Similarly, a set S ⊆ A attacks (resp. defends) an argument b if there is some
a ∈ S that attacks b (resp. if, for any aRb, there is c ∈ S that defends b against
a). Let us consider Ex. 1 without taking into account the potential uncertainty,
arguments a4 and a3 and their relationship can be represented by the graph:

a4 a3

We classically use the concept of extensions for evaluating the acceptability
of arguments, i.e. sets of collectively acceptable arguments. The usual semantics
are based on two main principles: conflict-freeness and admissibility. Given
F = ⟨A,R⟩ an AF, the set S ⊆ A is conflict-free iff ∀a, b ∈ S, (a, b) ̸∈ R;
S is admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. bRa, ∃c ∈ S
s.t. cRb. We use cf(F) (respectively ad(F)) to denote the set of conflict-free
(resp. admissible) sets of an AF F . We focus on the four semantics proposed
by Dung. Formally, the admissible set S ⊆ A is: a complete extension iff
S contains all the arguments that it defends; a preferred extension iff S is a
⊆-maximal admissible set; a grounded extension iff S is a ⊆-minimal complete
extension; and a stable extension iff S ∈ cf(F) and ∀a ∈ A \ S, S attacks a.
We use co(F), pr(F), gr(F) and st(F) for the sets of (resp.) complete, preferred,
grounded and stable extensions of F (see more details in [20, 3]).

Bipolar argumentation framework. This notion has been initially defined
as a general approach taking into account two kinds of interactions between
arguments, a negative one (attacks) and a positive one (supports), see [12].

A Bipolar Argumentation Framework (BAF) is a tuple B = ⟨A,R,S⟩
where A ⊆ A are arguments, R ⊆ A×A is an attack relation, and S ⊆ A×A is
a support relation (when aS b we say that a supports b). Given a (support)
relation S, we use S+ to denote its transitive closure (i.e., the smallest (w.r.t.
⊆) transitive relation containing S). Let us consider Ex. 1, arguments a4, a3
and a0 and their relationship (ignoring uncertainty) can be represented by the
graph:

a3 a0a4

In the general approach to BAFs, semantics are defined using the addition
of new attacks. Nevertheless, it turned out that such a general approach is not
sufficient for encoding some real cases and sometimes the drawback is the lack
of guidelines for choosing the appropriate definitions and semantics depending
on the application. Consequently, various kinds of support relations have been
defined in the literature as specializations of this general framework. Among
others, one could mention the notion of necessary support [32], deductive sup-
port [9], evidential support [33], backing support [14], and monotonic support
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[24]. Here, we just focus on the two former notions, which have the following
intuitive meaning: if a necessarily (resp. deductively) supports b then the ac-
ceptance of a is necessary for (resp. implies) the acceptance of b. Moreover,
a duality exists between these two approaches: a necessarily supports b iff b
deductively supports a (see [13]); so a deductive BAF is a necessary BAF in
which the direction of the support arrows has been reversed (and vice-versa).

When the type of support is chosen, the reasoning is made once again with
the notion of extension via the addition of new attacks. We focus on the neces-
sary interpretation, as the deductive one follows from the mentioned duality by
simply reversing support arrows. Let B = ⟨A,R,S⟩ be a BAF, let a, b ∈ A, a
attacks b according to the necessary interpretation iff either aRb (Case
0: an existing direct attack), or there is c ∈ A s.t. aRc and cS+b (Case 1: a
new attack), or there is c ∈ A s.t. cRb and cS+a (Case 2: a new attack). The
following figure illustrates cases 1 and 2:

a c . . . b cb . . . a

Let nec and ded stand for ‘necessary’ and ‘deductive’, and let t ∈ {nec, ded},
we denote by Rnec (resp. Rded) the set of attacks according to the neces-
sary (resp. deductive) interpretation. Given B = ⟨A,R,S⟩ a BAF, σt(B) =
σ(⟨A,Rt⟩) is the set of extensions of the BAF under the interpretation
t. We say that a ∈ A is credulously accepted w.r.t. σ and t if it belongs to
some extension in σt(B), and skeptically accepted if it belongs to each ex-
tension. Obviously, the new attacks are added in R and can therefore be used
in turn to create new other attacks through a saturation process.

From a computational point of view, BAFs under the necessary and de-
ductive interpretations of support have the same complexity as standard AFs
(see [16, 28, 21]).

2.2 Incomplete Argumentation Frameworks

Incomplete Argumentation Frameworks [15, 7, 6, 31] are AFs with qualitative
uncertainty about the presence of some arguments or attacks. Formally, an In-
complete Argumentation Framework (IAF) is a tuple I = ⟨A,A?,R,R?⟩
where: A ⊆ A is the set of certain arguments; A? ⊆ A is the set of uncer-
tain arguments; R ⊆ (A ∪ A?) × (A ∪ A?) the set of certain attacks; and
R? ⊆ (A∪A?)× (A∪A?) the set of uncertain attacks. A and A? are disjoint
sets of arguments, and R, R? are disjoint sets of attacks. Intuitively, A and R
correspond, respectively, to arguments and attacks that certainly exist, while
A? and R? are those that may (or may not) actually exist.

Reasoning with such IAFs is generally made through the notion of comple-
tion, i.e. a classical AF that represents a “possible world” with respect to the
uncertain information encoded in the IAF. Formally, given I = ⟨A,A?,R,R?⟩
an IAF, a completion of I is an AF ⟨Ac,Rc⟩ such that A ⊆ Ac ⊆ A∪A? and
R∩ (Ac ×Ac) ⊆ Rc ⊆ (R∪R?) ∩ (Ac ×Ac).

