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Abstract

The Verification Problem in abstract argumentation consists in
checking whether a set is acceptable under a given semantics in a given
argumentation graph. Explaining why the answer is so is the challenge
tackled by this paper. Visual explanations in the form of subgraphs of
the initial argumentation framework are defined. These explanations
are grouped into classes, allowing an agent to select the explanation
that suits them best among the several offered possibilities. Results
are provided on how to use the visual aspects of our explanations to
support the acceptability of a set of arguments under a semantics.
Computational aspects of specific explanations are also investigated.
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1 Introduction

Abstract Argumentation is increasingly studied as a formal tool to pro-
vide explanations of decisions made using an Artificial Intelligence system
in the context of eXplainable Artificial Intelligence (XAI). The recent survey
by [ČRA+21a] indicates that Argumentation can be used to generate expla-
nations in various domains, notably in multi-agent systems as in [GTWX16],
and that explanations for the argumentative process itself are also necessary.

The basic argumentation process is based on an abstract structure which
takes the form of a directed graph, whose nodes are arguments and edges
represent attacks between arguments [Dun95]. Characterising the accept-
ability of arguments can take the form of extension-based semantics: they
define sets (extensions) of arguments which are collectively acceptable ac-
cording to the semantics. The main questions which have been addressed
so far in this context concern the global acceptability status of an argu-
ment or of a set of arguments, that is, why, under a given semantics, they
belong to at least one extension (credulous acceptance) or to every ex-
tension (skeptical acceptance). The most common explanation approach
consists in identifying set(s) of arguments which act as explanation(s), as
in [FT15, BB21a, BB21b, UW21, LvdT20, BU21]. However, since the ar-
gumentative process of Abstract Argumentation already provides ways for
selecting arguments, explaining this process by more selection of arguments
(although different ones) may not be fully helpful. Moreover, this set ap-
proach does not highlight the attacks which are involved in the explanations.

Another question regarding the argumentation process concerns the Veri-
fication Problem Ver, defined as follows: given an Argumentation Framework
A, a set of arguments S and an extension-based semantics σ, “Is S an exten-
sion under σ in A?”. The answer to this problem is “yes” or “no”. In order
to explain why the answer is so, the eXplanation Verification Problem XVer
can be defined using the question Qσ: “Why is S (not) an extension under
σ in A?”.

As far as we know, [BDDLS22] is one of the only approaches which has
addressed this problem and which has provided answers for some acceptabil-
ity semantics of [Dun95] in the form of relevant subgraphs, as in [SWW20,
NJ20, RT21]. Such a visual approach is particularly of interest for human
agents, graphs having been shown to be helpful for humans to comply with
argumentation reasoning principles [VYT22]. This graph-based approach
not only highlights arguments, but also attacks. In [BDDLS22], properties
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that these answers satisfy have been established, depending on whether the
answer to the corresponding verification problem is “yes” or “no”. This
methodology follows the line of [CČRT18] in that an explanation for a set S
satisfying a semantic σ is a (set of) subgraph(s) G of A such that G satisfies
a given graph property C. Another interesting point in [BDDLS22] is that
the considered semantics are based on a modular definition, which allows the
explanations to be decomposed.

A limitation of [BDDLS22] is however that, for each semantic principle,
a single explanation subgraph is defined. It could be more realistic to con-
sider classes (sets) of explanations. Indeed such classes would be particularly
meaningful and useful when several agents, human or artificial, are involved
around the explanation of a same problem, in that they offer a variety of
answers, which all follow a same schema, but which may differ on their exact
content. Any agent can choose or can be presented an explanation that suits
them best, and any agent can understand an explanation given by another
agent, different from theirs. Classes of explanations adapt to a wide set of
agents. As an example, Fig. 1 shows three agents Ag1, Ag2, Ag3, which
face an explanation question regarding a result output by a system, an argu-
mentation solver for instance. The considered set is an extension, and they
wonder why it is so. The three agents agree on the first part of the explana-
tion (explaining why there is no conflict between the arguments), but they
differ on the second (concerning the defence). However, their explanations
all follow a same pattern, which consists in showing that every argument of
the set is defended. A class of explanations is thus defined. It can be noticed
that in this example, the agents specifically ask for an explanation on the
result computed by the system. As in [BDDLS22], the approach that will be
presented in this paper goes further, by considering the possibility that the
answer to the Verification Problem is not known before an explanation be
asked and given. In this case, the explanation graph and its interpretation
offer at a same time the answer to the problem and a justification to this
answer.

Only few related works can be found concerning this notion of classes
of explanation. Such classes have already been proposed in [BU21] for the
problem of credulous acceptance of an argument, where the authors consider
explanation schemes made of several elements, one of them being fixed, the
other ones varying from one explanation to another. Another related work
is [BB21a] in which the authors define a parametric computation of expla-
nations. As such, it is more the computation processes that are grouped in

5



Figure 1: Explanations in a multi-agent context

classes, rather than the explanations (i.e. results of the processes) themselves.
Thus, our aim in the current paper is to build up on the approach

of [BDDLS22] and to go further by defining classes of explanations following
a generic methodology, applied to the semantics that [BDDLS22] addressed
(conflict-free, admissible, stable, complete). Additional properties (empty-
ness, uniqueness, maximality, minimality, computation) of explanations on
these newly defined classes will be investigated.

Sec. 2 recalls background notions relative to abstract argumentation,
graph theory, and presents the explanation approach defined in [BDDLS22].
The definition of our classes of explanations is given in Sec. 3, Sec. 4 stud-
ies their properties, and Sec. 5 shows how to compute their maximal and
minimal explanations. Sec. 6 concludes and presents some future works.

2 Background notions

2.1 Argumentation and Graph Theory

We begin by recalling basic notions on Abstract Argumentation.

Definition 1 ([Dun95]). A Dung’s argumentation framework (AF) is an
ordered pair (A,R) such that R ⊆ A× A.

Each element a ∈ A is called an argument and aRb means that a attacks
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b. For S ⊆ A, we say that S attacks a ∈ A iff bRa for some b ∈ S. Any
argumentation framework can be represented as a directed graph (the nodes
are the arguments and the edges correspond to the attack relation).

The main asset of Dung’s approach is the definition of semantics using
some basic properties in order to define sets of acceptable arguments, as
follows.

Definition 2 ([Dun95]). Let A = (A,R). An argument a ∈ A is acceptable
wrt S ⊆ A iff for all b ∈ A, if bRa then ∃c ∈ S st cRb.

Definition 3 ([Dun95]). Given A = (A,R), a subset S of A is:

• a conflict-free set iff there are no a and b in S such that a attacks b,

• an admissible set iff S is conflict-free and for any a ∈ S, a is acceptable
wrt S,

• a complete extension iff S is admissible and for any a ∈ A, if a is
acceptable wrt S then a ∈ S,

• a stable extension iff S is conflict-free and S attacks any a ∈ A \ S.

The Verification Problem for the four semantics given in Def. 3 can be
solved in polynomial time, as indicated by [DD18].

Since an AF can be represented using directed graphs, we also need to
recall some basic notions of Graph Theory.

Definition 4. Let G = (V,E) and G′ = (V ′, E ′) be two graphs.

• G′ is a subgraph of G iff V ′ ⊆ V and E ′ ⊆ E.1

• G′ is a strict subgraph of G iff it is a subgraph of G and either V ′ ⊂ V
or E ′ ⊂ E.2

• G′ is an induced subgraph of G by V ′ if G′ is a subgraph of G and for
all a, b ∈ V ′, (a, b) ∈ E ′ iff (a, b) ∈ E. G′ is denoted as G[V ′]V .

• G′ is a spanning subgraph of G by E ′ if G′ is a subgraph of G and
V ′ = V . G′ is denoted as G[E ′]E.

1G is then a supergraph of G′

2G is then a strict supergraph of G′
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A subgraph G′ of G is included in G. In an induced subgraph G′ of G
by a set of vertices S, some vertices of G can be missing but all the edges
concerning the kept vertices are present. In a spanning subgraph G′ of G by
a set of edges S, all the vertices of G are present but some edges of G can be
missing.

Induced and spanning subgraphs are examples of ways to compute a graph
from another single graph. Another operation producing a new graph from
other ones is the union that represents the aggregation of the information
contained in the two graphs:

Definition 5 (Graph union). Let G1 = (V1, E1) and G2 = (V2, E2) be two
graphs. The union of G1 and G2 is defined by G1 ∪G2 = (V1 ∪ V2, E1 ∪E2).

Let us consider also a particular kind of graphs, bipartite graphs, whose
set of vertices can be split in two disjoint sets and in which every arc connects
a vertex of one part to a vertex of the other part:

Definition 6 (Bipartite Graph). Let G = (V,E) be a graph. G is bipartite
(with parts T and U) iff there exist T, U ⊆ V such that T ∪ U = V and
T ∩ U = ∅ (T and U are a partition of V ) and for every (a, b) ∈ E, either
a ∈ T and b ∈ U , or a ∈ U and b ∈ T . G will be denoted with (T, U,E) and
U is the complement part of T (and vice-versa).

Some important functions can be defined over graphs.

Definition 7 (Successor and Predecessor functions). Let G = (V,E) be a
graph. The successor function of G is the function E+ : V 7→ 2V such that
E+(v) = {u | (v, u) ∈ E} and the predecessor function of G is the function
E− : V 7→ 2V such that E−(v) = {u | (u, v) ∈ E}. Let S be a set of vertices,
E+(S) =

⋃
v∈S E

+(v) and E−(S) =
⋃

v∈S E
−(v).

Let n ≥ 0. The n-step successor (resp. predecessor) function of G is

E+n(v) =

n times︷ ︸︸ ︷
E+ ◦ · · · ◦ E+(v) (resp. E−n(v) =

n times︷ ︸︸ ︷
E− ◦ · · · ◦ E−(v)). By conven-

tion, we have E+0(v) = E−0(v) = {v}.3

Considering an argumentation framework, the successor (resp. predeces-
sor) function represents the arguments that are attacked by (resp. are the
attackers of) some argument(s). An AF being usually denoted by (A,R),

3Note that E+1(v) = E+(v) and E−1(v) = E−(v)
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the successor and predecessor functions are thus denoted R+ and R− in this
context.

We then recall some notions on vertices having a particular status in a
graph.

Definition 8 (Source, Sink, Isolated vertex). Let G = (V,E) be a graph
and v be a vertex of G. v is said to be a source iff E−(v) = ∅ and it is said
to be a sink iff E+(v) = ∅. v is said to be isolated iff it is both a source and
a sink.

Thus, sources (resp. sinks) are vertices that may only be origins (resp.
endpoints) of arcs. Isolated vertices are those that are connected to no other
vertices.

2.2 Explanations in Argumentation

We recall the main definitions of what are explanations in [BDDLS22] but
only for those answering the questions about semantics results in abstract
argumentation. These questions are defined as follows: let σ represent a
semantics among conflict-freeness, admissibility, completeness and stability,
and given an argumentation framework A = (A,R) and some set S ⊆ A,

Qσ: Why is S (not) an extension under σ in A?

In order to answer these questions, and hence to provide explanations,
the authors in [BDDLS22] use the decomposition of semantics into principles.
The idea is to identify some properties that can be used to provide a modular
characterization of semantics. We refer the reader to [DM16] for further
details. Given a set S, the following principles are considered:

Conflict-freeness (CF ): No internal conflicts in S
Defence (Def ): ∀x ∈ S, x is acceptable wrt S

Reinstatement (Reins): ∀x acceptable wrt S, x ∈ S
Complement Attack (CA): S attacks all arguments not in S

Note that, in [BDDLS22], the reinstatement principle has been splitted
into two sub-principles. Indeed, to decide whether a set S of arguments con-
tains all the arguments acceptable wrt S, one must consider on the one hand
the arguments that are unattacked and thus acceptable by lack of attackers
(sub-principle denoted by Reins1), and on the other hand the arguments for
which S defeats all the attackers (sub-principle denoted by Reins2).

The following has been proven in [DM16].
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Proposition 1. Let A = (A,R) and S ⊆ A. S is:
Conflict-free iff S respects {CF}
Admissible iff S respects {CF, Def }
Complete iff S respects {CF, Def , Reins1, Reins2}

Stable iff S respects {CF, CA}

With this result, a straightforward answer arises for Qσ: a set S is an ex-
tension under semantics σ because it respects all the principles listed for σ in
Prop. 1. This moves the burden of explanation from semantics to principles.
So, in order to answer Qσ, we are going to answer intermediate questions
on principles. Let π ∈ {CF ,Def ,Reins1 , Reins2, CA} represent a principle.
Given an argumentation framework A = (A,R) and some set S ⊆ A, the
questions we will define answers for are:

Qπ: Why does (not) S respect principle π?

