M-Christine Lagasquie-Schiex

Antonio Yuste-Ginel

Incomplete Bipolar Argumentation Frameworks

Keywords: Propositional Assignments, 3 Incomplete Bipolar Argumentation Framework 4

Argumentation Framework has been generalized in various directions. We combine two of these generalizations: Bipolar Argumentation Frameworks (BAFs), where a relation representing supports between arguments is added, and Incomplete Argumentation Frameworks (IAFs), where the existence of arguments and attacks may be uncertain. We discuss how the notion of completion of IAFs can be adapted to take into account the nature of the support relation, providing a couple of alternative definitions. After that, we analyse the impact of choosing among these alternatives on the complexity of argument acceptability problems. Finally, we give a logical encoding of our new framework in the Dynamic Logic of Propositional Assignments.

Introduction

Formal argumentation has become an essential approach to reasoning in Artificial Intelligence in recent decades, finding applications in many contexts (e.g., in multi-agent systems [START_REF] Carrera | A systematic review of argumentation techniques for multi-agent systems research[END_REF]). These studies have been deeply influenced by the Abstract Frameworks (AFs) introduced by Dung in [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], where nodes of a graph are used to represent arguments while the edges represent an attack relation among them. In this context, different semantics are used for selecting extensions from a given AF, i.e. sets of arguments considered jointly acceptable because they satisfy some intuitive requirements.

Since the seminal work of Dung, many extensions of the original model have flourished. Here, we focus on two families of such generalisations. First, the addition of new kinds of interactions among arguments: among others, support relations ([START_REF] Nouioua | Argumentation frameworks with necessities[END_REF][START_REF] Boella | Support in abstract argumentation[END_REF][START_REF] Oren | Semantics for evidence-based argumentation[END_REF]), higher-order frameworks [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF][START_REF] Cayrol | Higher-order interactions (bipolar or not) in abstract argumentation: A state of the art[END_REF] (where attacks might target other attacks, not only arguments), or collective interactions (where the source of attacks might be a set of nodes, instead of a single one). Second, the addition of uncertainty to the model, which can be done either by the introduction of weights and preferences over arguments and interactions [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Baroni | Extending abstract argumentation systems theory[END_REF], or by taking into account uncertainty about the presence of the different elements (both in a qualitative [START_REF] Mailly | no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge[END_REF] and a probabilistic fashion [START_REF] Hunter | Probabilistic argumentation: A survey[END_REF]).

More specifically, we focus on the computational study of the crossroads between one approach of each family: the addition of support relations (BAFs), and the consideration of qualitative uncertainty about the involved elements (IAFs). Our main reason to use BAFs is that they can be a practical and more realistic tool for representing some situations (an example for decision-making in the medical domain can be found in [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the hermes system[END_REF]). We restrict our attention to two specific interpretations of BAFs: necessary BAFs [START_REF] Nouioua | Argumentation frameworks with necessities[END_REF] and deductive BAFs [START_REF] Boella | Support in abstract argumentation[END_REF]. Although other proposals can be found in the literature (e.g., evidential BAFs [START_REF] Oren | Semantics for evidence-based argumentation[END_REF]), we ground our choice on simplicity (w.r.t. other proposals), and similarity among the chosen ones (there is a known duality between necessary and deductive supports [START_REF] Cayrol | Bipolarity in argumentation graphs: Towards a better understanding[END_REF]). As for the reason to use IAFs, it is obvious that arguments and their interactions cannot always be considered certain. This is particularly clear in multi-agent scenarios when an agent is not sure of the argumentative background information of its interlocutors. Additionally, human beings are able to reason with uncertain data and if we want formal argumentative tools for assisting them, then these tools must take into account the mentioned uncertainty. Finally, it is very important to know the impact of this uncertainty from a computational point of view, particularly when one wants to produce an efficient tool. The following example illustrates the kind of situations that motivates our study:

Example 1 The pension reform wanted by the government is the main topic of a heated discussion between people. The following arguments are exchanged: a 0 : The pension reform is important and must be implemented. a 1 : Indeed. Because the pension financing system is in deficit (a 1 supports a 0). a 3 : This reform is the only way to avoid a reduction in the amount of pensions (a 3 supports a 0). a 4 : It would be surprising if this reform were the only way to avoid this reduction (a 4 attacks a 3).

a 5 : Indeed, an increase in contributions would also prevent a reduction in the amount of pensions (a 5 supports a 4).

a 6 : This reform is too premature; there are other reforms in progress and we

do not yet know their impact (a 6 attacks a 0).

Clearly, uncertainty and incompleteness exist in this exchange. First, several politicians consider that the deficit of the pension system is not the real motivation of the government for reforming (so the support from a 1 to a 0 would be uncertain); secondly, the argument a 4 is clearly a non-convincing argument; and finally, perhaps the impact of the previous reforms on the new one (so the attack from a 6 to a 0) may have already been considered by the government. □

This paper defines and studies Incomplete Bipolar AFs (IBAFs), which allow for modelling cases like the one we just showed. Our contribution w.r.t. this new formalism is threefold. On the conceptual side, we provide two alternative definitions of completions (the hypothetical removal of uncertainty typically used to reason about IAFs). We discuss how these definitions encode two different intuitions: whether support is to be considered "prior" (in the sense of more important) to uncertainty, or the other way around. On the complexity side, we draw a map of how hard argument acceptability problems are w.r.t. our new model, hence showing what is the impact of choosing among the different notions of completion. More precisely, we show that assessing the acceptability of arguments has the same complexity as in the case of (non-bipolar) IAFs when uncertainty is prior to support, while the other option induces a higher complexity. Finally, we provide a logical encoding of these problems in the Dynamic Logic of Propositional Assignments (DL-PA) [START_REF] Balbiani | Dynamic logic of propositional assignments: a well-behaved variant of pdl[END_REF], a well-behaved variant of propositional dynamic logic that has been proven useful to reason about argumentation in recent years. The rest of this paper is organized as follows: Sec. 2 gives the background on argumentation and on logics; the definition of IBAF is given in Sec. 3; the complexity results are presented in Sec. 4 and the logical encoding of IBAF in Sec. 5; Sec. 6 concludes the paper by giving some perspectives. Note that the proofs of our results can be found in Appendix A.