Finally, reasoning tasks like credulous acceptance, skeptical acceptance or
verification are defined with respect to some or each completion [7, 6]: indeed
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each classical reasoning task has two variants, following the possible view (the
property holds in some completion) and the necessary view1 (the property holds
in each completion). These reasoning tasks are, in most cases, computationally
harder than their counterpart for standard AFs (under the usual assumption
that the polynomial hierarchy does not collapse) [7, 6]. This can be explained by
the exponential number of completions. For instance, the acceptance problem
for the grounded semantics is NP-c (or coNP-c) in the case of IAFs whereas it
is P-c for simple AFs (see [6, 31] for more details).

2.3 The Dynamic Logic of Propositional Assignments

Syntax. We assume the existence of a denumerable set of propositional vari-
ables Prp = {p1, p2, . . .}. We suppose that Prp contains several kinds of dis-
tinguished variables capturing the statuses of arguments and relations between
them. First, given a set of arguments A ⊆ A we define its set of aware-
ness variables, AWA = {awx | x ∈ A}, and its set of acceptance variables
INA = {inx | x ∈ A}. Second, given a relation X ⊆ A × A we define its set
of attack variables ATTX = {rx,y | (x, y) ∈ X} and its set of support vari-
ables SUPX = {sx,y | (x, y) ∈ X}. Summing up, we assume that PrpA ⊆ Prp

where:

PrpA = AWA ∪ INA ∪ ATTA×A ∪ SUPA×A.

Formulas and programs of DL-PA are defined by mutual recursion:

For formulas: φ ::= p | ¬φ | (φ ∧ φ) | [π]φ,
For programs: π ::= +p | −p | φ? | (π;π) | (π ∪ π) | π∗,

where p ranges over Prp.
The intended meaning of formulas is as usual for atoms and the Boolean

connectors. As for modal formulas, [π]φ reads “φ is true after every possible
execution of π”, so that the dual ⟨π⟩φ, defined as ¬[π]¬φ, reads “there is a
possible execution of π that makes φ true”. As for programs, their intended
meaning is as follows: +p (resp. −p) is the atomic program that makes p true
(resp. false). φ? is the program that tests whether φ is true. (π;π′) is the
sequential composition of π and π′ (“first execute π and then π′”). (π ∪ π′) is
the non-deterministic choice (“choose non-deterministically between π or π′ and
execute one of them”). Finally, π∗ is the unbounded iteration of π (“execute π
a finite number of times”).
Semantics. Given a propositional valuation v ⊆ Prp (so v is the set of the
variables that are true), truth for formulas φ and the meaning of programs
||π|| is given by mutual recursion:

v |= p if p ∈ v ,
v |= [π]φ if (v , v ′) ∈ ||π|| implies v ′ |= φ,

1We are aware that we use the word “necessary” with two different meanings. We choose
not to deviate from the standard terminology in the literature. However it will be clear from
the context if we mean “necessary support” or “necessary in all the completions”.
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and as usual for the Boolean connectives; the interpretation of programs is:2

||+p|| = {(v , v ′) | v ′ = v ∪ {p}}, ||−p|| = {(v , v ′) | v ′ = v \ {p}},
||φ?|| = {(v , v) | v |= φ}, ||π;π′|| = ||π|| ◦ ||π′||,

||π ∪ π′|| = ||π|| ∪ ||π′||, ||π⋆|| = ||π||⋆.

Here are some useful abbreviations in our object language (where P =
{p1, ..., pn} is a finite subset of Prp):

mkTrueSome(P) = ;p∈P(+p ∪ skip) = (+p1 ∪ skip); . . . ; (+pn ∪ skip),
mkFalseAll(P) = ;p∈P(−p) = −p1; . . . ;−pn,

vary(P) = ;p∈P(+p ∪ −p) =
(
+p1 ∪ −p1

)
; . . . ;

(
+pn ∪ −pn

)
,

if φ then π else π′ = (φ?;π) ∪ (¬φ?;π′),
while φ do π = (φ?;π)∗;¬φ?.

From valuations to (B)AFs and backward. From our hypothesis that
Prp contains PrpA, we can define for each valuation v the BAF ⟨Av ,Rv ,Sv ⟩
(called the BAF represented by v) where: Av = {x ∈ A | awx ∈ v},
Rv = {(x, y) ∈ Av × Av | rx,y ∈ v}, and Sv = {(x, y) ∈ Av × Av | sx,y ∈ v}.
The other way round, each BAF ⟨A,R,S⟩ is represented by its associated
valuation v⟨A,R,S⟩ = {awx | x ∈ A} ∪ {rx,y | (x, y) ∈ R} ∪ {sx,y | (x, y) ∈ S}.
Note that both functions (from valuations to BAFs and backward) can be also
defined for AFs, by just ignoring the supports. Finally, for each valuation v we
define the extension associated to v as the set Ev = {x ∈ A | inx ∈ v}.
Argumentation semantics in DL-PA. There are some papers approach-
ing the encoding of Dung’s AFs semantics and some of its extensions in DL-
PA [17, 19, 18, 25, 35]. Regarding abstract argumentation semantics, here is
the list of those that have been captured in DL-PA so far: admissible, stable,
complete, preferred, grounded, semi-stable, eager, stage, and naive. The main
idea underlying these encodings is to write a generic DL-PA program mkExtσ

parametrised by each semantics σ, s.t. for every AF ⟨A,R⟩ we have that:
σ(⟨A,R⟩) = {Ev ′ | (v⟨A,R⟩, v

′) ∈ ||mkExtσ||}. For our purposes, we rely on the
previous encoding of stable, complete, preferred, and grounded semantics (see
[35, Theorem 1]). However, and due to space reasons, we just include here the
instance of mkExt for capturing stable semantics as an illustration:

Well =
∧

x∈A(inx → awx),

Stable = Well ∧
∧

x∈A

(
awx →

(
inx ↔ ¬

∨
y∈A(iny ∧ ry,x

))
,

mkExtst = vary(INA);Stable.