[BDDLS22] provides definitions for visual answers to these questions.
These answers take the form of a graph. This allows for the answers to
be drawn, as well as to study their visual (i.e. structural) properties. More
precisely, as argumentation frameworks are graphs themselves, the answers
given in [BDDLS22] are subgraphs of an argumentation framework.

Definition 9 ([BDDLS22]). LetA = (A,R), S ⊆ A and π ∈ {CF ,Def ,Reins1 ,
Reins2,CA}. Gπ(S) is defined as:

GCF (S) = A[S]V
GDef (S) = (A[S ∪R−1(S)]V )

[{(a, b) ∈ R | (a ∈ R−1(S) and b ∈ S)

or (a ∈ S and b ∈ R−1(S))}]E
GReins1(S) = A[{a ∈ A|R−(a) = ∅}]V
GReins2(S) = (A[S ∪R2(S) ∪R−1(R2(S))]V )

[{(a, b) ∈ R | (a ∈ R−1(R2(S)) and b ∈ R2(S))

or (a ∈ S and b ∈ R−1(R2(S)))}]E
GCA(S) = A[{(a, b) ∈ R | a ∈ S and b /∈ S}]E

Moreover the interpretation of these subgraphs can be done using a
“checking procedure” in order to explicitly identify if the given subset satisfies
or not the concerned principle:
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Definition 10 ([BDDLS22]). Let A = (A,R), S ⊆ A and π ∈ {CF ,Def ,
Reins1, Reins2, CA}. Let G be a subgraph of A. The checking procedure
Cπ(G) is defined as:

CCF (G) = there are no attacks in G
CDef (G) = there are no source vertices in R−1(S) in G

CReins1(G) = all vertices in G are in S
CReins2(G) = all vertices in R2(S)\S are the endpoint of an arc whose

origin is a source vertex in G
C ′

Reins2
(G) = all vertices in R2(S)\S are the endpoint of an arc whose

origin is a source vertex or is in R2(S), in G
CCA(G) = there are no isolated vertices in the complement part of

S in G

In [BDDLS22], it has been proven that, for each principle π, the subgraph
Gπ associated with the corresponding checking procedure Cπ provides an
explanation that answers question Qπ.

4 More precisely, if a set S respects a
principle π, then Gπ verifies Cπ, otherwise it does not. When the principles
are combined into a semantics σ, the answer to Qσ is the corresponding set
of subgraphs along with their corresponding checking procedures.

This allows this form of explanation to be used for two purposes as indi-
cated in the introduction: when the answer to the corresponding verification
problem is known, that is, when we know that a set is (resp. is not) accept-
able under a given semantics or principle, Gπ on which Cπ is (resp. is not)
verified, offers a visual explanation of the situation, answering XVer. When
the answer to the verification problem is not known, Gπ and the verification
of whether Cπ holds or not offers at the same time an answer to Ver and an
explanation of this answer.

3 Classes of explanations

In this section, we give the essential elements that compose our approach:
the classes of explanations. Knowing that we want to extend the notions and
the results presented in [BDDLS22], the definition of these classes allows to
recover the explanations described in [BDDLS22] but also it results in the
possibility of producing several explanations for the same question. Thus, it

4This result is slightly more complex in the case of reinstatement. See [BDDLS22] and
Sec. 3.3.
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takes into account the different points of view that may emerge and focus on
different aspects.

Hence, for each principle π, we first define our explanations so that they
contain at least enough information to be able to decide whether or not
S respects π. Then, we also prove that our explanations can be used in
conjunction with the checking procedures defined in [BDDLS22] (and recalled
in Def. 10) in order to obtain useful explanations as in [BDDLS22].

3.1 Explanation about Conflict-freeness

To decide whether a set S of arguments is conflict-free, one must know
whether or not there are attacks among its arguments. Thus, we firstly
require our explanation to contain only arguments of S, and secondly to con-
tain only attacks between these arguments. However, with only these two
constraints, it may happen that no attacks are displayed on the explanation
when there are some in the original framework, leading at best to an impos-
sibility to decide or at worst, an incorrect decision. Hence, we add a third
constraint, which is that if conflicts exist between arguments of S, then at
least one must be present in the explanation.

Definition 11. Let A = (A,R), S ⊆ A and X = {(a, b) ∈ R | a, b ∈ S}.
The subgraph (A′, R′) of A is an explanation to QCF iff

• A′ = S

• R′ ⊆ X

• If X ̸= ∅, then R′ ̸= ∅

Note that the subgraph GCF defined in [BDDLS22] (and recalled in
Def. 9) obviously belongs to our class of explanations for conflict-freeness.
Moreover, in [BDDLS22], a result concerning the structural property of ex-
planations for conflict-freeness has been given: a set of arguments is conflict-
free iff there is no attack in the subgraph corresponding to its explanation
(checking procedure CCF recalled in Def. 10). This result can be extended
to all the subgraphs captured by our class of explanations.

Theorem 1. Let A = (A,R), S ⊆ A and (A′, R′) be an explanation to QCF .
S is conflict-free iff CCF (A

′, R′) is satisfied by S.
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Proof. Let X = {(a, b) ∈ R | a, b ∈ S}.
Suppose that S is conflict-free and that there is an attack (a, b) in (A′, R′).

By Def. 11, we have that R′ ⊆ X, so a, b ∈ S and that (a, b) ∈ R. This
contradicts Def. 3 on conflict-freeness.

Suppose now that there are no attacks in (A′, R′) and that S is not
conflict-free. By Def. 3, there exists a, b ∈ S such that (a, b) ∈ R. Thus,
X ̸= ∅ and by Condition 3 of Def. 11, R′ ̸= ∅. This contradicts the absence
of attacks in (A′, R′).

This provides a way of deciding whether a set is conflict-free based on an
explanation to QCF . Note that this also provides a way of deciding whether a
set is not conflict-free, hence the possibility of handling the negative version
of QCF . The same goes for all the other equivalence results concerning the
other principles.

3.2 Explanation about Defence

To decide whether a set S of arguments contains only arguments that are
acceptable wrt S, one must know whether or not this set defeats all its
attackers. Thus, we firstly require our explanation to contain only arguments
of S and its attackers, and secondly to contain only attacks from S to its
attackers and vice versa. To make sure the attackers are spotted as such,
we further require that all the attacks of the second type are contained in
the explanation. However, with only these two constraints, it may happen
that no attacks targeting a specific attacker are displayed on the explanation
when there are some in the original framework. As we wish the explanation
to show how S defends itself, this situation is certainly undesirable. Hence,
we add a third constraint, which is that if an attacker is attacked by S, then
at least one attack from S to this attacker must be present in the explanation.

Definition 12. Let A = (A,R) and S ⊆ A. Consider X = {(b, a) ∈ R | b ∈
R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. The subgraph
(A′, R′) of A is an explanation to QDef iff

• A′ = S ∪R−1(S)

• X ⊆ R′ ⊆ X ∪ Y

• ∀b ∈ R−1(S), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

13



Note that the subgraph GDef defined in [BDDLS22] (and recalled in
Def. 9) obviously belongs to our class of explanations for defence. More-
over it was shown in [BDDLS22] that a conflict-free set of arguments defends
all its arguments iff there is no source vertex among its attackers in GDef (S)
(checking procedure CDef recalled in Def. 10). This result can be extended
to all the subgraphs captured by our class of explanations.

Theorem 2. Let A = (A,R), S ⊆ A be a conflict-free set of arguments and
(A′, R′) be an explanation to QDef . S ⊆ FA(S) iff CDef (A

′, R′) is satisfied by
S.

Proof. Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(S)}.

Assume that S ⊆ FA(S). Suppose now that there is a source vertex b
in R−1(S) in (A′, R′). By Def. 8, we have that R′−1(b) = ∅, which means
there exists no a ∈ A′ such that (a, b) ∈ R′. Because S is conflict-free,
S ∩ R−1(S) = ∅. As b ∈ R−1(S) and R′ ⊆ X ∪ Y (Def. 12), it must be
the case that a ∈ S. Hence, there exists no a ∈ S such that (a, b) ∈ R′. So
following Condition 3 of Def. 12, there exists no a ∈ S such that (a, b) ∈ R.
As b ∈ R−1(S), there exists c ∈ S such that (b, c) ∈ R. Hence, we know that
there exists b ∈ A with (b, c) ∈ R for some c ∈ S and such that there exists
no a ∈ S with (a, b) ∈ R. This contradicts the assumption that S ⊆ FA(S).

Assume now that there are no source vertices in R−1(S) in (A′, R′). Sup-
pose that there is some c ∈ S such that c is not acceptable wrt S. By
Def. 2, this means that there exists a ∈ A such that (a, c) ∈ R and there is
no b ∈ S with (b, a) ∈ R. Firstly, notice that by Def. 7, a ∈ R−1(c) and so
a ∈ R−1(S). Secondly, since c ∈ S, a ∈ R−1(S) and (a, c) ∈ R, (a, c) ∈ X and
so, by Def. 12, it holds that c, a ∈ A′ and (a, c) ∈ R′. Thus, by assumption, a
is not a source vertex in (A′, R′). Subsequently, there exists b ∈ A′ such that
(b, a) ∈ R′. Since a ∈ R−1(S) and S is conflict-free (i.e. S ∩R−1(S) = ∅), it
holds that b ∈ S. In addition, as R′ ⊆ R, we deduce that (b, a) ∈ R. Thus,
we have c ∈ S such that c is not acceptable w.r.t. S and for any a ∈ A with
(a, c) ∈ R, there is b ∈ S with (b, a) ∈ R, a contradiction.

Additionally, the next result extends a similar result given in [BDDLS22]
providing more insight on the behavior of an explanation for defence: when
computed using a conflict-free set, the explanation for defence takes the form
of a bipartite graph.
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Proposition 2. Let A = (A,R), S ⊆ A and (A′, R′) be an explanation to
QDef . If S is conflict-free, (A′, R′) is a bipartite graph and S can always be
one of its parts.

Proof. Suppose S is conflict-free. So, S ∩ R−1(S) = ∅. Since by Def. 12
A′ = S ∪ R−1(S), S and R−1(S) then form a partition of A′. According
to Def. 6, we must then show that for every (a, b) ∈ R′, either a ∈ S and
b ∈ R−1(S) or a ∈ R−1(S) and b ∈ S. This is given by Def. 12.

The two previous results can thus be used to decide whether a set of
arguments effectively defends all its arguments or if it is not conflict-free.

3.3 Explanation about Reinstatement

The first part of the reinstatement principle concerns unattacked arguments.
All these arguments are acceptable wrt S and should thus belong to S. Thus,
we firstly require our explanation to contain only unattacked arguments,
and secondly to contain no attacks (which results from the only arguments
displayed being unattacked). However, with only these two constraints, it
may happen that an unattacked argument not belonging to S is not displayed
on the explanation. Hence, we add a third constraint, which is that if there
exists unattacked arguments that are not in S, then at least one must be
present in the explanation.

Definition 13. Let A = (A,R), S ⊆ A and X = {a ∈ A | R−1(a) = ∅}.
The subgraph (A′, R′) of A is an explanation to QReins1 iff

• S ∩X ⊆ A′ ⊆ X

• R′ = ∅

• If (A \ S) ∩X ̸= ∅, then ∃a ∈ (A \ S) ∩X with a ∈ A′

The second part concerns arguments for which S defeats the attackers.
These arguments must belong to S if S defeats all of their attackers. Thus, we
firstly require our explanation to contain the arguments of S, the arguments
that S defends (two steps of the attack relation from S), and the attackers
of these arguments. Secondly, we require it to contain only the attacks from
S to the attackers and from the attackers to the arguments S defends. In
addition, we require that all the attacks of the second type are displayed
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on the explanation, so that none is missed. However, with only these two
constraints, it may happen that no attacks targeting a specific attacker are
displayed on the explanation when there are some in the original framework.
Hence, we add a third constraint, which is that if an attacker is attacked by
S, then at least one attack from S to this attacker must be present in the
explanation.

Definition 14. Let A = (A,R) and S ⊆ A. Consider X = {(b, c) ∈ R | b ∈
R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}.
The subgraph (A′, R′) of A is an explanation to QReins2 iff

• A′ = S ∪R+2(S) ∪R−1(R+2(S))

• X ⊆ R′ ⊆ X ∪ Y

• For every b ∈ R−1(R+2(S)), if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Note that the subgraph GReins1 (resp. GReins2) defined in [BDDLS22]
(and recalled in Def. 9) obviously belongs to our class of explanations for the
first (resp. second) part of the principle of reinstatement. Moreover in the
case of reinstatement, two results have been proven in [BDDLS22] and can
be extended to all the subgraphs captured by our class of explanations.