Background

Abstract Argumentation Frameworks without uncertainty

Basic notions of abstract argumentation. We suppose the existence of a finite set of arguments A. An argumentation framework (AF) is a pair

F = ⟨A,
a 4 a 3
We classically use the concept of extensions for evaluating the acceptability of arguments, i.e. sets of collectively acceptable arguments. The usual semantics are based on two main principles: conflict-freeness and admissibility. Given

F = ⟨A, R⟩ an AF, the set S ⊆ A is conflict-free iff ∀a, b ∈ S, (a, b) ̸ ∈ R;
S is admissible iff it is conflict-free and ∀a ∈ S, ∀b ∈ A s.t. bRa, ∃c ∈ S s.t. cRb. We use cf(F) (respectively ad(F)) to denote the set of conflict-free (resp. admissible) sets of an AF F. We focus on the four semantics proposed by Dung. Formally, the admissible set S ⊆ A is: a complete extension iff S contains all the arguments that it defends; a preferred extension iff S is a ⊆-maximal admissible set; a grounded extension iff S is a ⊆-minimal complete extension; and a stable extension iff S ∈ cf(F) and ∀a ∈ A \ S, S attacks a. We use co(F), pr(F), gr(F) and st(F) for the sets of (resp.) complete, preferred, grounded and stable extensions of F (see more details in [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF][START_REF] Baroni | Abstract argumentation frameworks and their semantics[END_REF]).

Bipolar argumentation framework. This notion has been initially defined as a general approach taking into account two kinds of interactions between arguments, a negative one (attacks) and a positive one (supports), see [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF].

A Bipolar Argumentation Framework (BAF) is a tuple B = ⟨A, R, S⟩ where A ⊆ A are arguments, R ⊆ A × A is an attack relation, and S ⊆ A × A is a support relation (when a S b we say that a supports b). Given a (support) relation S, we use S + to denote its transitive closure (i.e., the smallest (w.r.t. ⊆) transitive relation containing S). Let us consider Ex. 1, arguments a 4 , a 3 and a 0 and their relationship (ignoring uncertainty) can be represented by the graph:

a 3 a 0 a 4
In the general approach to BAFs, semantics are defined using the addition of new attacks. Nevertheless, it turned out that such a general approach is not sufficient for encoding some real cases and sometimes the drawback is the lack of guidelines for choosing the appropriate definitions and semantics depending on the application. Consequently, various kinds of support relations have been defined in the literature as specializations of this general framework. Among others, one could mention the notion of necessary support [START_REF] Nouioua | Argumentation frameworks with necessities[END_REF], deductive support [START_REF] Boella | Support in abstract argumentation[END_REF], evidential support [START_REF] Oren | Semantics for evidence-based argumentation[END_REF], backing support [START_REF] Cohen | Backing and undercutting in abstract argumentation frameworks[END_REF], and monotonic support [START_REF] Gargouri | On a notion of monotonic support for bipolar argumentation frameworks[END_REF]. Here, we just focus on the two former notions, which have the following intuitive meaning: if a necessarily (resp. deductively) supports b then the acceptance of a is necessary for (resp. implies) the acceptance of b. Moreover, a duality exists between these two approaches: a necessarily supports b iff b deductively supports a (see [START_REF] Cayrol | Bipolarity in argumentation graphs: Towards a better understanding[END_REF]); so a deductive BAF is a necessary BAF in which the direction of the support arrows has been reversed (and vice-versa).

When the type of support is chosen, the reasoning is made once again with the notion of extension via the addition of new attacks. We focus on the necessary interpretation, as the deductive one follows from the mentioned duality by simply reversing support arrows. Let B = ⟨A, R, S⟩ be a BAF, let a, b ∈ A, a attacks b according to the necessary interpretation iff either aRb (Case 0: an existing direct attack), or there is c ∈ A s. Let nec and ded stand for 'necessary' and 'deductive', and let t ∈ {nec, ded}, we denote by R nec (resp. R ded) the set of attacks according to the necessary (resp. deductive) interpretation. Given B = ⟨A, R, S⟩ a BAF, σ t (B) = σ(⟨A, R t ⟩) is the set of extensions of the BAF under the interpretation t. We say that a ∈ A is credulously accepted w.r.t. σ and t if it belongs to some extension in σ t (B), and skeptically accepted if it belongs to each extension. Obviously, the new attacks are added in R and can therefore be used in turn to create new other attacks through a saturation process.

From a computational point of view, BAFs under the necessary and deductive interpretations of support have the same complexity as standard AFs (see [START_REF] Cyras | Capturing bipolar argumentation in non-flat assumption-based argumentation[END_REF][START_REF] Karamlou | Complexity results and algorithms for bipolar argumentation[END_REF][START_REF] Fazzinga | Probabilistic bipolar abstract argumentation frameworks: complexity results[END_REF]).

Incomplete Argumentation Frameworks

Incomplete Argumentation Frameworks [START_REF] Coste-Marquis | On the merging of Dung's argumentation systems[END_REF][START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF][START_REF] Mailly | no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge[END_REF] are AFs with qualitative uncertainty about the presence of some arguments or attacks. Formally, an Incomplete Argumentation Framework (IAF) is a tuple I = ⟨A, A ? , R, R ? ⟩ where: A ⊆ A is the set of certain arguments; A ? ⊆ A is the set of uncertain arguments; R ⊆ (A ∪ A ?) × (A ∪ A ?) the set of certain attacks; and R ? ⊆ (A ∪ A ?) × (A ∪ A ?) the set of uncertain attacks. A and A ? are disjoint sets of arguments, and R, R ? are disjoint sets of attacks. Intuitively, A and R correspond, respectively, to arguments and attacks that certainly exist, while A ? and R ? are those that may (or may not) actually exist.

Reasoning with such IAFs is generally made through the notion of completion, i.e. a classical AF that represents a "possible world" with respect to the uncertain information encoded in the IAF. Formally, given

I = ⟨A, A ? , R, R ? ⟩ an IAF, a completion of I is an AF ⟨A c , R c ⟩ such that A ⊆ A c ⊆ A ∪ A ? and R ∩ (A c × A c) ⊆ R c ⊆ (R ∪ R ?) ∩ (A c × A c).
Finally, reasoning tasks like credulous acceptance, skeptical acceptance or verification are defined with respect to some or each completion [START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]: indeed each classical reasoning task has two variants, following the possible view (the property holds in some completion) and the necessary view1 (the property holds in each completion). These reasoning tasks are, in most cases, computationally harder than their counterpart for standard AFs (under the usual assumption that the polynomial hierarchy does not collapse) [START_REF] Baumeister | Verification in incomplete argumentation frameworks[END_REF][START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF]. This can be explained by the exponential number of completions. For instance, the acceptance problem for the grounded semantics is NP-c (or coNP-c) in the case of IAFs whereas it is P-c for simple AFs (see [START_REF] Baumeister | Acceptance in incomplete argumentation frameworks[END_REF][START_REF] Mailly | no, maybe, I don't know: Complexity and application of abstract argumentation with incomplete knowledge[END_REF] for more details).