3 Incomplete Bipolar Argumentation Frame-
work

Now we introduce our new Incomplete Bipolar Argumentation Frameworks,
which generalizes both BAFs and IAFs.

2Given a binary relation R, we write R⋆ the reflexive and transitive closure of R.
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Definiton 1 (Incomplete Bipolar AF) An Incomplete Bipolar Argumenta-
tion Framework (IBAF) is a tuple IB = ⟨A,A?,R,R?,S,S?⟩, where A,A? are
disjoint sets of arguments and R,R?,S,S? are disjoint relations between argu-
ments.3

Example 2 The following figure gives a possible representation of the discus-
sion described in Ex. 1 considering a deductive meaning for the support and the
uncertainty of some elements (represented through dashed lines):

a0 a1a3a4a5

a6

Before proposing a definition for the notion of completion, some points must
be clarified. Let us consider the deductive4 support from a5 to a4 (i.e. if a5 is
accepted then a4 must be accepted). A first approach can be to simply extend
the notion of completion defined for IAF saying that an uncertain element can
be present or not. We call this approach plain (or pla, for short). In this case,
the acceptance of a5 implies the acceptance of a4 whenever a4 is in the current
completion; this is a conditionally certain support. A second possible approach
is to consider that the meaning of support implies a constraint that should be
satisfied in any completion if this support is certain: a completion in which a5
would be accepted and not a4 should be ruled out. Thus this second approach
proposes to consider unconditionally certain support, giving, therefore, some
kind of “priority” to the notion of support over uncertainty. The difficulty here
is that the specificity we want to take into account is not only a syntactical one
(an uncertain element is present or not) but also a semantic one (the meaning
of the support must be preserved). This leads to proposing a more complex
definition that brings out these different nuances:

Definiton 2 (IBAF Completions) Let IB = ⟨A,A?,R,R?,S,S?⟩ be an
IBAF, let t ∈ {pla, nec, ded}, and let σ be a semantics. A t-completion of IB
w.r.t. σ is a BAF B = ⟨Ac,Rc,Sc⟩ such that:

1. A ⊆ Ac ⊆ A ∪ A?; R ∩ (Ac × Ac) ⊆ Rc ⊆ (R ∪ R?) ∩ (Ac × Ac);
S ∩ (Ac ×Ac) ⊆ Sc ⊆ (S ∪ S?) ∩ (Ac ×Ac); and

2. if t ∈ {nec, ded} then ∀(a, b) ∈ S,∀E ∈ σt(B): (i) if t = nec and b ∈ E,
then a ∈ E; and (ii) if t = ded and a ∈ E, then b ∈ E.

We denote as completionstσ(IB) the set of all completions of IB under the t
interpretation and the semantics σ.

In Def. 2, the first condition represents the syntactical impact of the uncer-
tainty (an uncertain element is present or not in the completion), whereas the

3Note that this constraint could be relaxed by permitting R? and S? to have a (possibly)
non-empty intersection. It will be the subject of future work.

4From the mentioned duality, the same applies to necessary supports.
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second condition specifies the semantic impact of the support on the building of
the completion. Obviously, if t = pla, then the second condition is not applicable
and so no constraint is added. Hence, the notation completionsplaσ (IB) can be
simplified into completionspla(IB). We note by passing the strong relationship
between the notion of deductive/necessary completions and the recently pro-
posed constrained IAFs [29, 25], and IAFs with dependencies [22, 23]. However,
the constraints or dependencies in these related works only take into account
syntactical information, while we introduce semantic information as well.

Example 3 Using Def. 2, the IBAF from Ex 1 has eight pla-completions,
described at Figure 1. Moreover, with the preferred semantics, only 4 ded-
completions can be built: B3, B4, B7 and B8:

• for B3 (resp. B7), there is one preferred extension {a0, a1, a4, a5, a6}; note
that an additional attack from a5 to a3 is introduced for taking into account
the deductive meaning of the support;

• for B4, there is one preferred extension {a1, a4, a5, a6}; note that two ad-
ditional attack are introduced: (a5, a3) and (a6, a3);

• for B8, there is one preferred extension {a4, a5, a6}; note that 3 additional
attack exist: (a5, a3), (a6, a3) and (a6, a1).

For the other Bi, a5 belongs to the preferred extension whereas a4 does not since
a4 is not in the completion, so they are not ded-completions.

Interestingly, the notion of “unconditional certainty” is useless when con-
sidering attacks. Indeed if an attack from a to b is certain whereas a or b are
not, then only two kinds of completion exist: some completions contain a, b and
the attack and so a and b cannot be accepted together; some others in which a
or b are missing, so the attack too, and a and b cannot be accepted together;
thus in each case, the meaning of the attack is satisfied with only a syntactical
criterion.