The first one shows how to conclude that a set contains all the arguments
that it effectively defends from both parts of the explanation on reinstate-
ment.

Theorem 3. Let A = (A,R), S ⊆ A, (A′, R′) be an explanation to QReins1

and (A′′, R′′) be an explanation to QReins2. If CReins1(A
′, R′) and CReins2(A

′′,
R′′) are satisfied by S then FA(S) ⊆ S.

Proof. LetX1 = {a ∈ A | R−1(a) = ∅}, X2 = {(b, c) ∈ R | b ∈ R−1(R+2(S)),
c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}.

Assume that A′ ⊆ S and that all vertices in R+2(S) \ S are the endpoint
of an arc whose origin is a source vertex in (A′′, R′′). In other words, A′ ⊆ S
and for every x ∈ R+2(S) \ S, there exists y ∈ A′′ such that (y, x) ∈ R′′

and R′′−1(y) = ∅. Consider a ∈ FA(S). This means that for every b ∈ A
such that (b, a) ∈ R, there exists c ∈ S with (c, b) ∈ R. We must show that
a ∈ S. Suppose first that a is not attacked in A. That is to say, R−1(a) = ∅,
and so, a ∈ X1. By assumption, A′ ⊆ S. This means that (A′ \ S) = ∅.
In particular, (A′ \ S) ∩ X1 = ∅, so by Condition 3 of Def. 13, we have
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(A\S)∩X1 = ∅. Since a ∈ X1, X1 ̸= ∅, so we deduce that either A\S = ∅
or X1 ⊆ S. In the first case, we conclude A ⊆ S and thus a ∈ S. In the
second case, we have that X1 ∩ S = X1, and so X1 ⊆ A′. As A′ ⊆ S by
assumption, a ∈ S. Suppose now that R−1(a) ̸= ∅. By Def. 7, we have
a ∈ R+2(S) and for every b ∈ A such that (b, a) ∈ R, b ∈ R−1(R+2(S)). As
such, (b, a) ∈ X2 and (c, b) ∈ Y . So, by Def. 14, we have that a, b, c ∈ A′′

and (b, a) ∈ R′′. In addition, by Condition 3 of Def. 14, as b ∈ R+1(S), there
exists (c′′, b) ∈ R′′ with c′′ ∈ S. Thus, for every b ∈ A′′ such that (b, a) ∈ R′′,
R′′−1(b) ̸= ∅. Hence, all b ∈ A′′ such that (b, a) ∈ R′′ are not source vertices.
Consequently, by assumption, a /∈ R+2(S)\S, but we know that a ∈ R+2(S).
It follows that a ∈ R+2(S) ∩ S, and thus that a ∈ S.

The second results shows the behavior of both parts of the explanation
on reinstatement if computed on a set that contains all the arguments it
effectively defends.

Theorem 4. Let A = (A,R), S ⊆ A, (A′, R′) be an explanation to QReins1

and (A′′, R′′) be an explanation to QReins2. If FA(S) ⊆ S then CReins1(A
′, R′)

and C ′
Reins2

(A′′, R′′) are satisfied by S.

Proof. LetX1 = {a ∈ A | R−1(a) = ∅}, X2 = {(b, c) ∈ R | b ∈ R−1(R+2(S)),
c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}.

Assume that FA(S) ⊆ S. Suppose now that either A′ ̸⊆ S or there is
a vertex a in R+2(S) \ S that is not the endpoint of an arc whose origin
is a source vertex or in R+2(S) in (A′′, R′′). In the first case, by Def. 13
A′ ⊆ X1. So, we have that there exists x ∈ A such that R−1(x) = ∅ and
x /∈ S. However, by Def. 2, this means that x ∈ FA(S) and x /∈ S, a
contradiction. In the second case, we have a /∈ S and for every b ∈ A′′ such
that (b, a) ∈ R′′, R′′−1(b) ̸= ∅ and b /∈ R+2(S). In other words, b /∈ R+2(S)
and there exists c ∈ A′′ with (c, b) ∈ R′′. By Def. 14, X2 ⊆ R′′ ⊆ X2∪Y . So,
since a ∈ R+2(S) \ S and b /∈ R+2(S), we thus know that b ∈ R−1(R+2(S)).
In addition, also because b /∈ R+2(S), it must be the case that c ∈ S. So,
for every b ∈ A′′ such that (b, a) ∈ R′′, there exists c ∈ S with (c, b) ∈ R′′.
By Def. 14 again, we deduce that for every b ∈ A such that (b, a) ∈ R, there
exists c ∈ S with (c, b) ∈ R. By Def. 2, this means that a is acceptable wrt
S and so that a ∈ FA(S). Hence, by assumption, a ∈ S, a contradiction.

From Th. 3 and 4 follows the next corollary, which shows an equivalence
result:
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Corollary 1. Let A = (A,R), S ⊆ A such that R2(S) is conflict-free,
(A′, R′) be an explanation to QReins1 and (A

′′, R′′) be an explanation to QReins2.
FA(S) ⊆ S iff CReins1(A

′, R′) and CReins2(A
′′, R′′) are satisfied by S.

3.4 Explanation about Complement Attack

To decide whether a set S of arguments attacks its complement, one must
know whether or not all the arguments not in S are attacked by S. Thus,
we firstly require our explanation to contain all the arguments of the original
framework (S and its complement), and secondly to contain only attacks
from S to arguments not in S. However, with only these two constraints, it
may happen that no attacks targeting a specific argument outside of S are
displayed on the explanation when there are some in the original framework.
Hence, we add a third constraint, which is that if an argument not in S is
attacked by S, then at least one attack from S to this argument must be
present in the explanation.

Definition 15. Let A = (A,R), S ⊆ A and X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
The subgraph (A′, R′) of A is an explanation to QCA iff

• A′ = A

• R′ ⊆ X

• ∀b ∈ A \ S, if b ∈ R+1(S), then ∃(a, b) ∈ R′ with a ∈ S

Note that the subgraphGCA defined in [BDDLS22] (and recalled in Def. 9)
obviously belongs to our class of explanations for the principle of complement
attack. Moreover concerning this principle, it was proven in [BDDLS22] that
a set of arguments attacks its complement iff there are no isolated vertices in
GCA(S). We extend this result to our class of explanations for complement
attack.

Theorem 5. Let A = (A,R), S ⊆ A and (A′, R′) be an explanation to QCA.
A \ S ⊆ R+1(S) iff CCA(A

′, R′) is satisfied by S.

Proof. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
Assume that A \ S ⊆ R+1(S). Suppose now that there is an isolated

vertex a in A′ \ S. By Def. 15, we know that A′ = A. As such, there exists
a ∈ A\S such that a is isolated in (A′, R′). By Def. 8, this means in particular
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that R′−1(a) = ∅ and thus that there is no b ∈ A′ with (b, a) ∈ R′. Again,
in particular, we have that there is no b ∈ S with (b, a) ∈ R′. However, by
Condition 3 of Def. 15, we deduce that there is no b ∈ S with (b, a) ∈ R.
Since a ∈ A \ S, this contradicts the assumption that A \ S ⊆ R+1(S).

Suppose now that there are no isolated vertices in A′ \ S in (A′, R′) and
that A \ S ̸⊆ R+1(S). From the first assumption, by Def. 15, we have that
there are no isolated vertices in A \ S in (A′, R′). In particular, by Def. 8,
we know that there is no a ∈ A \ S such that R′−1(a) = ∅, or equivalently,
for every a ∈ A \ S, there exists b ∈ A such that (b, a) ∈ R′. By Def. 15,
we have that R′ ⊆ X, thus we deduce that for every a ∈ A \ S, there exists
b ∈ S such that (b, a) ∈ R′. From the second assumption, we have that there
exists some c ∈ A \ S such that there is no b ∈ S with (b, c) ∈ R. By Def. 15
(Conditions 1 and 2), we deduce that there exists some c ∈ A \ S such that
there is no b ∈ S with (b, c) ∈ R′, a contradiction of the first assumption.

In addition, like for defence, an additional result gives more precision on
the general behavior of an explanation for complement attack (extending a
similar result given in [BDDLS22]): the explanation subgraph is always a
bipartite graph with the arguments of S being the only possible origins for
attacks.

Proposition 3. Let A = (A,R), S ⊆ A and (A′, R′) be an explanation to
QCA. (A′, R′) is a bipartite graph, S can always be one of its parts and all
vertices in S are sources in it.

Proof. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
By Def. 15, we have that A′ = A and R′ ⊆ X. An obvious partition of

A based on S is of course S and A \ S. As R′ ⊆ X, by Def. 6, (A′, R′) is a
bipartite graph. In addition, since there is no (b, a) ∈ R′ such that b ∈ A \ S
and a ∈ S, it holds that for every a ∈ S, R′−1(a) = ∅. Thus, by Def. 8,
every vertex of S is a source vertex in (A′, R′).

4 Properties of Explanations

We now turn to a formal study of our explanations according to several
general properties. This will allow to highlight some particular kinds of
explanations, as well as better understand their behavior. The notions we
are interested in are the following: minimality, maximality, emptyness and
uniqueness.

19



4.1 Some specific explanations

In this section, we identify some specificities that could be respected by our
explanations.

Minimality A minimal explanation is an explanation which contains the
least possible amount of information. In a sense, a minimal explanation only
provides what is required to explain. Since our explanations are graphs, this
will rely on the notion of subgraphs: a minimal explanation is an explanation
such that none of its strict subgraphs is also an explanation.

Definition 16. Let A = (A,R) and S ⊆ A. The subgraph (A′, R′) of A is a
minimal explanation that answers Qπ iff there is no subgraph (A′′, R′′) of A
which is also an explanation that answers Qπ such that (A′′, R′′) is a strict
subgraph of (A′, R′).

Maximality A maximal explanation is an explanation which contains all
the possible amount of information. One could argue that a maximal expla-
nation in fact provide everything that might be relevant to explain, even if it
might be redundant. Since our explanations are graphs, this will rely on the
notion of supergraphs: a maximal explanation is an explanation such that
none of its strict supergraphs is also an explanation.

Definition 17. Let A = (A,R) and S ⊆ A. The subgraph (A′, R′) of A is
a maximal explanation that answers Qπ iff there is no subgraph (A′′, R′′) of
A which is also an explanation that answers Qπ such that (A′, R′) is a strict
subgraph of (A′′, R′′).

Example. Going back to Fig. 1, there are 3 different explanations for defence.
The explanations of Agents 1 and 2 are minimal, while the explanation of
Agent 3 is maximal.

Emptyness The notion of empty explanation is one that should be avoided
when providing explanations, in the sense that it somewhat represents the
incapacity of the system to answer the question that has been asked. Hence,
we will study whether or not such empty explanations can occur, and if
so, in which circumstances. Since our explanations are graphs, an empty
explanation is quite straightforwardly the empty graph.

Definition 18. Let A = (A,R) and S ⊆ A. The subgraph (A′, R′) is an
empty explanation that answers Qπ iff (A′, R′) = (∅,∅).
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Uniqueness We consider an explanation to be unique when there is only
one of its kind. Although we defined classes of explanations in an attempt
to represent all the different points of view that could emerge as to how to
answer a question, in some situations, there can only be one way to answer
that question. Since our explanations are graphs, a unique explanation is
such that no other graph satisfies the same conditions.

Definition 19. Let A = (A,R) be a graph. The subgraph (A′, R′) is a
unique explanation that answers Qπ iff there is no subgraph (A′′, R′′) with
(A′′, R′′) ̸= (A′, R′) which is also an explanation that answers Qπ.

4.2 Properties of specific explanations

Here, we provide the results of our formal study on our explanations using
the properties we mentioned above. We begin with empty explanations. The
results show that, although empty explanations can occur, they only do so
in very specific situations.

The following theorem establishes a characterisation of empty explana-
tions. Note that it extends a similar result given in [BDDLS22], confirming
that our approach generalises [BDDLS22].

Theorem 6. Let A = (A,R) and S ⊆ A. (∅,∅) is an explanation that
answers

1. Qπ with π ∈ {CF ,Def ,Reins2} iff S = ∅.

2. QReins1 iff {a ∈ A | R−1(a) = ∅} = ∅.

3. QCA iff A = (∅,∅).

Proof.