The Dynamic Logic of Propositional Assignments

Syntax. We assume the existence of a denumerable set of propositional variables Prp = {p 1 , p 2 , . . .}. We suppose that Prp contains several kinds of distinguished variables capturing the statuses of arguments and relations between them. First, given a set of arguments A ⊆ A we define its set of awareness variables, AW A = {aw x | x ∈ A}, and its set of acceptance variables

IN A = {in x | x ∈ A}.
Second, given a relation X ⊆ A × A we define its set of attack variables ATT X = {r x,y | (x, y) ∈ X} and its set of support variables SUP X = {s x,y | (x, y) ∈ X}. Summing up, we assume that Prp A ⊆ Prp where:

Prp A = AW A ∪ IN A ∪ ATT A×A ∪ SUP A×A .
Formulas and programs of DL-PA are defined by mutual recursion:

For formulas: φ ::= p | ¬φ | (φ ∧ φ) | [π]φ, For programs: π ::= +p | -p | φ? | (π; π) | (π ∪ π) | π * ,
where p ranges over Prp.

The intended meaning of formulas is as usual for atoms and the Boolean connectors. As for modal formulas, [π]φ reads "φ is true after every possible execution of π", so that the dual ⟨π⟩φ, defined as ¬[π]¬φ, reads "there is a possible execution of π that makes φ true". As for programs, their intended meaning is as follows: +p (resp. -p) is the atomic program that makes p true (resp. false). φ? is the program that tests whether φ is true. (π; π ′) is the sequential composition of π and π ′ ("first execute π and then π ′ "). (π ∪ π ′) is the non-deterministic choice ("choose non-deterministically between π or π ′ and execute one of them"). Finally, π * is the unbounded iteration of π ("execute π a finite number of times"). Semantics. Given a propositional valuation v ⊆ Prp (so v is the set of the variables that are true), truth for formulas φ and the meaning of programs ||π|| is given by mutual recursion:

v |= p if p ∈ v , v |= [π]φ if (v , v ′) ∈ ||π|| implies v ′ |= φ,
and as usual for the Boolean connectives; the interpretation of programs is:

2 ||+p|| = {(v , v ′) | v ′ = v ∪ {p}}, ||-p|| = {(v , v ′) | v ′ = v \ {p}}, ||φ?|| = {(v , v) | v |= φ}, ||π; π ′ || = ||π|| • ||π ′ ||, ||π ∪ π ′ || = ||π|| ∪ ||π ′ ||, ||π ⋆ || = ||π|| ⋆ .
Here are some useful abbreviations in our object language (where P = {p 1 , ..., p n } is a finite subset of Prp):

mkTrueSome(P) = ; p∈P (+p ∪ skip) = (+p 1 ∪ skip); . . . ; (+p n ∪ skip), mkFalseAll(P) = ; p∈P (-p) = -p 1 ; . . . ; -p n , vary(P) = ; p∈P (+p ∪ -p) = +p 1 ∪ -p 1 ; . . . ; +p n ∪ -p n ,
if φ then π else π ′ = (φ?; π) ∪ (¬φ?; π ′), while φ do π = (φ?; π) * ; ¬φ?.

From valuations to (B)AFs and backward. From our hypothesis that Prp contains Prp A , we can define for each valuation v the BAF ⟨A v , R v , S v ⟩ (called the BAF represented by v) where:

A v = {x ∈ A | aw x ∈ v }, R v = {(x, y) ∈ A v × A v | r x,y ∈ v }, and S v = {(x, y) ∈ A v × A v | s x,y ∈ v }.
The other way round, each BAF ⟨A, R, S⟩ is represented by its associated

valuation v ⟨A,R,S⟩ = {aw x | x ∈ A} ∪ {r x,y | (x, y) ∈ R} ∪ {s x,y | (x, y) ∈ S}.
Note that both functions (from valuations to BAFs and backward) can be also defined for AFs, by just ignoring the supports. Finally, for each valuation v we define the extension associated to v as the set

E v = {x ∈ A | in x ∈ v }.
Argumentation semantics in DL-PA. There are some papers approaching the encoding of Dung's AFs semantics and some of its extensions in DL-PA [START_REF] Doutre | A dynamic logic framework for abstract argumentation[END_REF][START_REF] Doutre | A dynamic logic framework for abstract argumentation: adding and removing arguments[END_REF][START_REF] Doutre | Abstract argumentation in dynamic logic: Representation, reasoning and change[END_REF][START_REF] Herzig | Abstract argumentation with qualitative uncertainty: An analysis in dynamic logic[END_REF][START_REF] Yuste | Qualitative uncertainty and dynamics of argumentation through dynamic logic[END_REF]. Regarding abstract argumentation semantics, here is the list of those that have been captured in DL-PA so far: admissible, stable, complete, preferred, grounded, semi-stable, eager, stage, and naive. The main idea underlying these encodings is to write a generic DL-PA program mkExt σ parametrised by each semantics σ, s.t. for every AF ⟨A, R⟩ we have that:

σ(⟨A, R⟩) = {E v ′ | (v ⟨A,R⟩ , v ′) ∈ ||mkExt σ ||}.
For our purposes, we rely on the previous encoding of stable, complete, preferred, and grounded semantics (see [START_REF] Yuste | Qualitative uncertainty and dynamics of argumentation through dynamic logic[END_REF]Theorem 1]). However, and due to space reasons, we just include here the instance of mkExt for capturing stable semantics as an illustration:

Well = x∈A (in x → aw x), Stable = Well ∧ x∈A aw x → in x ↔ ¬ y∈A (in y ∧ r y,x , mkExt st = vary(IN A); Stable.

Incomplete Bipolar Argumentation Framework

Now we introduce our new Incomplete Bipolar Argumentation Frameworks, which generalizes both BAFs and IAFs.

Definiton 1 (Incomplete Bipolar AF) An Incomplete Bipolar Argumentation Framework (IBAF) is a tuple IB = ⟨A, A ? , R, R ? , S, S ? ⟩, where A, A ? are disjoint sets of arguments and R, R ? , S, S ? are disjoint relations between arguments. 3Example 2 The following figure gives a possible representation of the discussion described in Ex. 1 considering a deductive meaning for the support and the uncertainty of some elements (represented through dashed lines):

a 0 a 1 a 3 a 4 a 5 a 6
Before proposing a definition for the notion of completion, some points must be clarified. Let us consider the deductive4 support from a 5 to a 4 (i.e. if a 5 is accepted then a 4 must be accepted). A first approach can be to simply extend the notion of completion defined for IAF saying that an uncertain element can be present or not. We call this approach plain (or pla, for short). In this case, the acceptance of a 5 implies the acceptance of a 4 whenever a 4 is in the current completion; this is a conditionally certain support. A second possible approach is to consider that the meaning of support implies a constraint that should be satisfied in any completion if this support is certain: a completion in which a 5 would be accepted and not a 4 should be ruled out. Thus this second approach proposes to consider unconditionally certain support, giving, therefore, some kind of "priority" to the notion of support over uncertainty. The difficulty here is that the specificity we want to take into account is not only a syntactical one (an uncertain element is present or not) but also a semantic one (the meaning of the support must be preserved). This leads to proposing a more complex definition that brings out these different nuances: Definiton 2 (IBAF Completions) Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩ be an IBAF, let t ∈ {pla, nec, ded}, and let σ be a semantics. A t-completion of IB w.r.t. σ is a BAF B = ⟨A c , R c , S c ⟩ such that:

1. A ⊆ A c ⊆ A ∪ A ? ; R ∩ (A c × A c) ⊆ R c ⊆ (R ∪ R ?) ∩ (A c × A c); S ∩ (A c × A c) ⊆ S c ⊆ (S ∪ S ?) ∩ (A c × A c); and 2. if t ∈ {nec, ded} then ∀(a, b) ∈ S, ∀E ∈ σ t (B): (i) if t = nec and b ∈ E, then a ∈ E; and (ii) if t = ded and a ∈ E, then b ∈ E.
We denote as completions t σ (IB) the set of all completions of IB under the t interpretation and the semantics σ.

In Def. 2, the first condition represents the syntactical impact of the uncertainty (an uncertain element is present or not in the completion), whereas the second condition specifies the semantic impact of the support on the building of the completion. Obviously, if t = pla, then the second condition is not applicable and so no constraint is added. Hence, the notation completions pla σ (IB) can be simplified into completions pla (IB). We note by passing the strong relationship between the notion of deductive/necessary completions and the recently proposed constrained IAFs [START_REF] Mailly | Constrained incomplete argumentation frameworks[END_REF][START_REF] Herzig | Abstract argumentation with qualitative uncertainty: An analysis in dynamic logic[END_REF], and IAFs with dependencies [START_REF] Fazzinga | Reasoning over argument-incomplete AAFs in the presence of correlations[END_REF][START_REF] Fazzinga | Reasoning over attack-incomplete AAFs in the presence of correlations[END_REF]. However, the constraints or dependencies in these related works only take into account syntactical information, while we introduce semantic information as well.

Example 3 Using Def. 2, the IBAF from Ex 1 has eight pla-completions, described at Figure 1. Moreover, with the preferred semantics, only 4 dedcompletions can be built: B 3 , B 4 , B 7 and B 8 :

• for B 3 (resp. B 7), there is one preferred extension {a 0 , a 1 , a 4 , a 5 , a 6 }; note that an additional attack from a 5 to a 3 is introduced for taking into account the deductive meaning of the support;

• for B 4 , there is one preferred extension {a 1 , a 4 , a 5 , a 6 }; note that two additional attack are introduced: (a 5 , a 3) and (a 6 , a 3);

• for B 8 , there is one preferred extension {a 4 , a 5 , a 6 }; note that 3 additional attack exist: (a 5 , a 3), (a 6 , a 3) and (a 6 , a 1).

For the other B i , a 5 belongs to the preferred extension whereas a 4 does not since a 4 is not in the completion, so they are not ded-completions.

Interestingly, the notion of "unconditional certainty" is useless when considering attacks. Indeed if an attack from a to b is certain whereas a or b are not, then only two kinds of completion exist: some completions contain a, b and the attack and so a and b cannot be accepted together; some others in which a or b are missing, so the attack too, and a and b cannot be accepted together; thus in each case, the meaning of the attack is satisfied with only a syntactical criterion.

Complexity of Reasoning with IBAFs

Let us investigate the complexity of reasoning with IBAFs. We focus on acceptability problems, i.e. possible credulous acceptability (PCA), necessary credulous acceptability (NCA) and their counterparts for skeptical acceptability (PSA and NSA). Formally, given an IBAF IB = ⟨A, A ? , R, R ? , S, S ? ⟩ and a ∈ A, and given t 1 ∈ {pla, nec, ded} and In the first following propositions we consider the plain approach to computing completions (i.e. t 1 = pla), with the support relation being either the necessary or deductive support (i.e. t 2 ∈ {nec, ded}). We show that checking the (various kinds of) acceptability of arguments is in this case not harder than in the case of (non-bipolar) IAFs. This comes from the following observation: Observation 1 Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩ be an IBAF, and B * = ⟨A * , R * , S * ⟩. Checking whether B * is a plain completion of IB can be done in polynomial time (w.r.t. the number of arguments |A ∪ A ? |).

t 2 ∈ {nec, ded} s.t. if t 1 ∈ {nec, ded}, then t 1 = t 2 , • σ t2 -t 1 -PCA: ∃B ∈ completions t1 σ (IB), ∃E ∈ σ t2 (B) s.t. a ∈ E? • σ t2 -t 1 -NCA: ∀B ∈ completions t1 σ (IB), ∃E ∈ σ t2 (B) s.t. a ∈ E? • σ t2 -t 1 -PSA: ∃B ∈ completions t1 σ (IB), ∀E ∈ σ t2 (B) s.t. a ∈ E? • σ t2 -t 1 -NSA: ∀B ∈ completions t1 σ (IB), ∀E ∈ σ t2 (B) s.t. a ∈ E? a 0 a 1 a 3 a 5 a 6 (a) B 1 a 0 a 1 a 3 a 5 a 6 (b) B 2 a 0 a 1 a 3 a 4 a 5 a 6 (c) B 3 a 0 a 1 a 3 a 4 a 5 a 6 (d) B 4 a 0 a 1 a 3 a 5 a 6 (e) B 5 a 0 a 1 a 3 a 5 a 6 (f) B 6 a 0 a 1 a 3 a 4 a 5 a 6 (g) B 7 a 0 a 1 a 3 a 4 a 5 a 6 (h) B 8
Proposition 1 For t 2 ∈ {nec, ded} and σ ∈ {ad, gr, st, co, pr}, σ t2 -pla-PCA is NP-complete.

Notice that ∅ is always admissible in a BAF, so no argument is skeptically accepted, which means that the problem is trivial like in the case of IAFs.

Proposition 2 For t 2 ∈ {nec, ded} and σ ∈ {gr, st, co}, σ t2 -pla-NSA is coNPcomplete, it is trivial for σ = ad, and it is Π P 2 -complete for σ = pr.

Proposition 3 For t 2 ∈ {nec, ded} and σ ∈ {ad, st, co, pr}, σ t2 -pla-NCA is Π P 2complete, and it is coNP-complete for σ = gr.

The last result concerns σ-PSA. Recall that it is trivial when σ = ad, as explained previously for ad-NSA.