4 Complexity of Reasoning with IBAFs

Let us investigate the complexity of reasoning with IBAFs. We focus on accept-
ability problems, i.e. possible credulous acceptability (PCA), necessary credu-
lous acceptability (NCA) and their counterparts for skeptical acceptability (PSA
and NSA). Formally, given an IBAF IB = ⟨A,A?,R,R?,S,S?⟩ and a ∈ A, and
given t1 ∈ {pla, nec, ded} and t2 ∈ {nec, ded} s.t. if t1 ∈ {nec, ded}, then t1 = t2,

• σt2 -t1-PCA: ∃B ∈ completionst1σ (IB), ∃E ∈ σt2(B) s.t. a ∈ E?

• σt2 -t1-NCA: ∀B ∈ completionst1σ (IB), ∃E ∈ σt2(B) s.t. a ∈ E?

• σt2 -t1-PSA: ∃B ∈ completionst1σ (IB), ∀E ∈ σt2(B) s.t. a ∈ E?

• σt2 -t1-NSA: ∀B ∈ completionst1σ (IB), ∀E ∈ σt2(B) s.t. a ∈ E?

8



a0 a1a3a5

a6

(a) B1

a0 a1a3a5

a6

(b) B2

a0 a1a3a4a5

a6

(c) B3

a0 a1a3a4a5

a6

(d) B4

a0 a1a3a5

a6

(e) B5

a0 a1a3a5

a6

(f) B6

a0 a1a3a4a5

a6

(g) B7

a0 a1a3a4a5

a6

(h) B8

Figure 1: The completions of IB from Example 1

In the first following propositions we consider the plain approach to com-
puting completions (i.e. t1 = pla), with the support relation being either the
necessary or deductive support (i.e. t2 ∈ {nec, ded}). We show that checking
the (various kinds of) acceptability of arguments is in this case not harder than
in the case of (non-bipolar) IAFs. This comes from the following observation:

Observation 1 Let IB = ⟨A,A?,R,R?,S,S?⟩ be an IBAF, and B∗ =
⟨A∗,R∗,S∗⟩. Checking whether B∗ is a plain completion of IB can be done
in polynomial time (w.r.t. the number of arguments |A ∪ A?|).

Proposition 1 For t2 ∈ {nec, ded} and σ ∈ {ad, gr, st, co, pr}, σt2-pla-PCA is
NP-complete.

Notice that ∅ is always admissible in a BAF, so no argument is skeptically
accepted, which means that the problem is trivial like in the case of IAFs.

Proposition 2 For t2 ∈ {nec, ded} and σ ∈ {gr, st, co}, σt2-pla-NSA is coNP-
complete, it is trivial for σ = ad, and it is ΠP

2 -complete for σ = pr.

Proposition 3 For t2 ∈ {nec, ded} and σ ∈ {ad, st, co, pr}, σt2-pla-NCA is ΠP
2 -

complete, and it is coNP-complete for σ = gr.
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The last result concerns σ-PSA. Recall that it is trivial when σ = ad, as
explained previously for ad-NSA.

Proposition 4 For t2 ∈ {nec, ded} and σ ∈ {co, gr}, σt2-pla-PSA is NP-
complete, it is ΣP

2 -complete for σ = st, and ΣP
3 -complete for σ = pr.

The situation is not so simple when t1 ∈ {nec, ded}, since verifying whether a
BAF is a t1-completion of an IBAF requires to look at the content of extensions,
which is generally hard. The only exception is the grounded semantics.

Proposition 5 Let IB = ⟨A,A?,R,R?,S,S?⟩ be an IBAF, and B∗ =
⟨A∗,R∗,S∗⟩. Checking whether B∗ ∈ completionstgr(IB) (for t ∈ {nec, ded})
can be done in polynomial time (w.r.t. the number of arguments |A ∪ A?|).

Corollary 1 For t ∈ {nec, ded}, grt-t-PCA is NP-complete, grt-t-NSA is coNP-
complete, grt-t-NCA is coNP-complete and grt-t-PSA is NP-complete.

We assume these problems to be harder for the other semantics. In partic-
ular, we can give some upper bounds for σ ∈ {ad, co, st}.

Proposition 6 Let IB = ⟨A,A?,R,R?,S,S?⟩ be an IBAF, and B∗ =
⟨A∗,R∗,S∗⟩. Checking whether B∗ ∈ completionstσ(IB) (for σ ∈ {ad, co, st}
and t ∈ {nec, ded}) is a ∆P

2 problem.

This induces that the acceptability problems are likely to be harder than
their counterpart with t1 = pla. However, proving that these are complete
problems (i.e. that the provided upper bound is actually a tight complexity
result) is still an open question, as well as the complexity of the various problems
for σ = pr.

5 Logical encoding of IBAFs

Necessary and deductive supports in DL-PA. We start the original part of
our encoding process by looking for DL-PA programs and formulas that capture
the relevant notions of BAFs under the necessary and deductive interpretations
of supports. In order to do so, we need to capture, following what we said in
Sec. 2.1, the new kinds of attacks added under each of the interpretations. The
first step is then to compute the transitive closure of the support relation in
DL-PA, since this plays a crucial role in the definition of added attacks. The
following program, adapted from [18], computes one step of such closure:

step = ;x,y,z∈A

(
(awx ∧ awy ∧ awz ∧ sx,y ∧ sy,z)?;+sx,z

)
.

Moreover, the following formula is true in those valuations where Sv is transitive:

Transitive =
∧

x,y,z∈A

(
(awx ∧ awy ∧ awz ∧ sx,y ∧ sy,z) → sx,z

)
.