1. Firstly, consider π = CF . Suppose that (∅,∅) is an answer to QCF .
According to Def. 11, we have that A′ = ∅ = S. So the “only if” part
is satisfied. Suppose now that S = ∅ and consider the empty graph
(A′ = ∅, R′ = ∅). We must prove that it is an answer to QCF . The
first condition, A′ = ∅ = S, is respected by supposition. Since R′ = ∅,
the second condition is respected as well. Moreover, since S = ∅, by
definition X = ∅ and the third condition is trivially satisfied. Thus,
the “if” part is satisfied.
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Secondly, consider π = Def . Suppose that (∅,∅) is an answer to QDef .
By Def. 12, we have that S ∪ R−1(S) = ∅ and thus S = ∅. So the
“only if” part is satisfied. Suppose now that S = ∅ and consider the
empty graph (A′ = ∅, R′ = ∅). We must prove that it is an answer to
QDef . By supposition, S = ∅, so R−1(S) = ∅ and the first condition
is respected. Since R−1(S) = ∅, the third condition is also respected.
Since S = ∅, by definition X = ∅ and the second condition is trivially
respected. Thus, the “if” part is satisfied.

Lastly, consider π = Reins2. Suppose that (∅,∅) is an answer to
QReins2 . By Def. 14, we have that S ∪R+1(S)∪R−1(R+2(S)) = ∅ and
thus S = ∅. So the “only if” part is satisfied. Suppose now that S = ∅
and consider the empty graph (A′ = ∅, R′ = ∅). We must prove that
it is an answer to QReins2 . By supposition, S = ∅, so R−1(S) = ∅
and R−1(R+2(S)) = ∅ as well, which means that the first condition is
respected. As R−1(R+2(S)) = ∅, the third condition is also respected.
Since S = ∅, by definition X = ∅ and the second condition is trivially
respected. Thus, the “if” part is satisfied.

2. Let X = {a ∈ A | R−1(a) = ∅} and assume that (∅,∅) is an answer to
QReins1 . Suppose now that X ̸= ∅. By Def. 13, since A′ = ∅, it must
be the case that S ∩X = ∅. Since X ⊆ A and S ⊆ A, this means that
(A \ S) ∩X = X, and so by supposition that (A \ S) ∩X ̸= ∅. So by
Condition 3 of Def. 13, ∃a ∈ (A\S)∩X with a ∈ A′, which contradicts
the hypothesis that (∅,∅) is an answer to QReins1 . As such, we deduce
X = ∅. Thus, the “only if” is satisfied.

Assume now that X = ∅. Consider the empty graph (∅,∅). We must
prove that it is an answer to QReins1 . Condition 2 of Def. 13 is obviously
respected. Moreover, since X = ∅, Condition 1 of Def. 13 is also
obviously respected. Again, from X = ∅ we deduce (A \ S) ∩X = ∅,
and thus Condition 2 of Def. 13 is respected as well. Hence, it follows
that (∅,∅) is an answer to QReins1 . Thus, the “if” is satisfied.

3. Assume that (∅,∅) is an answer to QCA. By Def. 15 we thus know
that A′ = ∅ = A. Hence, since A = ∅ and R ⊆ A× A, it follows that
R = ∅ and so A = (∅,∅). Thus, the “only if” is satisfied.

Assume now that A = (∅,∅). Consider the empty graph (∅,∅). We
must prove that it is an answer to QCA. First and second condition
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of Def. 15 follow immediately from A′ = R′ = ∅. The third condition
follows from A = ∅. Thus, the “if” is satisfied.

To stress that empty explanations only occur in specific situations, we
provide the following result. It states for each principle that when the empty
explanation occurs, it is the only possible explanation.

Theorem 7. Let A = (A,R) and S ⊆ A. If (∅,∅) is an explanation to Qπ

with π ∈ {CF ,Def ,Reins1 ,Reins2 ,CA}, then it is unique.

Proof. Assume (∅,∅) is an answer to Qπ and let (A′, R′) be a subgraph of
A. Suppose (A′, R′) is also an answer to Qπ. We must prove that (A′, R′) =
(∅,∅). Since R′ ⊆ A′ × A′, this can be reduced to proving that A′ = ∅.

Consider π = CF or Def or Reins2. Following Th. 6 and since (∅,∅) is
an answer to Qπ, S = ∅ and so R−1(S) = R+2(S) = R−1(R+2(S)) = ∅. So
following Condition 1 in Def. 11 (resp. Def. 12, Def. 14), A′ = ∅.

Consider π = Reins1 and let X = {a ∈ A | R−1(a) = ∅}. By assumption
(∅,∅) is an answer to QReins1 , thus by Th. 6, we know that X = ∅, so by
Condition 1 in Def. 13, A′ = ∅.

Consider π = CA. By assumption (∅,∅) is an answer to QCA, thus by
Th. 6, we know that A = ∅. Since (A′, R′) is a subgraph of A, we deduce
that A′ = ∅.

Now, we turn to our study of maximal explanations. The next theorem
we provide states for each principle that there is only one possible maximal
explanation.

To get this result, we need a number of intermediate results, that are
provided in the following lemmas. There is one lemma by principle, and
each gives a characterization of a maximal explanation in terms of conditions
either on the attack relation or the arguments.

The first lemma states that a maximal explanation for conflict-freeness is
one that includes all the attacks between the arguments of S.

Lemma 1. Let A = (A,R), S ⊆ A and X = {(a, b) ∈ R | a, b ∈ S}. If
(A′, R′) is a maximal answer to QCF , then X ⊆ R′.

Proof. Suppose that (A′, R′) is a maximal answer toQCF . Assume firstly that
X = ∅. Then we trivially have X ⊆ R′. Assume secondly that X ̸= ∅ and
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that X ̸⊆ R′. Then, there exists (a, b) ∈ R such that a, b ∈ S and (a, b) /∈ R′.
Consider the graph (A′′, R′′) with A′′ = A′ and R′′ = R′∪{(a, b)}. Obviously,
(A′, R′) is a strict subgraph of (A′′, R′′). Since (A′, R′) is an answer to QCF ,
by Def. 11, A′ = S, R′ ⊆ X and because X ̸= ∅, R′ ̸= ∅ (Condition 3
in Def. 11). Thus, we deduce that A′′ = S, R′′ ̸= ∅ and since (a, b) ∈ X,
R′′ ⊆ X. Hence, by Def. 11, (A′′, R′′) is an answer to QCF , a contradiction
with the supposition that (A′, R′) is a maximal answer to QCF .

The next lemma states that a maximal explanation for defence is one that
includes all the attacks from S to the attackers of S.

Lemma 2. Let A = (A,R), S ⊆ A and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(S)}. If (A′, R′) is a maximal answer to QDef , then Y ⊆ R′.

Proof. Suppose that (A′, R′) is a maximal answer to QDef and let X =
{(b, a) | b ∈ R−1(S), a ∈ S}. Two cases must be considered.

Assume firstly that for all b ∈ R−1(S), b /∈ R+1(S). In other words,
∄(a, b) ∈ R such that a ∈ S, b ∈ R−1(S). So, we trivially have Y = ∅ ⊆ R′.

Assume secondly that for some b ∈ R−1(S), b ∈ R+1(S). In this case,
Y ̸= ∅. Assume additionally that Y ̸⊆ R′. Then, there exists (x, y) ∈ R
such that x ∈ S, y ∈ R−1(S) and (x, y) /∈ R′. Consider the graph (A′′, R′′)
with A′′ = A′ and R′′ = R′∪{(x, y)}. Obviously, (A′, R′) is a strict subgraph
of (A′′, R′′). Since (A′, R′) is an answer to QDef , by Def. 12, A′ = S∪R−1(S),
X ⊆ R′ ⊆ X ∪ Y and for all b ∈ R−1(S) such that b ∈ R+1(S), ∃(a, b) ∈ R′

with a ∈ S. Thus, we deduce that A′′ = S ∪ R−1(S) and since (x, y) ∈ Y ,
X ⊆ R′′ ⊆ X ∪ Y . Moreover, it is obvious that for all b ∈ R−1(S) such
that b ∈ R+1(S), ∃(a, b) ∈ R′′ with a ∈ S (since R′ ⊆ R′′). Hence, by
Def. 12, (A′′, R′′) is an answer to QDef , a contradiction with the supposition
that (A′, R′) is a maximal answer to QDef .

The following lemma states that a maximal explanation for the first part
of reinstatement is one that includes all the unattacked arguments.

Lemma 3. Let A = (A,R), S ⊆ A and X = {a ∈ A | R−1(a) = ∅}. If
(A′, R′) is a maximal answer to QReins1, then X ⊆ A′.

Proof. Suppose that (A′, R′) is a maximal answer to QReins1 . Two cases must
be considered.

Assume firstly that (A \S)∩X = ∅. In other words, S ∩X = X. In this
case, as (A′, R′) is an answer to QReins1 , by Def. 13, we have S ∩X ⊆ A′ and
so X ⊆ A′.
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Assume secondly that (A \ S) ∩ X ̸= ∅ and that X ̸⊆ A′. Then, there
exists x ∈ A such that R−1(x) = ∅ (so x ∈ X), and x /∈ A′. Consider the
graph (A′′, R′′) with A′′ = A′ ∪ {x} and R′′ = R′. Obviously, (A′, R′) is a
strict subgraph of (A′′, R′′). Since (A′, R′) is an answer to QReins1 , by Def. 13,
S ∩ X ⊆ A′ ⊆ X, and R′ = ∅. Thus, since x ∈ X, conditions 1 and 2 of
Def. 13 are also satisfied for (A′′, R′′): S ∩ X ⊆ A′′ ⊆ X and R′′ = ∅. In
addition, as by assumption (A \ S) ∩X ̸= ∅, by Condition 3 of Def. 13 we
know that ∃a ∈ (A \S)∩X such that a ∈ A′, and so a ∈ A′′; thus Condition
3 of Def. 13 is also satisfied for (A′′, R′′). Hence, by Def. 13, (A′′, R′′) is
an answer to QReins1 , a contradiction with the supposition that (A′, R′) is a
maximal answer to QReins1 .

This lemma states that a maximal explanation for the second part of
reinstatement is one that includes all the attacks from S to the attackers of
the arguments S defends.

Lemma 4. Let A = (A,R), S ⊆ A and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}. If (A′, R′) is a maximal answer to QReins2, then Y ⊆ R′.

Proof. Suppose that (A′, R′) is a maximal answer to QReins2 and let X =
{(b, c) | b ∈ R−1(R+2(S)), c ∈ R+2(S)}. Two cases must be considered.

Assume firstly that for all b ∈ R−1(R+2(S)), b /∈ R+1(S). In other words,
∄(a, b) ∈ R such that a ∈ S, b ∈ R−1(R+2(S)). So, we trivially have Y =
∅ ⊆ R′.

Assume secondly that for some b ∈ R−1(R+2(S)), b ∈ R+1(S). In this
case, Y ̸= ∅. Assume additionally that Y ̸⊆ R′. Then, there exists (x, y) ∈ R
such that x ∈ S, y ∈ R−1(R+2(S)) and (x, y) /∈ R′. Consider the graph
(A′′, R′′) with A′′ = A′ and R′′ = R′ ∪ {(x, y)}. Obviously, (A′, R′) is a strict
subgraph of (A′′, R′′). Since (A′, R′) is an answer to QReins2 , by Def. 14,
A′ = S ∪ R−1(S), X ⊆ R′ ⊆ X ∪ Y and for all b ∈ R−1(S) such that
b ∈ R+1(S), ∃(a, b) ∈ R′ with a ∈ S. Thus, we deduce that A′′ = S ∪
R+2(S)∪R−1(R+2(S)) and since (x, y) ∈ Y , X ⊆ R′′ ⊆ X ∪ Y . Moreover, it
is obvious that for all b ∈ R−1(R+2(S)) such that b ∈ R+1(S), ∃(a, b) ∈ R′′

with a ∈ S (since R′ ⊆ R′′). Hence, by Def. 14, (A′′, R′′) is an answer
to QReins2 , a contradiction with the supposition that (A′, R′) is a maximal
answer to QReins2 .

Finally, the last lemma states that a maximal explanation for complement
attack is one that includes all the attacks from S to the arguments that are
not in S.
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Lemma 5. Let A = (A,R), S ⊆ A and X = {(a, b) ∈ R | a ∈ S, b /∈ S}. If
(A′, R′) is a maximal answer to QCA, then X ⊆ R′.

Proof. Suppose that (A′, R′) is a maximal answer to QCA. Two cases must
be considered.

Assume firstly that for all b /∈ S, b /∈ R+1(S). In other words, ∄(a, b) ∈ R
such that a ∈ S, b /∈ S. So, we trivially have X = ∅ ⊆ R′.