Proposition 4 For t 2 ∈ {nec, ded} and σ ∈ {co, gr}, σ t2 -pla-PSA is NPcomplete, it is Σ P 2 -complete for σ = st, and Σ P 3 -complete for σ = pr.

The situation is not so simple when t 1 ∈ {nec, ded}, since verifying whether a BAF is a t 1 -completion of an IBAF requires to look at the content of extensions, which is generally hard. The only exception is the grounded semantics.

Proposition 5 Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩ be an IBAF, and B * = ⟨A * , R * , S * ⟩. Checking whether B * ∈ completions t gr (IB) (for t ∈ {nec, ded}) can be done in polynomial time (w.r.t. the number of arguments |A ∪ A ? |).

Corollary 1 For t ∈ {nec, ded}, gr t -t-PCA is NP-complete, gr t -t-NSA is coNPcomplete, gr t -t-NCA is coNP-complete and gr t -t-PSA is NP-complete.

We assume these problems to be harder for the other semantics. In particular, we can give some upper bounds for σ ∈ {ad, co, st}.

Proposition 6 Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩ be an IBAF, and B * = ⟨A * , R * , S * ⟩. Checking whether B * ∈ completions t σ (IB) (for σ ∈ {ad, co, st} and t ∈ {nec, ded}) is a ∆ P 2 problem.

This induces that the acceptability problems are likely to be harder than their counterpart with t 1 = pla. However, proving that these are complete problems (i.e. that the provided upper bound is actually a tight complexity result) is still an open question, as well as the complexity of the various problems for σ = pr.

Logical encoding of IBAFs

Necessary and deductive supports in DL-PA. We start the original part of our encoding process by looking for DL-PA programs and formulas that capture the relevant notions of BAFs under the necessary and deductive interpretations of supports. In order to do so, we need to capture, following what we said in Sec. 2.1, the new kinds of attacks added under each of the interpretations. The first step is then to compute the transitive closure of the support relation in DL-PA, since this plays a crucial role in the definition of added attacks. The following program, adapted from [START_REF] Doutre | Abstract argumentation in dynamic logic: Representation, reasoning and change[END_REF], computes one step of such closure: step = ; x,y,z∈A (aw x ∧ aw y ∧ aw z ∧ s x,y ∧ s y,z)?; +s x,z . Moreover, the following formula is true in those valuations where S v is transitive:

Transitive = x,y,z∈A (aw x ∧ aw y ∧ aw z ∧ s x,y ∧ s y,z) → s x,z . With both components, we can easily write a DL-PA program that computes the transitive closure of S v : transClosure = while ¬Transitive do step.

Now, we are able to define DL-PA formulas that capture complex attacks (we also define a shorthand for capturing elements of R v):5 r aw

x,y = aw x ∧ aw y ∧ r x,y , r case1

x,y = aw x ∧ aw y ∧ z∈A (aw z ∧ r x,z ∧ [transClosure]s z,y),

r case2 x,y = aw x ∧ aw y ∧ z∈A aw z ∧ r z,y ∧ [transClosure]s z,x .
With these complex attacks already present in our syntactic repertoire, we can find a program that adds them to the BAF associated to v :

addAttacks nec = ; x,y∈A (if (r aw x,y ∨ r case1
x,y ∨ r case2 x,y) then +r ′ x,y ; else skip); mkFalseAll(ATT A×A); ; x,y∈A (if r ′ x,y then+r x,y else skip)).

Note that this program makes use of a set of fresh copies of attack variables ATT ′ A×A = {r ′ x,y | (x, y) ∈ A × A}, whose existence can be assumed because Prp is countably infinite while A is finite.

Using the duality between deductive and necessary support that we mentioned in Sec. 2.1, we can easily go from one interpretation to the other by means of the following DL-PA program (just as before, we make use of fresh copies of variables, this time with supports): deductive2necessary = ; x,y∈A (if s y,x then +s ′ x,y ; else skip); mkFalseAll(SUP A×A); ; x,y∈A (if s ′ x,y then+s x,y ; else skip).

Hence, we can abbreviate addAttacks ded = deductive2necessary; addAttacks nec . We state formally the correctness of our encoding: Proposition 7 Let B = ⟨A, R, S⟩ be a BAF, let t ∈ {nec, ded}, and let σ be an argumentation semantics, we have that

σ t (B) = {E v ′ | (v B , v ′) ∈ ||addAttacks t ; mkExt σ ||}.
Computing completions of IBAFs in DL-PA. Moving to IBAFs, we first want to design a DL-PA program, mkComp pla (IB), that computes all the plain completions of a given IB = ⟨A, A ? , R, R ? , S, S ? ⟩. For doing so, we first define the valuation associated to IB, which is determined by its certain part:

v IB = v ⟨A,R,S⟩ . Note that ⟨A v IB , R v IB , S v IB ⟩ is already a completion of IB:
it is the smallest one, where only certain arguments and certain attacks and supports between them are considered. In order to compute all the completions of IB we make true subsets of propositional variables representing arguments in A ? , attacks in R ? , and supports in S ? : mkComp pla (IB) = mkTrueSome(AW A ?); mkTrueSome(ATT R ?); mkTrueSome(ATT S ?).

If one prefers to capture the more specific notions of necessary and deductive completions (Def. 2), then it is necessary to check whether the corresponding additional constraint is satisfied after each execution of mkComp pla (IB) and the computation of the corresponding extensions. However, we have to be cautious here, because the execution of mkComp pla (IB) may make true some support variables corresponding to elements of S ? . An easy solution to this problem consists in making a copy of support variables before the execution of mkComp pla (IB).

We use yet another set of fresh copies SUP ′′ A×A = {s ′′

x,y | (x, y) ∈ A × A} not to interfere with the later execution of deductive2necessary. So, the first part of our program for computing necessary and deductive completions will be copy ′′ (SUP A×A) = ; x,y∈A (if s x,y then +s ′′ x,y ; else skip). Now, we can express the constraints corresponding to necessary and deductive completions:

Constraint nec = x,y∈A ((in x ∧ s ′′ y,x) → in y) and Constraint ded = x,y∈A ((in x ∧ s ′′
x,y) → in y). And finally,

mkComp t σ (IB) = copy ′′ (SUP A×A); mkComp pla (IB); ([addAttacks t ; mkExt σ]Constraint t)?
Proposition 8 Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩, t ∈ {pla, nec, ded}, and let σ be a semantics. Then:

• If ⟨v IB , v ⟩ ∈ ||mkComp t σ (IB)||, then ⟨A v , R v , S v ⟩ ∈ completions t σ (IB). • If ⟨A c , R c , S c ⟩ ∈ completions t σ (IB), then there is a v ⊆ Prp s.t. v ∩Prp A = v ⟨Ac,Rc,Sc⟩ and ⟨v IB , v ⟩ ∈ ||mkComp t σ (IB)||.
Argument acceptance for IBAFs in DL-PA. We have then all the ingredients to reduce argument acceptance problems of IBAFs to model checking problems in DL-PA.