With both components, we can easily write a DL-PA program that computes
the transitive closure of Sv : transClosure = while ¬Transitive do step.
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Now, we are able to define DL-PA formulas that capture complex attacks
(we also define a shorthand for capturing elements of Rv ):

5

rawx,y = awx ∧ awy ∧ rx,y,
rcase1x,y = awx ∧ awy ∧

∨
z∈A(awz ∧ rx,z ∧ [transClosure]sz,y),

rcase2x,y = awx ∧ awy ∧
∨

z∈A

(
awz ∧ rz,y ∧ [transClosure]sz,x

)
.

With these complex attacks already present in our syntactic repertoire, we can
find a program that adds them to the BAF associated to v :

addAttacksnec = ;
x,y∈A

(if (rawx,y ∨ rcase1x,y ∨ rcase2x,y ) then+r′x,y; else skip);

mkFalseAll(ATTA×A);
;
x,y∈A

(if r′x,y then+rx,y else skip)).

Note that this program makes use of a set of fresh copies of attack variables
ATT′

A×A = {r′x,y | (x, y) ∈ A × A}, whose existence can be assumed because
Prp is countably infinite while A is finite.

Using the duality between deductive and necessary support that we men-
tioned in Sec. 2.1, we can easily go from one interpretation to the other by
means of the following DL-PA program (just as before, we make use of fresh
copies of variables, this time with supports):

deductive2necessary = ;
x,y∈A

(if sy,x then+s
′
x,y; else skip);

mkFalseAll(SUPA×A);
;
x,y∈A

(if s′x,y then+sx,y; else skip).

Hence, we can abbreviate addAttacksded = deductive2necessary; addAttacksnec.
We state formally the correctness of our encoding:

Proposition 7 Let B = ⟨A,R,S⟩ be a BAF, let t ∈ {nec, ded}, and let σ be an
argumentation semantics, we have that

σt(B) = {Ev ′ | (vB, v ′) ∈ ||addAttackst;mkExtσ||}.

Computing completions of IBAFs in DL-PA. Moving to IBAFs, we first
want to design a DL-PA program, mkComppla(IB), that computes all the plain
completions of a given IB = ⟨A,A?,R,R?,S,S?⟩. For doing so, we first define
the valuation associated to IB, which is determined by its certain part:
vIB = v⟨A,R,S⟩. Note that ⟨AvIB ,RvIB ,SvIB⟩ is already a completion of IB:
it is the smallest one, where only certain arguments and certain attacks and
supports between them are considered. In order to compute all the completions
of IB we make true subsets of propositional variables representing arguments
in A?, attacks in R?, and supports in S?:

mkComppla(IB) = mkTrueSome(AWA?);mkTrueSome(ATTR?);mkTrueSome(ATTS?).

5The latter is necessary because it can be the case that rx,y ∈ v , but either awx /∈ v or
awy /∈ v , and hence (x, y) /∈ Rv .
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If one prefers to capture the more specific notions of necessary and deductive
completions (Def. 2), then it is necessary to check whether the corresponding
additional constraint is satisfied after each execution of mkComppla(IB) and the
computation of the corresponding extensions. However, we have to be cautious
here, because the execution ofmkComppla(IB) may make true some support vari-
ables corresponding to elements of S?. An easy solution to this problem consists
in making a copy of support variables before the execution of mkComppla(IB).
We use yet another set of fresh copies SUP

′′

A×A = {s′′x,y | (x, y) ∈ A ×A} not
to interfere with the later execution of deductive2necessary. So, the first part of
our program for computing necessary and deductive completions will be

copy′′(SUPA×A) = ;x,y∈A(if sx,y then+s
′′
x,y; else skip).

Now, we can express the constraints corresponding to necessary and deductive
completions: Constraintnec =

∧
x,y∈A((inx ∧ s′′y,x) → iny) and Constraintded =∧

x,y∈A((inx ∧ s′′x,y) → iny). And finally,

mkComptσ(IB) = copy′′(SUPA×A);mkComppla(IB);
([addAttackst;mkExtσ]Constraintt)?

Proposition 8 Let IB = ⟨A,A?,R,R?,S,S?⟩, t ∈ {pla, nec, ded}, and let σ be
a semantics. Then:

• If ⟨vIB, v⟩ ∈ ||mkComptσ(IB)||, then ⟨Av ,Rv ,Sv ⟩ ∈ completionstσ(IB).

• If ⟨Ac,Rc,Sc⟩ ∈ completionstσ(IB), then there is a v ⊆ Prp s.t. v∩PrpA =
v⟨Ac,Rc,Sc⟩ and ⟨vIB, v⟩ ∈ ||mkComptσ(IB)||.

Argument acceptance for IBAFs in DL-PA. We have then all the ingre-
dients to reduce argument acceptance problems of IBAFs to model checking
problems in DL-PA.

Proposition 9 Let IB = ⟨A,A?,R,R?,S,S?⟩, let a ∈ A, let σ ∈
{co, pr, gr, st}, let t1 ∈ {pla, nec, ded} and t2 ∈ {nec, ded} s.t. if t1 ∈ {nec, ded},
then t1 = t2. Then:

• The answer to σt2-t1-PCA with input IB and a is YES iff
vIB |= ⟨mkCompt1σ (IB); addAttacks

t2 ;mkExtσ⟩ina.

• The answer to σt2-t1-NCA with input IB and a is YES iff
vIB |= [mkCompt1σ (IB)]⟨addAttacks

t2 ;mkExtσ⟩ina.

• The answer to σt2-t1-PSA with input IB and a is YES iff
vIB |= ⟨mkCompt1σ (IB)⟩[addAttacks

t2 ;mkExtσ]ina.