Assume secondly that for some b /∈ S, b ∈ R+1(S). In this case, X ̸= ∅.
Assume additionally that X ̸⊆ R′. Then, there exists (x, y) ∈ R such that
x ∈ S, y /∈ S and (x, y) /∈ R′. Consider the graph (A′′, R′′) with A′′ = A′

and R′′ = R′ ∪ {(x, y)}. Obviously, (A′, R′) is a strict subgraph of (A′′, R′′).
Since (A′, R′) is an answer to QCA, by Def. 15, A′ = A, R′ ⊆ X and for
all b /∈ S such that b ∈ R+1(S), ∃(a, b) ∈ R′ with a ∈ S. Thus, we deduce
that A′′ = A and since (x, y) ∈ X, R′′ ⊆ X. Moreover, it is obvious that for
all b /∈ S such that b ∈ R+1(S), ∃(a, b) ∈ R′′ with a ∈ S (since R′ ⊆ R′′).
Hence, by Def. 15, (A′′, R′′) is an answer to QCA, a contradiction with the
supposition that (A′, R′) is a maximal answer to QCA.

Using the previous Lemmas, we can now give the result on the uniqueness
of maximal explanations.

Theorem 8. Let A = (A,R) and S ⊆ A. If (A′, R′) is a maximal explana-
tion that answers Qπ with π ∈ {CF ,Def ,Reins1 ,Reins2 ,CA}, then it is the
unique maximal explanation that answers Qπ.

Proof. Assume (A′, R′) is a maximal answer to Qπ and let (A′′, R′′) be a
subgraph of A. Suppose (A′′, R′′) is also a maximal answer to Qπ. We must
prove that (A′′, R′′) = (A′, R′).

Consider π = CF and let X = {(a, b) ∈ R | a, b ∈ S}. Since (A′′, R′′)
is an answer to QCF , we know by Def. 11 that A′′ = S and R′′ ⊆ X. But
(A′′, R′′) is a maximal answer to QCF . Thus, by Lem. 1, X ⊆ R′′ and so
R′′ = X. However, (A′, R′) is also an answer to QCF , so A′ = S and R′ ⊆ X.
Thus, A′ = A′′ and R′ ⊆ R′′, so we conclude that (A′, R′) is a subgraph of
(A′′, R′′). If R′ ⊂ R′′, we conclude further that (A′, R′) is a strict subgraph
of (A′′, R′′), a contradiction with the assumption that (A′, R′) is a maximal
answer to QCF . So it must be the case that R′ = R′′.

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and
Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. Since (A′′, R′′) is an answer to QDef ,
we know by Def. 12 that A′′ = S ∪ R−1(S), X ⊆ R′′ and R′′ ⊆ X ∪ Y .
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But (A′′, R′′) is a maximal answer to QCF . Thus, by Lem. 2, Y ⊆ R′′, so
X ∪ Y ⊆ R′′, and so R′′ = X ∪ Y . However, (A′, R′) is also an answer to
QDef , so A′ = S ∪R−1(S) and R′ ⊆ X ∪ Y . Thus, A′ = A′′ and R′ ⊆ R′′, so
we conclude that (A′, R′) is a subgraph of (A′′, R′′). If R′ ⊂ R′′, we conclude
further that (A′, R′) is a strict subgraph of (A′′, R′′), a contradiction with
the assumption that (A′, R′) is a maximal answer to QDef . So it must be the
case that R′ = R′′.

Consider π = Reins1 and let X = {a ∈ A | R−1(a) = ∅}. Since (A′′, R′′)
is an answer to QReins1 , we know by Def. 13 that A′′ ⊆ X and R′′ = ∅. But
(A′′, R′′) is a maximal answer to QReins1 . Thus, by Lem. 3, X ⊆ A′′, and
so A′′ = X. However, (A′, R′) is also an answer to QReins1 , so A′ ⊆ X and
R′ = ∅. Thus, A′ ⊆ A′′ and R′ = R′′, so we conclude that (A′, R′) is a
subgraph of (A′′, R′′). If A′ ⊂ A′′, we conclude further that (A′, R′) is a strict
subgraph of (A′′, R′′), a contradiction with the assumption that (A′, R′) is a
maximal answer to QReins1 . So it must be the case that A′ = A′′.

Consider π = Reins2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈
R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. Since (A′′, R′′) is an
answer to QReins2 , we know by Def. 14 that A′′ = S∪R+2(S)∪R−1(R+2(S)),
X ⊆ R′′, and R′′ ⊆ X ∪ Y . But (A′′, R′′) is a maximal answer to QReins2 .
Thus, by Lem. 4, Y ⊆ R′′, so X ∪ Y ⊆ R′′, and so R′′ = X ∪ Y . However,
(A′, R′) is also an answer to QReins2 , so A′ = S ∪R+2(S)∪R−1(R+2(S)) and
R′ ⊆ X ∪ Y . Thus, A′ = A′′ and R′ ⊆ R′′, so we conclude that (A′, R′) is a
subgraph of (A′′, R′′). If R′ ⊂ R′′, we conclude further that (A′, R′) is a strict
subgraph of (A′′, R′′), a contradiction with the assumption that (A′, R′) is a
maximal answer to QReins2 . So it must be the case that R′ = R′′.

Consider π = CA and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. Since (A′′, R′′)
is an answer to QCA, we know by Def. 15 that A′′ = A and R′′ ⊆ X. But
(A′′, R′′) is a maximal answer to QCA. Thus, by Lem. 5, X ⊆ R′′, and so
R′′ = X. However, (A′, R′) is also an answer to QCA, so A′ = A and R′ ⊆ X.
Thus, A′ = A′′ and R′ ⊆ R′′, so we conclude that (A′, R′) is a subgraph of
(A′′, R′′). If R′ ⊂ R′′, we conclude further that (A′, R′) is a strict subgraph
of (A′′, R′′), a contradiction with the assumption that (A′, R′) is a maximal
answer to QCA. So it must be the case that R′ = R′′.

As it turns out, there can be multiple minimal explanations in general for
each principle (cf. Fig. 1: the explanations for defence of Agents 1 and 2 are
both minimal). The next theorem studies the relation between minimal and
maximal explanations and shows that the maximal explanation is exactly

27



the union of all the minimal explanations.
To obtain it, we again need a number of intermediate results, this time on

minimal explanations. These results are provided in the following Lemmas.
There is one Lemma by principle, and each gives a characterization of a
minimal explanation in terms of conditions either on the attack relation or
the arguments.
The first lemma states that a minimal explanation for conflict-freeness is one
that contains at most one attack.

Lemma 6. Let A = (A,R), S ⊆ A and (A′, R′) be an answer to QCF .
(A′, R′) is a minimal answer to QCF iff |R′| ≤ 1.

Proof. Consider a minimal answer to QCF (A′, R′) and suppose that |R′| > 1.
Let (x, y) ∈ R′ and consider (A′, R′′) such that R′′ = R′\{(x, y)}. Obviously,
(A′, R′′) is a strict subgraph of (A′, R′). Let X = {(a, b) ∈ R | a, b ∈ S}.
Since (A′, R′) is an answer to QCF , by Def. 11, we know that A′ = S, R′ ⊆ X,
and because |R′| > 1, X ̸= ∅. However, R′′ ⊂ R′, so R′′ ⊂ X and |R′′| ≥ 1,
so R′′ ̸= ∅. Thus, by Def. 11, (A′, R′′) is an answer to QCF , which contradicts
the minimality of (A′, R′).

Consider now an answer to QCF (A′, R′) such that |R′| ≤ 1. Suppose
there exists a strict subgraph (A′′, R′′) of (A′, R′) such that (A′′, R′′) is also
an answer to QCF . Let X = {(a, b) ∈ R | a, b ∈ S}. Assume firstly that
A′′ ⊂ A′. By Def. 11, we know that A′′ = S, so we have S ⊂ A′, which
contradicts the fact that (A′, R′) is an answer to QCF . Assume secondly that
R′′ ⊂ R′. By supposition |R′| ≤ 1, so in this case, |R′| = 1 and R′′ = ∅.
As such, R′′ ⊆ X. Since (A′′, R′′) is an answer to QCF and R′′ = ∅, by
Def. 11, X = ∅. However, as |R′| = 1, this would mean that R′ ̸⊆ X, which
contradicts the fact that (A′, R′) is an answer to QCF . Consequently, it must
be the case that R′′ = R′, and so (A′′, R′′) = (A′, R′) and (A′, R′) is a minimal
answer to QCF .

The next lemma states that a minimal explanation for defence is one such
that all attackers of S that are not in S have at most one attack targeting
them.

Lemma 7. Let A = (A,R), S ⊆ A and (A′, R′) be an answer to QDef .
(A′, R′) is a minimal answer to QDef iff for all x ∈ R−1(S)\S, |R′−1(x)| ≤ 1.

Proof. Consider a minimal answer to QDef (A′, R′) and suppose that there
exists x ∈ R−1(S) \ S such that |R′−1(x)| > 1. Let (w, x) ∈ R′ and consider
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(A′, R′′) such that R′′ = R′\{(w, x)}. Obviously, (A′, R′′) is a strict subgraph
of (A′, R′). Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈
R | a ∈ S, b ∈ R−1(S)}. Since (A′, R′) is an answer to QDef , by Def. 12,
we know that A′ = S ∪ R−1(S), X ⊆ R′ ⊆ X ∪ Y . In addition, because
x ∈ R−1(S) and x /∈ S, it cannot be that (w, x) ∈ X, so (w, x) ∈ (Y \X) and
x ∈ R+1(S). However, R′′ ⊂ R′, so R′′ ⊂ X ∪ Y and since (w, x) ∈ (Y \X),
X ⊆ R′′. Moreover, as |R′−1(x)| > 1, we have that |R′′−1(x)| ≥ 1, so
∃(w′, x) ∈ R′′; consequently, knowing that x ∈ R−1(S) and x ∈ R+1(S), the
third condition of Def. 12 is satisfied for each b ∈ R−1(S) including x. Thus,
by Def. 12, (A′, R′′) is an answer to QDef , which contradicts the minimality
of (A′, R′).

Consider now an answer to QDef (A
′, R′) such that for all x ∈ R−1(S)\S,

|R′−1(x)| ≤ 1. Suppose there exists a strict subgraph (A′′, R′′) of (A′, R′)
such that (A′′, R′′) is also an answer to QDef . Let X = {(b, a) ∈ R | b ∈
R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. Assume firstly
that A′′ ⊂ A′. By Def. 12, we know that A′′ = S ∪ R−1(S), so we have
S ∪ R−1(S) ⊂ A′, which contradicts the fact that (A′, R′) is an answer to
QDef . Assume secondly that R′′ ⊂ R′. By Def. 12, we have X ⊆ R′ ⊆ X ∪Y
and X ⊆ R′′ ⊆ X ∪ Y ; so since R′′ ⊂ R′ there exists at least (a, b) ∈ R′ \R′′

and by definition (a, b) ∈ Y \X, so b ∈ R−1(S)\S. Moreover, by supposition,
for all x ∈ R−1(S) \ S, |R′−1(x)| ≤ 1, so in this case, we have |R′−1(b)| = 1
and R′′−1(b) = ∅. In addition, as (A′′, R′′) is an answer to QDef , b ∈ R−1(S)
and R′′−1(b) = ∅, by the third condition of Def. 12, b /∈ R+1(S) and so
(a, b) /∈ Y . This would mean that R′ ̸⊆ X ∪ Y , which contradicts the fact
that (A′, R′) is an answer to QDef . Consequently, it must be the case that
R′′ = R′, and so (A′′, R′′) = (A′, R′) and (A′, R′) is a minimal answer to
QDef .

The following lemma states that a minimal explanation for the first part
of reinstatement is one that includes at most one argument that is not in S.

Lemma 8. Let A = (A,R), S ⊆ A and (A′, R′) be an answer to QReins1.
(A′, R′) is a minimal answer to QReins1 iff |A′ \ S| ≤ 1.

Proof. Consider a minimal answer to QReins1 (A′, R′) and suppose that |A′ \
S| > 1. Let x ∈ A′ \ S and consider (A′′, R′) such that A′′ = A′ \ {x}. Obvi-
ously, (A′′, R′) is a strict subgraph of (A′, R′). LetX = {a ∈ A |R−1(a) = ∅}.
Since (A′, R′) is an answer to QReins1 , by Def. 13, we know that R′ = ∅,
S ∩ X ⊆ A′ ⊆ X, and because x /∈ S, x ∈ X \ S. However, A′′ ⊂ A′, so
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A′′ ⊂ X and since x ∈ A′ \ S, S ∩ X ⊆ A′′. Moreover, as |A′ \ S| > 1 and
x ∈ X, we have that |(A′′ \ S) ∩ X| ≥ 1. Thus, by Def. 13, (A′′, R′) is an
answer to QReins1 , which contradicts the minimality of (A′, R′).