Proposition 9 Let IB = ⟨A, A ? , R, R ? , S, S ? ⟩, let a ∈ A, let σ ∈ {co, pr, gr, st}, let t 1 ∈ {pla, nec, ded} and t 2 ∈ {nec, ded} s.t. if t 1 ∈ {nec, ded}, then t 1 = t 2 . Then:

• The answer to σ t2 -t 1 -PCA with input IB and a is YES iff v IB |= ⟨mkComp t1 σ (IB); addAttacks t2 ; mkExt σ ⟩in a . • The answer to σ t2 -t 1 -NCA with input IB and a is YES iff v IB |= [mkComp t1 σ (IB)]⟨addAttacks t2 ; mkExt σ ⟩in a . • The answer to σ t2 -t 1 -PSA with input IB and a is YES iff v IB |= ⟨mkComp t1 σ (IB)⟩[addAttacks t2 ; mkExt σ]in a . • The answer to σ t2 -t 1 -NSA with input IB and a is YES iff v IB |= [mkComp t1 σ (IB); addAttacks t2 ; mkExt σ]in a .

Conclusion

This paper was devoted to the definition and the study of IBAFs: enriched frameworks for abstract argumentation taking into account two kinds of interaction between arguments (attacks and necessary or deductive supports) and considering at the same time that the elements (arguments or interactions) of this framework can be uncertain. Reasoning about IBAFs is done through the notion of completion: any uncertain element can be considered present or absent and so several "variants" of the IBAF may be built, each variant is called completion and corresponds to a classical BAF without uncertainty. Then, the semantics of IBAFs are defined by the application of the corresponding semantics on these completions. Due to the specificity of the support relations, two distinct approaches were proposed leading to two different definitions of completion: the first one corresponds to the notion of conditionally certain support whereas the second one introduces the notion of unconditionally certain support.

Each kind of completion is in turn used for the definition of the semantics. Tight complexity results are given in the first case and upper bounds are presented in the second case. Finally, a logical encoding using DL-PA was proposed for both cases.

In terms of future works, several directions can be explored. First, we could complete this study for other IBAFs by taking into account some other support relations (for instance the evidential one). Second, the same work could be done for other enriched frameworks (for instance, those with higher-order interactions, or those with collective ones). A third interesting point could be to implement the computation of semantics of all these incomplete frameworks using DL-PA solvers and to make some experiments for evaluating our encoding and comparing with other approaches (perhaps with a more direct computation of semantics without using logics). Finally, a fourth line of future research consists in focusing on the uncertainty aspect of IBAFs by, e.g., considering a recursive form of uncertainty [START_REF] Rienstra | Opponent models with uncertainty for strategic argumentation[END_REF], or proposing a direct approach (i.e. without using completions) to define extension-based semantics in the style of [START_REF] Mailly | Extension-based semantics for incomplete argumentation frameworks[END_REF].

A Proofs

A.1 Proofs for Section 4

Recall that all complexity lower bounds are provided by the known results on Incomplete Argumentation Frameworks, as summarized in Table 1 σ σ-PCA σ-NCA σ-PSA σ-NSA Proof: We assume a fixed t ∈ {nec, ded}, and we focus on σ t -NSA, the complementary problem of σ t -NSA. This problem is solved by Algorithm 2. With the same reasoning as for the previous proof, this algorithm provides a NP upper bound for σ t -NSA for σ t ∈ {gr t , st t , co t }, and Σ P 2 for σ t = pr t , and we can conclude with the results for σ t -NSA. □

ad NP-c Π P 2 -c trivial trivial st NP-c Π P 2 -c Σ P 2 -c coNP-c co NP-c Π P 2 -c NP-c coNP-c gr NP-c coNP-c NP-c coNP-c pr NP-c Π P 2 -c Σ P 3 -c Π P 2 -c

Algorithm 2 Solve coNSA

Input: IB = ⟨A, A ? , R, R ? , S, S ? ⟩, a ∈ A ∪ A ? , σ a semantics, t ∈ {nec, ded}. [START_REF] Cyras | Capturing bipolar argumentation in non-flat assumption-based argumentation[END_REF][START_REF] Karamlou | Complexity results and algorithms for bipolar argumentation[END_REF]. Complexity of σ-Ver for co and gr semantics is given in [START_REF] Fazzinga | Probabilistic bipolar abstract argumentation frameworks: complexity results[END_REF].

New results are also given (in grey cells) due to the fact that building the new attack relation following the necessary or deductive meaning can obviously be made in polynomial time w.r.t. the number of arguments. Now we can continue with the proofs.

[Proposition 3] Proof: The proof follows a similar approach as the previous ones, focusing on the complement problem of σ-NCA. Non-deterministically guess a BAF B * and check in polynomial time whether it is a completion of IB for the given meaning of supports. Then, check whether the given argument a is credulously accepted in B * . This yields a NP algorithm (when credulous acceptability is polynomial) or a Σ P 2 algorithm (when credulous acceptability is in NP) for the complement of σ-NCA, hence the result. □

[Proposition 4]

Proof: Non-deterministically guess B * and check in polynomial time whether it is a completion of IB. Then simply check whether the given argument a is skeptically accepted in B * . The complexity of skeptical acceptability (P for {gr, co}, NP for st, and Π P 2 for pr) induces the results. □ Now we focus on the cases where completions are computed using the necessary or deductive meaning.

[Proof: As preliminary steps, one has to show the correctness of the involved programs and formulas. In particular, let v ⊆ Prp be a valuation and let ⟨Av , Rv , Sv ⟩ be the BAF represented by v , it holds that:

• If (v , v ′) ∈ ||transClosure||, then S + v = S v ′ . • v |= r aw x,y ∨ r case1 x,y ∨ r case2 x,y iff (x, y) ∈ R nec v . • If (v , v ′) ∈ ||addAttacks nec ||, then R nec v = R v ′ . • If (v , v ′) ∈ ||deductive2necessary||, then R -1 v = R v ′ . • If (v , v ′) ∈ ||addAttacks ded ||, then R ded v = R v ′ .
The proof of these lemmas are left to the reader. Then, the claim of the proposition follows from the last three bullet points, and the correctness of mkExt for our target semantics {co, st, gr, pr} (see, e.g., [START_REF] Yuste | Qualitative uncertainty and dynamics of argumentation through dynamic logic[END_REF]). □

[Proposition 8]

Proof: We prove both items for each possible value of t.