• The answer to σt2-t1-NSA with input IB and a is YES iff
vIB |= [mkCompt1σ (IB); addAttacks

t2 ;mkExtσ]ina.
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6 Conclusion

This paper was devoted to the definition and the study of IBAFs: enriched
frameworks for abstract argumentation taking into account two kinds of inter-
action between arguments (attacks and necessary or deductive supports) and
considering at the same time that the elements (arguments or interactions) of
this framework can be uncertain. Reasoning about IBAFs is done through the
notion of completion: any uncertain element can be considered present or ab-
sent and so several “variants” of the IBAF may be built, each variant is called
completion and corresponds to a classical BAF without uncertainty. Then, the
semantics of IBAFs are defined by the application of the corresponding seman-
tics on these completions. Due to the specificity of the support relations, two
distinct approaches were proposed leading to two different definitions of com-
pletion: the first one corresponds to the notion of conditionally certain support
whereas the second one introduces the notion of unconditionally certain support.
Each kind of completion is in turn used for the definition of the semantics. Tight
complexity results are given in the first case and upper bounds are presented in
the second case. Finally, a logical encoding using DL-PA was proposed for both
cases.

In terms of future works, several directions can be explored. First, we could
complete this study for other IBAFs by taking into account some other support
relations (for instance the evidential one). Second, the same work could be done
for other enriched frameworks (for instance, those with higher-order interactions,
or those with collective ones). A third interesting point could be to implement
the computation of semantics of all these incomplete frameworks using DL-
PA solvers and to make some experiments for evaluating our encoding and
comparing with other approaches (perhaps with a more direct computation of
semantics without using logics). Finally, a fourth line of future research consists
in focusing on the uncertainty aspect of IBAFs by, e.g., considering a recursive
form of uncertainty [34], or proposing a direct approach (i.e. without using
completions) to define extension-based semantics in the style of [30].
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A Proofs

A.1 Proofs for Section 4

Recall that all complexity lower bounds are provided by the known results on
Incomplete Argumentation Frameworks, as summarized in Table 1

σ σ-PCA σ-NCA σ-PSA σ-NSA

ad NP-c ΠP
2 -c trivial trivial

st NP-c ΠP
2 -c ΣP

2 -c coNP-c
co NP-c ΠP

2 -c NP-c coNP-c
gr NP-c coNP-c NP-c coNP-c
pr NP-c ΠP

2 -c ΣP
3 -c ΠP

2 -c

Table 1: Complexity of acceptability for IAFs. PCA (resp. PSA) and NCA (resp.
NSA) means Possible Credulous (resp. Skeptical) Acceptability and Necessary
Credulous (resp. Skeptical) Acceptability [6, 31]

Hence, in what follows, we focus on identifying upper bounds:
[Proposition 1]

Proof: For t ∈ {nec, ded}, the problem is solved by the simple non-
deterministic Algorithm 1. Depending on the complexity of verifying an
extension of a BAF, this algorithm is an NP algorithm if verification is
in P, i.e. for σt ∈ {adt, grt, stt, cot}. Finally, since prt-extensions are ⊆-
maximal adt-sets, then adt-PCA is equivalent to prt-PCA, hence the result
for this last semantics. Without this particular case, Algorithm 1 would
have only provided a ΣP

2 upper bound for prt-PCA. □

Algorithm 1 Solve PCA

Input: IB = ⟨A,A?,R,R?,S,S?⟩, a ∈ A ∪A?, σ a semantics, t ∈ {nec, ded}.
1: Non-deterministically guess B∗ = ⟨A∗,R∗,S∗⟩
2: Non-deterministically guess E ⊆ A∗ s.t. a ∈ E
3: if B∗ is a pla-completion of IB. then
4: if E is a σt-extension of B∗ then
5: return YES
6: end if
7: end if
8: return NO

[Proposition 2]

Proof: We assume a fixed t ∈ {nec, ded}, and we focus on σt-NSA,
the complementary problem of σt-NSA. This problem is solved by Algo-
rithm 2. With the same reasoning as for the previous proof, this algorithm
provides a NP upper bound for σt-NSA for σt ∈ {grt, stt, cot}, and ΣP

2 for
σt = prt, and we can conclude with the results for σt-NSA. □
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Algorithm 2 Solve coNSA

Input: IB = ⟨A,A?,R,R?,S,S?⟩, a ∈ A ∪A?, σ a semantics, t ∈ {nec, ded}.
1: Non-deterministically guess B∗ = ⟨A∗,R∗,S∗⟩
2: Non-deterministically guess E ⊆ A∗ s.t. a ̸∈ E
3: if B∗ is a pla-completion of IB. then
4: if E is a σt-extension of B∗ then
5: return NO
6: end if
7: end if
8: return YES

For the following proof, we need to refer to the complexity of reasoning with
BAFs, which is summarized in Table 2

Semantics σ σ-Ver σ-Cred σ-Skep σ-Exist σ-NE

ad P NP-c Trivial Trivial NP-c
gr P P P Trivial P
st P NP-c coNP-c NP-c NP-c
co P NP-c P Trivial P
pr coNP-c NP-c ΠP

2 -c Trivial NP-c

Table 2: Complexity of reasoning with BAFs. Results for ad, pr and st semantics
come from [16, 28]. Complexity of σ-Ver for co and gr semantics is given in [21].

New results are also given (in grey cells) due to the fact that building the
new attack relation following the necessary or deductive meaning can obviously
be made in polynomial time w.r.t. the number of arguments.