Consider now an answer to QReins1 (A
′, R′) such that |A′\S| ≤ 1. Suppose

there exists a strict subgraph (A′′, R′′) of (A′, R′) such that (A′′, R′′) is also
an answer to QReins1 . Let X = {a ∈ A | R−1(a) = ∅}. Assume firstly that
R′′ ⊂ R′. By Def. 13, we know that R′′ = ∅, so we have |R′| > 0, which
contradicts the fact that (A′, R′) is an answer to QReins1 . Assume secondly
that A′′ ⊂ A′. As (A′, R′) and (A′′, R′′) are answers to QReins1 , by Def. 13,
S ∩ X ⊆ A′ ⊆ X and S ∩ X ⊆ A′′ ⊆ X. Since A′′ ⊂ A′, we have that
A′′ \S ⊂ A′ \S. By supposition |A′ \S| ≤ 1, so in this case, |A′ \S| = 1 and
A′′ \S = ∅. As A′′ \S = ∅, ∄a ∈ (A \S)∩X with a ∈ A′′. Since (A′′, R′′) is
an answer to QReins1 , by Def. 13, (A \ S)∩X = ∅. However, as |A′ \ S| = 1,
this would mean that A′ ̸⊆ X, which contradicts the fact that (A′, R′) is an
answer to QReins1 . Consequently, it must be the case that A′′ = A′, and so
(A′′, R′′) = (A′, R′) and (A′, R′) is a minimal answer to QReins1 .

This lemma states that a minimal explanation for the second part of
reinstatement is one such that all attackers, not defended by S, of arguments
that S defend have at most one attack targeting them.

Lemma 9. Let A = (A,R), S ⊆ A and (A′, R′) be an answer to QReins2.
(A′, R′) is a minimal answer to QReins2 iff for all x ∈ R−1(R+2(S))\R+2(S),
|R′−1(x)| ≤ 1.

Proof. Consider a minimal answer to QReins2 (A
′, R′) and suppose that there

exists x ∈ R−1(R+2(S))\R+2(S) such that |R′−1(x)| > 1. Let (w, x) ∈ R′ and
consider (A′, R′′) such that R′′ = R′ \{(w, x)}. Obviously, (A′, R′′) is a strict
subgraph of (A′, R′). Let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)}
and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. Since (A′, R′) is an answer
to QReins2 , by Def. 14, we know that A′ = S ∪ R+2(S) ∪ R−1(R+2(S)) and
X ⊆ R′ ⊆ X ∪Y . In addition, because x ∈ R−1(R+2(S)) and x /∈ R+2(S), it
cannot be that (w, x) ∈ X, so (w, x) ∈ (Y \X) and x ∈ R+1(S). However,
R′′ ⊂ R′, so R′′ ⊂ X ∪ Y and since (w, x) ∈ (Y \ X), X ⊆ R′′. Moreover,
as |R′−1(x)| > 1, we have that |R′′−1(x)| ≥ 1, so ∃(w′, x) ∈ R′′; consequently,
knowing that x ∈ R−1(R+2(S)) and x ∈ R+1(S), the third condition of
Def. 14 is satisfied for each b ∈ R−1(R+2(S)) including x. Thus, by Def. 14,
(A′, R′′) is an answer to QReins2 , which contradicts the minimality of (A′, R′).
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Consider now an answer to QReins2 (A′, R′) st for all x ∈ R−1(R+2(S)) \
R+2(S), |R′−1(x)| ≤ 1. Suppose there exists a strict subgraph (A′′, R′′) of
(A′, R′) such that (A′′, R′′) is also an answer to QReins2 . Let X = {(b, c) ∈
R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}. Assume firstly that A′′ ⊂ A′. By Def. 14, we know that
A′′ = S ∪ R−1(S), so we have S ∪ R−1(S) ⊂ A′, which contradicts the
fact that (A′, R′) is an answer to QReins2 . Assume secondly that R′′ ⊂ R′.
By Def. 14, we have X ⊆ R′ ⊆ X ∪ Y and X ⊆ R′′ ⊆ X ∪ Y ; so since
R′′ ⊂ R′ there exists at least (a, b) ∈ R′ \ R′′ and by definition (a, b) ∈
Y \X, so b ∈ R−1(R+2(S)) \ R+2(S). Moreover, by supposition, for all x ∈
R−1(R+2(S)) \ R+2(S), |R′−1(x)| ≤ 1, so in this case, we have |R′−1(b)| = 1
and R′′−1(b) = ∅. In addition, as (A′′, R′′) is an answer to QReins2 , b ∈
R−1(R+2(S)) and R′′−1(b) = ∅, by the third condition of Def. 14, b /∈ R+1(S)
and so (a, b) /∈ Y . This would mean that R′ ̸⊆ X ∪ Y , which contradicts the
fact that (A′, R′) is an answer to QReins2 . Consequently, it must be the case
that R′′ = R′, and so (A′′, R′′) = (A′, R′) and (A′, R′) is a minimal answer to
QReins2 .

Finally, the last lemma states that a minimal explanation for complement
attack is one such that all arguments that are not in S have at most one attack
targeting them.

Lemma 10. Let A = (A,R), S ⊆ A and (A′, R′) be an answer to QCA.
(A′, R′) is a minimal answer to QCA iff for all x /∈ S, |R′−1(x)| ≤ 1.

Proof. Consider a minimal answer to QCA (A′, R′) and suppose that there
exists x /∈ S such that |R′−1(x)| > 1. Let (w, x) ∈ R′ and consider (A′, R′′)
such that R′′ = R′ \ {(w, x)}. Obviously, (A′, R′′) is a strict subgraph of
(A′, R′). Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. Since (A′, R′) is an answer to
QCA, by Def. 15, we know that A′ = A, R′ ⊆ X, and because x /∈ S, (w, x) ∈
X so x ∈ R+1(S). However, R′′ ⊂ R′, so R′′ ⊂ X and as |R′−1(x)| > 1, we
have that |R′′−1(x)| ≥ 1, so ∃(w′, x) ∈ R′′ and because R′′ ⊂ X and x /∈ S,
w′ ∈ S. Thus, by Def. 15, (A′, R′′) is an answer to QCA, which contradicts
the minimality of (A′, R′).

Consider now an answer toQCA (A′, R′) such that for all x /∈ S, |R′−1(x)| ≤
1. Suppose there exists a strict subgraph (A′′, R′′) of (A′, R′) such that
(A′′, R′′) is also an answer to QCA. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
Assume firstly that A′′ ⊂ A′. By Def. 15, we know that A′′ = A, so we have
A ⊂ A′, which contradicts the fact that (A′, R′) is an answer to QCA. Assume
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secondly that R′′ ⊂ R′. By Def. 15, we have R′ ⊆ X and by supposition,
for all x /∈ S, |R′−1(x)| ≤ 1, so in this case, there exists b /∈ S such that
|R′−1(b)| = 1 and R′′−1(b) = ∅. As such, R′′ ⊆ X. Since (A′′, R′′) is an
answer to QCA, b /∈ S and R′′−1(b) = ∅, by Def. 15, b /∈ R+1(S). However,
as |R′−1(b)| = 1, this would mean that R′ ̸⊆ X, which contradicts the fact
that (A′, R′) is an answer to QCA. Consequently, it must be the case that
R′′ = R′, and so (A′′, R′′) = (A′, R′) and (A′, R′) is a minimal answer to
QCA.

Using the previous Lemmas, we can now prove that, for each principle,
the maximal explanation is exactly the union of all the minimal explanations.

Theorem 9. Let A = (A,R) and S ⊆ A. Consider π ∈ {CF ,Def , Reins1,
Reins2,CA} and let (A′, R′) be the maximal explanation that answers Qπ and
M be the set of all minimal explanations that answers Qπ. Then, (A

′, R′) =⋃
G∈M G.

Proof.
• (A′, R′) ⊆ ∪G∈MG. We denote M = {G1, . . . , Gn} with G1 = (A1, R1),
. . . , Gn = (An, Rn). Suppose that (A′, R′) ̸⊆

⋃
G∈M G. This means that

A′ ̸⊆ A1 ∪ · · · ∪ An or R′ ̸⊆ R1 ∪ · · · ∪Rn.
Consider π = CF and let X = {(a, b) ∈ R | a, b ∈ S}. By supposition,

(A′, R′), G1, . . . , Gn are all answers to QCF . So, by Def. 11, we have A′ =
A1 = · · · = An = S. Thus, it must be the case that R′ ̸⊆ R1 ∪ · · · ∪ Rn.
In addition, by Lem. 1, we know that R′ = X and so that R1 ⊆ R′, . . . ,
Rn ⊆ R′. Assume firstly that X = ∅. Then, by Def. 11, we have R′ = R1 =
· · · = Rn = ∅, a contradiction. Assume secondly thatX ̸= ∅. In this case we
have R′ ̸= ∅, and by Def. 11, R1 ̸= ∅, . . . , Rn ̸= ∅. This means that there
exists R′′ ⊆ X with R′′ ̸= ∅, such that R′′ ∩ R1 = · · · = R′′ ∩ Rn = ∅. Let
R′′′ ⊆ R′′ with |R′′′| = 1. Consider (A′, R′′′). We already know that A′ = S,
R′′′ ⊆ X and we have both X ̸= ∅ and R′′′ ̸= ∅. So, by Def. 11, (A′, R′′′)
is an answer to QCF . In addition, since R′′ ∩ R1 = · · · = R′′ ∩ Rn = ∅, we
have (A′, R′′′) ̸= (A1, R1), . . . , (A

′, R′′′) ̸= (An, Rn). However, |R′′′| = 1, so
by Lem. 6, (A′, R′′′) is a minimal answer to QCF . A contradiction with the
hypothesis that M is the set of all minimal answers to QCF .

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y =
{(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. By supposition, (A′, R′), G1, . . . , Gn are all
answers to QDef . So, by Def. 12, we have A′ = A1 = · · · = An = S ∪R−1(S).
Thus, it must be the case that R′ ̸⊆ R1 ∪ · · · ∪ Rn. In addition, by Lem. 2,
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we know that R′ = X ∪Y and so that R1 ⊆ R′, . . . , Rn ⊆ R′. Assume firstly
that for all y ∈ R−1(S), R′−1(y) = ∅. Then, by Def. 12, we have for all
y ∈ R−1(S), y /∈ R+1(S). Since X ⊆ R1 ⊆ X ∪Y , . . . , X ⊆ Rn ⊆ X ∪Y , we
deduce that for all y ∈ R−1(S), R−1

1 (y) = · · · = R−1
n (y) = R′−1(y) = ∅, and

so that R′ = R1 = · · · = Rn = X, a contradiction. Assume secondly that for
some y ∈ R−1(S), R′−1(y) ̸= ∅. In this case we have R′ ̸= ∅ and y ∈ R+1(S),
so by Def. 12, R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅ and thus, R1 ̸= ∅, . . . , Rn ̸= ∅.

Since, R′ ̸⊆ R1∪. . .∪Rn and ∀i, Ri ⊆ R′, this means that there exists R′′ ⊆ Y
with R′′ ̸= ∅, such that R′′ ∩ R1 = · · · = R′′ ∩ Rn = ∅. In particular, this
means that there exists y0 ∈ R−1(S) such that R′′−1(y0) ̸= ∅ and R′′−1(y0)∩
R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) = ∅. Moreover, because X ⊆ R1,

. . .X ⊆ Rn, we know that y0 /∈ S. Let R′′′ such that: (1) X ⊆ R′′′ ⊂ R′, (2)
for all y ∈ R−1(S)\S, y ̸= y0, |R′′′−1(y)| = 1 if y ∈ R+1(S) and |R′′′−1(y)| = 0
otherwise, (3) |R′′′−1(y0)| = 1 with R′′′−1(y0) ⊆ R′′−1(y0). Consider (A

′, R′′′).
We already know that A′ = S∪R−1(S) andX ⊆ R′′′ ⊆ X∪Y . In addition, we
have that for all y ∈ R−1(S) such that y ∈ R+1(S), R′′′−1(y) ̸= ∅ (definition
of R′′′). So, by Def. 12, (A′, R′′′) is an answer to QDef . In addition, since
R′′′−1(y0) ⊆ R′′−1(y0) and R′′−1(y0) ∩ R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) =

∅, we have (A′, R′′′) ̸= (A1, R1), . . . , (A
′, R′′′) ̸= (An, Rn). However, for all

y ∈ R−1(S) \ S, |R′′′−1(y)| ≤ 1, so by Lem. 7, (A′, R′′′) is a minimal answer
to QDef . A contradiction with the hypothesis that M is the set of all minimal
answers to QDef .