[t = pla] For the first item, suppose ⟨vIB, v ⟩ ∈ ||mkComp pla σ (IB)||. By the definition of mkComp pla σ (IB) and the meaning of mkTrueSome, we have that

v = vIB ∪ AW A ′ ∪ ATT R ′ ∪ SUP S ′ with A ′ ⊆ A ? , R ′ ⊆ R ?
and S ′ ⊆ S ? . The latter implies, by definition of (•)v that Av = A ∪ A ′ , Rv = R ∪ R ′ and Sv = S ∪ S ′ . The last two claims imply, by Definition 2, that ⟨Av , Rv , Sv ⟩ ∈ completions pla (IB). For the second item, the valuation that satisfies the existential claim is simply v ⟨Ac,Rv ,Sc⟩ . Let us show it. Suppose that ⟨Ac, Rv, Sc⟩ ∈ completions pla (IB), which amounts, by Definition 2, to A ⊆ Ac ⊆ A ∪ A ? ; R ∩ (Ac × Ac) ⊆ Rc ⊆ (R ∪ R ?) ∩ (Ac × Ac) and S ∩ (Ac × Ac) ⊆ Sc ⊆ (S ∪S ?)∩(Ac ×Ac). Now, recall that vIB = v ⟨A,R,S⟩ . From the two previous statements we can deduce that the set of variables whose value differs from vIB to v ⟨Ac,Rv ,Sc⟩ must be a subset of AW A ? ∪ ATT R ? ∪ SUP S ? .

The latter implies, by the definition of mkComp pla and the meaning of mkTrueSome that ⟨vIB, v ⟨Ac,Rv ,Sc⟩ ⟩ ∈ ||mkComp pla (IB)||. On the one hand, and since the execution of copy ′′ (SUP A×A) does not alter the value of any variable from Prp A , we can deduce from (1), (2) and the previous case of this proposition that ⟨Av 2 , Rv 2 , Sv 2 ⟩ ∈ completions pla (IB). Moreover, note that by the semantics of '?', we can deduce from (3) that v2 = v . Substituting identical terms we have that ⟨Av , Rv , Sv ⟩ ∈ completions pla (IB). So we've shown that the first part of the definition of necessary completion is satisfied by ⟨Av , Rv , Sv ⟩. On the other hand, suppose that E ∈ σ nec (⟨Av , Rv , Sv ⟩). The latter implies, by Proposition 7, that E = Ev 4 for some ⟨v , v4⟩ ∈ ||addAttacks nec ; mkExt σ ||. Note that from (3), the truth clause of [π], and the previous assertion we can deduce that v4 |= Constraint nec . Suppose that (x, y) ∈ S (recall that S is the set of certain supports), which implies (x, y) ∈ Sv IB , which in turn implies, by the definition of copy ′′ and the rest of involved programs, that s ′′

x,y ∈ v4. Further, suppose that y ∈ E = Ev 4 . Both facts, together with v4 |= Constraint nec imply that x ∈ Ev 4 = E. So we've shown that the second part of the definition of necessary completion is satisfied by ⟨Av , Rv , Sv ⟩. We can then assert that ⟨Av , Rv , Sv ⟩ ∈ completions nec (IB). For the second item, the valuation witnessing the existential claim is v = v ⟨Ac,Rc,Sc⟩ ∪ {s ′′

x,y | (x, y) ∈ S}. Let us show it. Suppose that ⟨Ac, Rc, Sc⟩ ∈ completions nec σ (IB), which by Def. 2 amounts to:

(1) ⟨Ac, Rc, Sc⟩ ∈ completions pla σ (IB); and

(2) ∀E ∈ σ nec (⟨Ac, Rc, Sc⟩), ∀(x, y) ∈ S if y ∈ E, then x ∈ E. x,y | (x, y) ∈ S}, we can deduce that ⟨v1, v2⟩ ∈ ||mkComp pla (IB)|| from (1), the previous case of this proof (i.e., t = pla), and the fact that mkComp pla does not alter the value of s ′′

x,y -variables. Finally, note that v2 survives to the test ([addAttacks nec ; mkExt σ]Constraint nec)? because of (2) and Proposition 7.

[t = ded] This case is very similar to the previous one. The only important detail is the use of fresh variables {s ′′

x,y | (x, y) ∈ A × A} instead of {s ′

x,y | (x, y) ∈ A × A} by the program copy ′′ , so that the execution of deductive2necessary does not affect the evaluation of Constraint ded .

□ [Proposition 9]

Proof: All cases follow similar lines of reasoning, using propositions 7 and 8 in the crucial steps. More precisely, some of the cases need a stronger version of Proposition 7 that is easily derivable from the meaning of the involved DL-PA programs. Namely, that the claim works not only for vB but for any other valuation that agrees with it in the value given to variables in Prp ∪ ATT ′ A×A ∪ SUP ′ A×A where ATT ′ A×A = {r ′ x,y | (x, y) ∈ A × A}, and the same for supports. More formally, we have that:

σ t (B) ={E v ′ | (v , v ′) ∈ ||addAttacks t ; mkExt σ ||, v ∩ (Prp A ∪ ATT ′ A×A ∪ SUP ′ A×A) = vB}. (1)
Let us just see the proof for the first reasoning problem as an illustration:

[σ t 2 -t1-PCA] From-left-to-right. Suppose that the answer to the reasoning problem is YES. The latter is equivalent, by definition of σ t The answer to σ t 2 -t1-PCA is YES. □

 R⟩ with A ⊆ A the set of arguments and R ⊆ A × A the set of attacks. For a, b ∈ A, we say that a attacks b if (a, b) ∈ R (and we sometimes use the infix notation aRb). If b attacks some c ∈ A, then a defends c against b. Similarly, a set S ⊆ A attacks (resp. defends) an argument b if there is some a ∈ S that attacks b (resp. if, for any aRb, there is c ∈ S that defends b against a). Let us consider Ex. 1 without taking into account the potential uncertainty, arguments a 4 and a 3 and their relationship can be represented by the graph:

 t. aRc and c S + b (Case 1: a new attack), or there is c ∈ A s.t. cRb and c S + a (Case 2: a new attack). The following figure illustrates cases 1 and 2:

Figure 1 :

 1 Figure 1: The completions of IB from Example 1

 [t = nec] For the first item, suppose ⟨vIB, v ⟩ ∈ ||mkComp nec σ (IB)||, which amounts by definition of mkComp nec and the semantics of the sequential composition operator to ⟨vIB, v ⟩ ∈ ||copy ′′ (SUP A×A)|| • ||mkComp pla (IB)|| • ||([addAttacks nec ; mkExt σ]Constraint nec)?||. That means that there are v1, v2 ⊆ Prp s.t. (1) ⟨vIB, v1⟩ ∈ ||copy ′′ (SUP A×A)||, (2) ⟨v1, v2⟩ ∈ ||mkComp pla (IB)||, and (3) ⟨v2, v ⟩ ∈ ||([addAttacks t ; mkExt σ]Constraint nec)?||.