Now we can continue with the proofs.
[Proposition 3]

Proof: The proof follows a similar approach as the previous ones, focus-
ing on the complement problem of σ-NCA. Non-deterministically guess a
BAF B∗ and check in polynomial time whether it is a completion of IB
for the given meaning of supports. Then, check whether the given argu-
ment a is credulously accepted in B∗. This yields a NP algorithm (when
credulous acceptability is polynomial) or a ΣP

2 algorithm (when credulous
acceptability is in NP) for the complement of σ-NCA, hence the result. □

[Proposition 4]

Proof: Non-deterministically guess B∗ and check in polynomial time
whether it is a completion of IB. Then simply check whether the given
argument a is skeptically accepted in B∗. The complexity of skeptical
acceptability (P for {gr, co}, NP for st, and ΠP

2 for pr) induces the results.
□
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Now we focus on the cases where completions are computed using the nec-
essary or deductive meaning.

[Proposition 5]

Proof: We can compute the grounded semantics of B∗ in polynomial
time and check (still in polynomial time) for each (a, b) ∈ S∗ whether
a ∈ gr(B∗) and b ∈ gr(B∗). □

[Proposition 6]

Proof: For σ ∈ {ad, co, st}, we can build in polynomial time (follow-
ing e.g. the approach from [8]) a propositional formula ΦB∗

σ s.t.
mod (ΦB∗

σ ) = σ(B∗). Then, for each (a, b) ∈ S∗ we can check in NP
whether ΦB∗

σ ∧ (b → a) (for nec) or ΦB∗
σ ∧ (a → b) (for ded) is satisfiable.

Since there is a polynomially large number of supports in S, checking
whether B∗ is a nec/ded completion is a PNP = ∆P

2 problem. □

A.2 Proofs for Section 5

[Proposition 7]

Proof: As preliminary steps, one has to show the correctness of the
involved programs and formulas. In particular, let v ⊆ Prp be a valuation
and let ⟨Av ,Rv ,Sv ⟩ be the BAF represented by v , it holds that:

• If (v , v ′) ∈ ||transClosure||, then S+
v = Sv′ .

• v |=
(
rawx,y ∨ rcase1x,y ∨ rcase2x,y

)
iff (x, y) ∈ Rnec

v .

• If (v , v ′) ∈ ||addAttacksnec||, then Rnec
v = Rv′ .

• If (v , v ′) ∈ ||deductive2necessary||, then R−1
v = Rv′ .

• If (v , v ′) ∈ ||addAttacksded||, then Rded
v = Rv′ .

The proof of these lemmas are left to the reader. Then, the claim of the
proposition follows from the last three bullet points, and the correctness
of mkExt for our target semantics {co, st, gr, pr} (see, e.g., [35]). □

[Proposition 8]

Proof: We prove both items for each possible value of t.

[t = pla] For the first item, suppose ⟨vIB, v⟩ ∈ ||mkCompplaσ (IB)||. By
the definition of mkCompplaσ (IB) and the meaning of mkTrueSome, we
have that v = vIB ∪ AWA′ ∪ ATTR′ ∪ SUPS′ with A′ ⊆ A?, R′ ⊆ R?

and S ′ ⊆ S?. The latter implies, by definition of (·)v that Av = A ∪ A′,
Rv = R ∪R′ and Sv = S ∪ S ′. The last two claims imply, by Definition
2, that ⟨Av ,Rv ,Sv ⟩ ∈ completionspla(IB).
For the second item, the valuation that satisfies the existential claim
is simply v⟨Ac,Rv,Sc⟩. Let us show it. Suppose that ⟨Ac,Rv,Sc⟩ ∈
completionspla(IB), which amounts, by Definition 2, to A ⊆ Ac ⊆ A∪A?;
R∩ (Ac ×Ac) ⊆ Rc ⊆ (R∪R?) ∩ (Ac ×Ac) and S ∩ (Ac ×Ac) ⊆ Sc ⊆
(S∪S?)∩(Ac×Ac). Now, recall that vIB = v⟨A,R,S⟩. From the two previ-
ous statements we can deduce that the set of variables whose value differs
from vIB to v⟨Ac,Rv,Sc⟩ must be a subset of AWA? ∪ ATTR? ∪ SUPS? .
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The latter implies, by the definition of mkComppla and the meaning of
mkTrueSome that ⟨vIB, v⟨Ac,Rv,Sc⟩⟩ ∈ ||mkComppla(IB)||.

[t = nec] For the first item, suppose ⟨vIB, v⟩ ∈ ||mkCompnecσ (IB)||,
which amounts by definition of mkCompnec and the semantics of the
sequential composition operator to ⟨vIB, v⟩ ∈ ||copy′′(SUPA×A)|| ◦
||mkComppla(IB)|| ◦ ||([addAttacksnec;mkExtσ]Constraintnec)?||. That
means that there are v1, v2 ⊆ Prp s.t.

(1) ⟨vIB, v1⟩ ∈ ||copy′′(SUPA×A)||,

(2) ⟨v1, v2⟩ ∈ ||mkComppla(IB)||, and

(3) ⟨v2, v⟩ ∈ ||([addAttackst;mkExtσ]Constraintnec)?||.