Consider π = Reins1 and let X = {a ∈ A |R−1(a) = ∅}. By supposition,
(A′, R′), G1, . . . , Gn are all answers to QReins1 . So, by Def. 13, we have R′ =
R1 = · · · = Rn = ∅. Thus, it must be the case that A′ ̸⊆ A1 ∪ · · · ∪ An.
In addition, by Lem. 3, we know that A′ = X and so that A1 ⊆ A′, . . . ,
An ⊆ A′. Assume firstly that X \ S = ∅ (or, written differently, S ∩X = X
and (A \ S) ∩X = ∅). Then, by Def. 13, we have A′ = A1 = · · · = An = X,
a contradiction. Assume secondly that X \ S ̸= ∅, so (A \ S) ∩X ̸= ∅. By
assumption A′ ̸⊆ A1∪· · ·∪An, so there exists A′′ ⊆ X \S with A′′ ̸= ∅, such
that A′′ ∩ A1 = · · · = A′′ ∩ An = ∅. Let x ∈ A′′ and A′′′ = (S ∩ X) ∪ {x}.
Consider (A′′′, R′). We already know that R′ = ∅, S ∩X ⊆ A′′′ ⊆ X and we
have both (A\S)∩X ̸= ∅ and x ∈ ((A\S)∩X)∩A′′′. So, by Def. 13, (A′′′, R′)
is an answer to QReins1 . In addition, since A′′ ∩A1 = · · · = A′′ ∩An = ∅, we
have (A′′′, R′) ̸= (A1, R1), . . . , (A

′′′, R′) ̸= (An, Rn). However, |A′′′ \ S| = 1,
so by Lem. 8, (A′′′, R′) is a minimal answer to QReins1 . A contradiction with
the hypothesis that M is the set of all minimal answers to QReins1 .

Consider π = Reins2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈
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R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. By supposition,
(A′, R′), G1, . . . , Gn are all answers to QReins2 . So, by Def. 14, we have A′ =
A1 = · · · = An = S ∪R+2(S)∪R−1(R+2(S)). Thus, it must be the case that
R′ ̸⊆ R1 ∪ · · · ∪ Rn. In addition, by Lem. 4, we know that R′ = X ∪ Y and
so that R1 ⊆ R′, . . . , Rn ⊆ R′. Assume firstly that for all y ∈ R−1(R+2(S)),
R′−1(y) = ∅. Then, by Def. 14, we have for all y ∈ R−1(R+2(S)), y /∈ R+1(S)
(so Y = ∅). Since X ⊆ R1 ⊆ X ∪ Y , . . . , X ⊆ Rn ⊆ X ∪ Y , we deduce
that R′ = R1 = · · · = Rn = X, a contradiction. Assume secondly that for
some y ∈ R−1(R+2(S)), R′−1(y) ̸= ∅. In this case we have R′ ̸= ∅ and
y ∈ R+1(S), so by Def. 14, R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅ and thus, R1 ̸= ∅,

. . . , Rn ̸= ∅. Since, R′ ̸⊆ R1 ∪ . . . ∪ Rn and ∀i, Ri ⊆ R′, this means that
there exists R′′ ⊆ Y with R′′ ̸= ∅, such that R′′ ∩ R1 = · · · = R′′ ∩ Rn =
∅. In particular, this means that there exists y0 ∈ R−1(R+2(S)) such that
R′′−1(y0) ̸= ∅ and R′′−1(y0) ∩ R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) = ∅.

Moreover, because X ⊆ R1, . . .X ⊆ Rn, we know that y0 /∈ R+2(S). Let R′′′

such that: (1) X ⊆ R′′′ ⊂ R′, (2) for all y ∈ R−1(R+2(S)) \ R+2(S), y ̸= y0,
|R′′′−1(y)| = 1 if y ∈ R+1(S) and |R′′′−1(y)| = 0 otherwise, (3) |R′′′−1(y0)| = 1
and R′′′−1(y0) ⊆ R′′−1(y0). Consider (A′, R′′′). We already know that A′ =
S ∪ R+2(S) ∪ R−1(R+2(S)) and X ⊆ R′′′ ⊆ X ∪ Y . In addition, we have
that for all y ∈ R−1(R+2(S)) such that y ∈ R+1(S), R′′′−1(y) ̸= ∅ (definition
of R′′′). So, by Def. 14, (A′, R′′′) is an answer to QReins2 . In addition, since
R′′′−1(y0) ⊆ R′′−1(y0) and R′′−1(y0) ∩ R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) =

∅, we have (A′, R′′′) ̸= (A1, R1), . . . , (A
′, R′′′) ̸= (An, Rn). However, for

all y ∈ R−1(R+2(S)) \ R+2(S), |R′′′−1(y)| ≤ 1, so by Lem. 9, (A′, R′′′) is a
minimal answer to QReins2 . A contradiction with the hypothesis that M is
the set of all minimal answers to QReins2 .

Consider π = CA and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. By suppo-
sition, (A′, R′), G1, . . . , Gn are all answers to QCA. So, by Def. 15, we have
A′ = A1 = · · · = An = A. Thus, it must be the case that R′ ̸⊆ R1 ∪ · · · ∪Rn.
In addition, by Lem. 5, we know that R′ = X and so that R1 ⊆ R′, . . . ,
Rn ⊆ R′. Assume firstly that for all y /∈ S, R′−1(y) = ∅. Then, by Def. 15,
we have for all y /∈ S, y /∈ R+1(S) (so X = ∅). Since R1 ⊆ X, . . . , Rn ⊆ X,
we deduce that R′ = R1 = · · · = Rn = ∅, a contradiction. Assume sec-
ondly that for some y /∈ S, R′−1(y) ̸= ∅. In this case we have R′ ̸= ∅
and y ∈ R+1(S), so by Def. 15, R−1

1 (y) ̸= ∅, . . . , R−1
n (y) ̸= ∅ and thus,

R1 ̸= ∅, . . . , Rn ̸= ∅. Since, by assumption, R′ ̸⊆ R1 ∪ . . . ∪ Rn, there
exists R′′ ⊆ X with R′′ ̸= ∅, such that R′′ ∩ R1 = · · · = R′′ ∩ Rn = ∅.
In particular, this means that there exists y0 /∈ S such that R′′−1(y0) ̸= ∅
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and R′′−1(y0) ∩ R−1
1 (y0) = · · · = R′′−1(y0) ∩ R−1

n (y0) = ∅. Let R′′′ ⊂ R′

such that: (1) for all y /∈ S, y ̸= y0, |R′′′−1(y)| ≤ 1 if y ∈ R+1(S) and
|R′′′−1(y)| = 1 otherwise, (2) |R′′′−1(y0)| = 1 with R′′′−1(y0) ⊆ R′′−1(y0).
Consider (A′, R′′′). We already know that A′ = A, R′′′ ⊆ X and for all
y /∈ S such that y ∈ R+1(S), we have R′′′−1(y) ̸= ∅. So, by Def. 15,
(A′, R′′′) is an answer to QCA. In addition, since R′′′−1(y0) ⊆ R′′−1(y0) and
R′′−1(y0) ∩ R−1

1 (y0) = · · · = R′′−1(y0) ∩ R−1
n (y0) = ∅, we have (A′, R′′′) ̸=

(A1, R1), . . . , (A
′, R′′′) ̸= (An, Rn). However, for all y /∈ S, |R′′′−1(y)| ≤ 1,

so by Lem. 10, (A′, R′′′) is a minimal answer to QCA. A contradiction with
the hypothesis that M is the set of all minimal answers to QCA.

• (A′, R′) ⊇ ∪G∈MG. We denote M = {G1, . . . , Gn} with G1 = (A1, R1),
. . . , Gn = (An, Rn).

Consider π = CF and let X = {(a, b) ∈ R | a, b ∈ S}. By Def. 11, we
have A′ = A1 = · · · = An = S. Moreover, by Lem. 1, we know that R′ = X.
Finally, by Def. 11, we know that R1 ⊆ X, . . . , Rn ⊆ X. Thus, R1 ⊆ R′,
. . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A′, R′).

Consider π = Def and let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and
Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. By Def. 12, we have A′ = A1 = · · · =
An = S ∪R−1(S). Moreover, by Lem. 2, we know that R′ = X ∪ Y . Finally,
by Def. 12, we know that R1 ⊆ X ∪ Y , . . . , Rn ⊆ X ∪ Y . Thus, R1 ⊆ R′,
. . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A′, R′).

Consider π = Reins1 and let X = {a ∈ A |R−1(a) = ∅}. By Def. 13, we
have R′ = R1 = · · · = Rn = ∅. Moreover, by Lem. 3, we know that A′ = X.
Finally, by Def. 13, we know that A1 ⊆ X, . . . , An ⊆ X. Thus, A1 ⊆ A′,
. . . , An ⊆ A′ and so

⋃
G∈M G ⊆ (A′, R′).

Consider π = Reins2 and let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈
R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. By Def. 14, we
have A′ = A1 = · · · = An = S∪R+2(S)∪R−1(R+2(S)). Moreover, by Lem. 4,
we know that R′ = X ∪ Y . Finally, by Def. 14, we know that R1 ⊆ X ∪ Y ,
. . . , Rn ⊆ X ∪ Y . Thus, R1 ⊆ R′, . . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A′, R′).

Consider π = CA and let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. By Def. 15, we
have A′ = A1 = · · · = An = A. Moreover, by Lem. 5, we know that R′ = X.
Finally, by Def. 15, we know that R1 ⊆ X, . . . , Rn ⊆ X. Thus, R1 ⊆ R′,
. . . , Rn ⊆ R′ and so

⋃
G∈M G ⊆ (A′, R′).
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5 Computation of Explanations

This section investigates how to compute the maximal and minimal expla-
nations of a class.

5.1 Maximal Explanations

It turns out that maximal explanations exactly correspond to the explana-
tions defined in [BDDLS22] (recalled in Def. 9).

Proposition 4. Let A = (A,R), S ⊆ A and π ∈ {CF ,Def ,Reins1 , Reins2,
CA}. Gπ(S) is the maximal explanation that answers Qπ.

Proof. Consider π = CF . We denote GCF (S) with (A′, R′). Suppose GCF (S)
is not a maximal answer to QCF . Then, there exists a subgraph (A′′, R′′)
of A that is an answer to QCF and such that GCF (S) is a subgraph of
(A′′, R′′). The case when (A′′, R′′) = (A′, R′) is trivial, so we will assume
that (A′′, R′′) ̸= (A′, R′). Let X = {(a, b) ∈ R | a, b ∈ S}. By Def. 11, we
know that A′′ = S and R′′ ⊆ X. By definition of GCF (S), we have that
A′ = S = A′′. Thus, since GCF (S) is a subgraph of (A′′, R′′), it must be the
case that ∃(a, b) ∈ R′′ with a, b ∈ S s.t. (a, b) /∈ R′. However (A′′, R′′) is a
subgraph of A, so (a, b) ∈ R. Hence, there exists (a, b) ∈ R with a, b ∈ S
such that (a, b) /∈ R′, a contradiction of Def. 4.

Consider π = Def . We denote GDef (S) with (A′, R′). Suppose GDef (S)
is not a maximal answer to QDef . Then, there exists a subgraph (A′′, R′′)
of A that is an answer to QDef and such that GDef (S) is a subgraph of
(A′′, R′′). The case when (A′′, R′′) = (A′, R′) is trivial, so we will assume
that (A′′, R′′) ̸= (A′, R′). Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S}
and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}. By Def. 12, we know that
A′′ = S ∪ R−1(S) and X ⊆ R′′ ⊆ X ∪ Y . By definition of GDef (S), we have
that A′ = S ∪R−1(S) = A′′. Thus, since GDef (S) is a subgraph of (A′′, R′′),
it must be the case that either ∃(a, b) ∈ R′′ with a ∈ S and b ∈ R−1(S)
s.t. (a, b) /∈ R′, or ∃(b, a) ∈ R′′ with b ∈ R−1(S) and a ∈ S s.t. (b, a) /∈ R′.
However (A′′, R′′) is a subgraph of A, so (a, b), (b, a) ∈ R. Hence, either there
exists (a, b) ∈ R with a ∈ S and b ∈ R−1(S) such that (a, b) /∈ R′, or there
exists (b, a) ∈ R with b ∈ R−1(S) and a ∈ S such that (b, a) /∈ R′. This is a
contradiction of Def. 4.

Consider π = Reins1. We denote GReins1(S) with (A′, R′). Suppose
GReins1(S) is not a maximal answer to QReins1 . Then, there exists a subgraph
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(A′′, R′′) of A that is an answer to QReins1 and such that GReins1(S) is a
subgraph of (A′′, R′′). The case when (A′′, R′′) = (A′, R′) is trivial, so we
will assume that (A′′, R′′) ̸= (A′, R′). Let X = {a ∈ A | R−1(a) = ∅}. By
Def. 13, we know that S ∩X ⊆ A′′ ⊆ X and R′′ = ∅. Since GReins1(S) is a
subgraph of (A′′, R′′), it must then be the case that ∃a ∈ X s.t. a /∈ A′. This
is a contradiction of Def. 4.