Now, let

 v1 = vIB ∪ {s ′′ x,y | (x, y) ∈ S}, we have that ⟨vIB, v1⟩ ∈ ||copy ′′ (IN A)|| by definition of copy. Moreover, let v2 = v ⟨Ac,Rc,Sc⟩ ∪{s ′′

Table 1 :

 1 Complexity of acceptability for IAFs. PCA (resp. PSA) and NCA (resp. For t ∈ {nec, ded}, the problem is solved by the simple nondeterministic Algorithm 1. Depending on the complexity of verifying an extension of a BAF, this algorithm is an NP algorithm if verification is in P, i.e. for σ t ∈ {ad t , gr t , st t , co t }. Finally, since pr t -extensions are ⊆maximal ad t -sets, then ad t -PCA is equivalent to pr t -PCA, hence the result for this last semantics. Without this particular case, Algorithm 1 would have only provided a Σ P 2 upper bound for pr t -PCA. Non-deterministically guess E ⊆ A * s.t. a ∈ E 3: if B * is a pla-completion of IB. then

	NSA) means Possible Credulous (resp. Skeptical) Acceptability and Necessary
	Credulous (resp. Skeptical) Acceptability [6, 31]
		Hence, in what follows, we focus on identifying upper bounds:
		[Proposition 1]
	4:	if E is a σ t -extension of B * then
	5:	return YES
	6:	end if
	7: end if
	8: return NO
		[Proposition 2]

Proof: □ Algorithm 1 Solve PCA Input: IB = ⟨A, A ? , R, R ? , S, S ? ⟩, a ∈ A ∪ A ? , σ a semantics, t ∈ {nec, ded}.

1: Non-deterministically guess B * = ⟨A * , R * , S * ⟩ 2:

1 :

 1 Non-deterministically guess B * = ⟨A * , R * , S * ⟩ 2: Non-deterministically guess E ⊆ A * s.t. a ̸ ∈ E 3: if B * is a pla-completion of IB. then

	4:	if E is a σ t -extension of B * then		
	5:	return NO				
	6:	end if				
	7: end if				
	8: return YES				
		For the following proof, we need to refer to the complexity of reasoning with
	BAFs, which is summarized in Table 2		
		Semantics σ	σ-Ver	σ-Cred σ-Skep σ-Exist σ-NE
		ad	P	NP-c	Trivial Trivial NP-c
		gr	P	P	P	Trivial	P
		st	P	NP-c	coNP-c	NP-c	NP-c
		co	P	NP-c	P	Trivial	P
		pr	coNP-c	NP-c	Π P 2 -c	Trivial NP-c

Table 2 :

 2 Complexity of reasoning with BAFs. Results for ad, pr and st semantics come from

 Proposition 5] Proof: We can compute the grounded semantics of B * in polynomial time and check (still in polynomial time) for each (a, b) ∈ S * whether a ∈ gr(B *) and b ∈ gr(B For σ ∈ {ad, co, st}, we can build in polynomial time (following e.g. the approach from[START_REF] Besnard | Checking the acceptability of a set of arguments[END_REF]) a propositional formula Φ B *). Then, for each (a, b) ∈ S * we can check in NP whether Φ B * σ ∧ (b → a) (for nec) or Φ B * σ ∧ (a → b) (for ded) is satisfiable. Since there is a polynomially large number of supports in S, checking whether B * is a nec/ded completion is a P NP = ∆ P 2 problem.

	mod (Φ B * σ) = σ(B	σ	s.t.

*). □ [Proposition 6] Proof: * □ A.2 Proofs for Section 5 [Proposition 7]

 This implies, by the proof of the second bullet of Proposition 8 that: ∃B a BAF s.t. the valuation v = vB ∪{s ′′ x,y | (x, y) ∈ S} satisfies ⟨vIB, v ⟩ ∈ ||mkComp t1 σ (IB)||, ∃E ∈ σ t 2 (B), a ∈ E. From this statement and (1) we can deduce that: ∃v ⊆ Prp s.t. ⟨vIB, v ⟩ ∈ ||mkComp t1 σ (IB)||, ∃v ′ ⊆ Prp, ⟨v , v ′ ⟩ ∈ ||addAttacks t 2 ; mkExt σ || with v ′ |= ina. This implies, by the semantics of ⟨π⟩ and the semantics of ; that: vIB |= ⟨mkComp t 1 σ (IB); addAttacks t 2 ; mkExt σ ⟩ina.From-right-to-left. Suppose that vIB |= ⟨mkComp t 1 σ (IB); addAttacks t 2 ; mkExt σ ⟩ina. This implies, by the meaning of ⟨π⟩ and ; that:∃v ⊆ Prp s.t. ⟨vIB, v ⟩ ∈ ||mkComp t1 σ (IB)||, ∃v ′ ⊆ Prp, ⟨v , v ′ ⟩ ∈ ||addAttacks t 2 ; mkExt σ || with a ∈ E v ′ .This implies by the first bullet of Proposition 8 that: ∃v ⊆ Prp s.t. ⟨Av , Rv , Sv ⟩ ∈ completions t1 σ (IB), ∃v ′ ⊆ Prp, ⟨v , v ′ ⟩ ∈ ||addAttacks t 2 ; mkExt σ || with a ∈ E v ′ . This implies by Proposition 7 that: ∃v ⊆ Prp s.t. ⟨Av , Rv , Sv ⟩ ∈ completions t1 σ (IB), ∃v ′ ⊆ Prp, E v ′ ∈ σ t 2 (⟨Av , Rv , Sv ⟩) and a ∈ E v ′ . This implies by definition of σ t 2 -t1-PCA that:

2

-t1-PCA, to:

∃B ∈ completions t 1 σ (IB), ∃E ∈ σ t 2 (B) s.t. a ∈ E.

We are aware that we use the word "necessary" with two different meanings. We choose not to deviate from the standard terminology in the literature. However it will be clear from the context if we mean "necessary support" or "necessary in all the completions".

Given a binary relation R, we write R ⋆ the reflexive and transitive closure of R.

Note that this constraint could be relaxed by permitting R ? and S ? to have a (possibly) non-empty intersection. It will be the subject of future work.

From the mentioned duality, the same applies to necessary supports.

The latter is necessary because it can be the case that rx,y ∈ v , but either awx / ∈ v or awy / ∈ v , and hence (x, y) / ∈ Rv .

Acknowledgments

We want to acknowledge our colleague Sylvie Doutre for the very rich exchanges about the topic of this paper.