On the one hand, and since the execution of copy′′(SUPA×A) does not
alter the value of any variable from PrpA, we can deduce from (1),
(2) and the previous case of this proposition that ⟨Av2 ,Rv2 ,Sv2⟩ ∈
completionspla(IB). Moreover, note that by the semantics of ‘?’, we can
deduce from (3) that v2 = v . Substituting identical terms we have that
⟨Av ,Rv ,Sv ⟩ ∈ completionspla(IB). So we’ve shown that the first part of
the definition of necessary completion is satisfied by ⟨Av ,Rv ,Sv ⟩.
On the other hand, suppose that E ∈ σnec(⟨Av ,Rv ,Sv ⟩). The lat-
ter implies, by Proposition 7, that E = Ev4 for some ⟨v , v4⟩ ∈
||addAttacksnec;mkExtσ||. Note that from (3), the truth clause of [π], and
the previous assertion we can deduce that v4 |= Constraintnec. Suppose
that (x, y) ∈ S (recall that S is the set of certain supports), which im-
plies (x, y) ∈ SvIB , which in turn implies, by the definition of copy′′ and
the rest of involved programs, that s′′x,y ∈ v4. Further, suppose that
y ∈ E = Ev4 . Both facts, together with v4 |= Constraintnec imply that
x ∈ Ev4 = E. So we’ve shown that the second part of the definition of
necessary completion is satisfied by ⟨Av ,Rv ,Sv ⟩. We can then assert that
⟨Av ,Rv ,Sv ⟩ ∈ completionsnec(IB).
For the second item, the valuation witnessing the existential claim
is v = v⟨Ac,Rc,Sc⟩ ∪ {s′′x,y | (x, y) ∈ S}. Let us show it. Suppose that
⟨Ac,Rc,Sc⟩ ∈ completionsnecσ (IB), which by Def. 2 amounts to:

(1) ⟨Ac,Rc,Sc⟩ ∈ completionsplaσ (IB); and

(2) ∀E ∈ σnec(⟨Ac,Rc,Sc⟩),∀(x, y) ∈ S if y ∈ E, then x ∈ E.

Now, let v1 = vIB ∪ {s′′x,y | (x, y) ∈ S}, we have that ⟨vIB, v1⟩ ∈
||copy′′(INA)|| by definition of copy. Moreover, let v2 = v⟨Ac,Rc,Sc⟩∪{s

′′
x,y |

(x, y) ∈ S}, we can deduce that ⟨v1, v2⟩ ∈ ||mkComppla(IB)|| from (1), the
previous case of this proof (i.e., t = pla), and the fact that mkComppla does
not alter the value of s′′x,y-variables. Finally, note that v2 survives to the
test ([addAttacksnec;mkExtσ]Constraintnec)? because of (2) and Proposition
7.
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[t = ded] This case is very similar to the previous one. The only important
detail is the use of fresh variables {s′′x,y | (x, y) ∈ A × A} instead of
{s′x,y | (x, y) ∈ A × A} by the program copy′′, so that the execution of
deductive2necessary does not affect the evaluation of Constraintded.

□

[Proposition 9]

Proof: All cases follow similar lines of reasoning, using propositions 7 and
8 in the crucial steps. More precisely, some of the cases need a stronger
version of Proposition 7 that is easily derivable from the meaning of the
involved DL-PA programs. Namely, that the claim works not only for
vB but for any other valuation that agrees with it in the value given to
variables in Prp ∪ ATT′

A×A ∪ SUP′
A×A where ATT′

A×A = {r′x,y | (x, y) ∈
A×A}, and the same for supports. More formally, we have that:

σt(B) ={Ev′ | (v , v ′) ∈ ||addAttackst;mkExtσ||,
v ∩ (PrpA ∪ ATT′

A×A ∪ SUP′
A×A) = vB}. (1)

Let us just see the proof for the first reasoning problem as an illustration:

[σt2 -t1-PCA ] From-left-to-right. Suppose that the answer to the rea-
soning problem is YES. The latter is equivalent, by definition of σt2 -t1-
PCA, to:

∃B ∈ completionst1σ (IB), ∃E ∈ σt2(B) s.t. a ∈ E. This implies, by the
proof of the second bullet of Proposition 8 that:

∃B a BAF s.t. the valuation v = vB∪{s′′x,y | (x, y) ∈ S} satisfies ⟨vIB, v⟩ ∈
||mkCompt1σ (IB)||, ∃E ∈ σt2(B), a ∈ E. From this statement and (1) we
can deduce that:

∃v ⊆ Prp s.t. ⟨vIB, v⟩ ∈ ||mkCompt1σ (IB)||, ∃v ′ ⊆ Prp, ⟨v , v ′⟩ ∈
||addAttackst2 ;mkExtσ|| with v ′ |= ina. This implies, by the semantics
of ⟨π⟩ and the semantics of ; that:

vIB |= ⟨mkCompt1σ (IB); addAttackst2 ;mkExtσ⟩ina.

From-right-to-left. Suppose that
vIB |= ⟨mkCompt1σ (IB); addAttackst2 ;mkExtσ⟩ina. This implies, by the
meaning of ⟨π⟩ and ; that:

∃v ⊆ Prp s.t. ⟨vIB, v⟩ ∈ ||mkCompt1σ (IB)||, ∃v ′ ⊆ Prp, ⟨v , v ′⟩ ∈
||addAttackst2 ;mkExtσ|| with a ∈ Ev′ . This implies by the first bullet
of Proposition 8 that:

∃v ⊆ Prp s.t. ⟨Av ,Rv ,Sv ⟩ ∈ completionst1σ (IB), ∃v ′ ⊆ Prp, ⟨v , v ′⟩ ∈
||addAttackst2 ;mkExtσ|| with a ∈ Ev′ . This implies by Proposition 7 that:

∃v ⊆ Prp s.t. ⟨Av ,Rv ,Sv ⟩ ∈ completionst1σ (IB), ∃v ′ ⊆ Prp, Ev′ ∈
σt2(⟨Av ,Rv ,Sv ⟩) and a ∈ Ev′ . This implies by definition of σt2 -t1-PCA
that:

The answer to σt2 -t1-PCA is YES. □
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