Consider π = Reins2. We denote GReins2(S) with (A′, R′). Suppose
GReins2(S) is not a maximal answer to QReins2 . Then, there exists a subgraph
(A′′, R′′) of A that is an answer to QReins2 and such that GReins2(S) is a
subgraph of (A′′, R′′). The case when (A′′, R′′) = (A′, R′) is trivial, so we will
assume that (A′′, R′′) ̸= (A′, R′). Let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈
R+2(S)} and Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. By Def. 14, we
know that A′′ = S ∪ R+2(S) ∪ R−1(R+2(S)) and X ⊆ R′′ ⊆ X ∪ Y . By
definition of GReins2(S), we have that A

′ = S ∪R+2(S)∪R−1(R+2(S)) = A′′.
Thus, since GReins2(S) is a subgraph of (A′′, R′′), it must be the case that
either ∃(a, b) ∈ R′′ with a ∈ S and b ∈ R−1(R+2(S)) s.t. (a, b) /∈ R′, or
∃(b, c) ∈ R′′ with b ∈ R−1(R+2(S)) and c ∈ R+2(S) s.t. (b, c) /∈ R′. However
(A′′, R′′) is a subgraph of A, so (a, b), (b, c) ∈ R. Hence, either there exists
(a, b) ∈ R with a ∈ S and b ∈ R−1(R+2(S)) such that (a, b) /∈ R′, or there
exists (b, c) ∈ R with b ∈ R−1(R+2(S)) and c ∈ R+2(S) such that (b, c) /∈ R′.
This is a contradiction of Def. 4.

Consider π = CA. We denote GCA(S) with (A′, R′). Suppose GCA(S)
is not a maximal answer to QCA. Then, there exists a subgraph (A′′, R′′)
of A that is an answer to QCA and such that GCA(S) is a subgraph of
(A′′, R′′). The case when (A′′, R′′) = (A′, R′) is trivial, so we will assume
that (A′′, R′′) ̸= (A′, R′). Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}. By Def. 15,
we know that A′′ = A and R′′ ⊆ X. By definition of GCA(S), we have that
A′ = A = A′′. Thus, since GCA(S) is a subgraph of (A′′, R′′), it must be the
case that ∃(a, b) ∈ R′′ with a ∈ S and b /∈ S s.t. (a, b) /∈ R′. This contradicts
Def. 4.

This result entails that maximal explanations can be computed using
only the graph operators of induced and spanning subgraphs, thus ensuring
an efficient computation.

Note that Prop. 4 aggregated with Th. 8 allows to recover a unicity re-
sult given in [BDDLS22] confirming once again the relationship between our
approach and that given in [BDDLS22].
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5.2 From Maximal to Minimal Explanations

In order to compute the minimal explanations, we will start from the max-
imal explanation, and gradually remove elements until obtaining a minimal
explanation. This leads to five algorithms (one for each principle) that are
built following the same schema. They also use the same condition for stop-
ping the removal: “it remains at most one element to remove”. The only
differences between these algorithms concern the “nature” of the removed
elements:5

For CF : removal of attacks between elements of S

For Def : for each attacker of S that is not in S, removal of attacks that
target it

For Reins1: removal of unattacked arguments that are not in S

For Reins2: for each argument that is an attacker of the arguments S de-
fends and that is not defended by S, removal of attacks that target
it

For CA: for each argument that is not in S, removal of attacks that target
it

AlgCF Computation of a minimal answer to QCF

Require: A = (A,R), S ⊆ A
1: (A′, R′)← GCF (S)
2: while |R′| > 1 do
3: (x, y)← choose(R′)
4: R′ ← R′ \ {(x, y)}
5: end while
6: return (A′, R′)

Our algorithms are sound and complete for the computation of minimal
explanations as shown by the following proposition.

5Note that these elements are generally attacks except in the case of the principle
Reins1.
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AlgDef Computation of a minimal answer to QDef

Require: A = (A,R), S ⊆ A
1: (A′, R′)← GDef (S)
2: for y ∈ R−1(S) \ S do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A′, R′)

AlgReins1 Computation of a minimal answer to QReins1

Require: A = (A,R), S ⊆ A
1: (A′, R′)← GReins1(S)
2: while |A′ \ S| > 1 do
3: x← choose(A′ \ S)
4: A′ ← A′ \ {x}
5: end while
6: return (A′, R′)

Proposition 5. Let A = (A,R), S ⊆ A and π ∈ {CF ,Def ,Reins1 , Reins2,
CA}. Algorithm Algπ using A and S as inputs is sound and complete for the
computation of a minimal explanation that answers Qπ.

Proof.
• AlgCF . It begins by computing (A′, R′) = GCF (S) which, by Prop. 4
is a maximal answer to QCF . So, in particular, it is an answer to QCF .
Obviously (x, y) ← choose(R′) implies that (x, y) ∈ R′. This would mean
that R′ \{(x, y)} ⊂ R′, and thus that |R′ \{(x, y)}| < |R′|. As such, lines 2-5
compute (A′′, R′′) such that A′′ = A′, R′′ ⊆ R′ (in cases R′ = ∅ and |R′| = 1,
we have R′′ = R′) and it holds that |R′′| ≤ 1. Let X = {(a, b) ∈ R | a, b ∈ S}.
As (A′, R′) is an answer toQCF , by Def. 11, we know that A′ = S and R′ ⊆ X.
But A′′ = A′, so A′′ = S and R′′ ⊆ R′, so R′′ ⊆ X. In addition, if R′ = ∅,
then X = ∅ by Def. 11, but R′′ ⊆ X, so we have R′′ = ∅ as well. Thus, by
Def. 11, (A′′, R′′) is an answer to QCF . Moreover, we know that |R′′| ≤ 1, so
by Lem. 6, (A′′, R′′) is a minimal answer to QCF . So AlgCF is sound.

By Lem. 6, we know that |R′′| ≤ 1. AlgCF begins by computing (A′, R′) =
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AlgReins2 Computation of a minimal answer to QReins2

Require: A = (A,R), S ⊆ A
1: (A′, R′)← GReins2(S)
2: for y ∈ R−1(R+2(S)) \R+2(S) do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A′, R′)

AlgCA Computation of a minimal answer to QCA

Require: A = (A,R), S ⊆ A
1: (A′, R′)← GCA(S)
2: for y ∈ A \ S do
3: while |R′−1(y)| > 1 do
4: x← choose(R′−1(y))
5: R′ ← R′ \ {(x, y)}
6: end while
7: end for
8: return (A′, R′)

GCF (S) which, by Prop. 4, is a maximal answer to QCF . Since (A
′′, R′′) and

(A′, R′) are both answers to QCF , by Def. 11, we know that A′′ = S = A′.
In addition, by Th. 9, we know that (A′′, R′′) ⊆ (A′, R′). Let X = {(a, b) ∈
R | a, b ∈ S} and (A′′′, R′′′) be the result computed by AlgCF . In the case
where |R′′| = 0, by Def. 11 we haveX = ∅, and thus, still by Def. 11, R′ = ∅.
So, in this case, R′ = R′′. Lines 2-5 are ignored and AlgCF computes (A′′′, R′′′)
with (A′′′, R′′′) = (A′, R′) = (A′′, R′′). In the case where |R′′| = 1, we denote
R′′ = {(x0, y0)}. Since (A′′, R′′) ⊆ (A′, R′), R′′ ⊆ R′ and so (x0, y0) ∈ R′. We
denote R′ = {(x0, y0), (x1, y1), . . . , (xn, yn)}. Obviously (x, y) ← choose(R′)
implies that (x, y) ∈ R′. This would mean that R′ \ {(x, y)} ⊂ R′, and
thus that |R′ \ {(x, y)}| < |R′|. As such, lines 2-5 compute (A′′′, R′′′) such
that A′′′ = A′ = A′′ and R′′′ = R′ \ ∆ with |R′′′| = 1. As we already
know that A′′′ = A′′, we only need to find a set ∆ such that R′ \ ∆ = R′′.
{(x1, y1), . . . , (xn, yn)} is such a set. So AlgCF is complete.
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• AlgDef . It begins by computing (A′, R′) = GDef (S) which, by Prop. 4
is a maximal answer to QDef . So, in particular, it is an answer to QDef .
Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it
implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y),
and thus that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute
(A′′, R′′) such that, A′′ = A′, for some y ∈ R−1(S) \ S, R′′−1(y) ⊆ R′−1(y)
(in cases R′−1(y) = ∅ and |R′−1(y)| = 1, we have R′′−1(y) = R′−1(y)) and
it holds that |R′′−1(y)| ≤ 1. Thus, lines 2-7 compute (A′′, R′′) such that,
A′′ = A′ and for all y ∈ R−1(S) \ S, R′′−1(y) ⊆ R′−1(y) and |R′′−1(y)| ≤ 1.
Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S} and Y = {(a, b) ∈ R | a ∈
S, b ∈ R−1(S)}. As (A′, R′) is an answer to QDef , by Def. 12, we know that
A′ = S ∪ R−1(S) and X ⊆ R′ ⊆ X ∪ Y . But A′′ = A′, so A′′ = S ∪ R−1(S),
R′′ ⊆ R′, so R′′ ⊆ X ∪ Y , and as y ∈ R−1(S) \ S and (x, y) ∈ R′, we deduce
that (x, y) ∈ Y \ X and so X ⊆ R′′. In addition, if R′−1(y) ∩ S = ∅, then
y /∈ R+1(S) by Def. 12, but R′′ ⊆ X∪Y , so we have R′′−1(y)∩S = ∅ as well.
Thus, by Def. 12, (A′′, R′′) is an answer to QDef . Moreover, we know that
for all y ∈ R−1(S) \ S, |R′′−1(y)| ≤ 1, so by Lem. 7, (A′′, R′′) is a minimal
answer to QDef . So AlgDef is sound.

By Lem. 7, we know that for all y ∈ R−1(S) \ S, |R′′−1(y)| ≤ 1. AlgDef

begins by computing (A′, R′) = GDef (S) which, by Prop. 4, is a maximal
answer to QDef . Since (A′′, R′′) and (A′, R′) are both answers to QDef , by
Def. 12, we know that A′′ = S∪R−1(S) = A′. In addition, by Th. 9, we know
that (A′′, R′′) ⊆ (A′, R′). Let X = {(b, a) ∈ R | b ∈ R−1(S), a ∈ S}, Y =
{(a, b) ∈ R | a ∈ S, b ∈ R−1(S)}, (A′′′, R′′′) be the result computed by AlgDef

and consider y ∈ R−1(S) \ S. In the case where |R′′−1(y)| = 0, in particular,
∄(x, y) ∈ R′′ with x ∈ S. So, by Def. 12 we have y /∈ R+1(S), and thus, still
by Def. 12, R′−1(y) = ∅. So, in this case, R′−1(y) = R′′−1(y) and lines 3-6 are
ignored. Thus, lines 3-6 compute (A′′′, R′′′) such that A′′′ = A′ = A′′, R′′′ =
R′ and so, R′′′−1(y) = R′′−1(y). In the case where |R′′−1(y)| = 1, we denote
R′′−1(y) = {x0}. Since (A′′, R′′) ⊆ (A′, R′), R′′ ⊆ R′, so (x0, y) ∈ R′ and in
particular, x0 ∈ R′−1(y). We denote R′−1(y) = {x0, x1, . . . , xn}. Obviously
x← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it implies that
(x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y), and thus
that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A′′′, R′′′)
such that A′′′ = A′ = A′′ and R′′′ = R′ \∆ with |R′′′−1(y)| = 1. So, we only
need to find a set ∆ such that (R′ \∆)−1(y) = R′′−1(y). {(x1, y), . . . , (xn, y)}
is such a set. So, using ∆ = {(x1, y), . . . , (xn, y)} in the second case, lines
3-6 compute (A′′′, R′′′) such that A′′′ = A′′ and for some y ∈ R−1(S) \ S,
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R′′′−1(y) = R′′−1(y). Thus, lines 2-7 compute (A′′′, R′′′) such that A′′′ = A′′

and for all y ∈ R−1(S) \S, R′′′−1(y) = R′′−1(y). Since X ⊆ R′′′ ⊆ X ∪Y and
for all y ∈ R−1(S) \ S, R′′′−1(y) = R′′−1(y), we deduce that R′′′ = R′′ and so
(A′′′, R′′′) = (A′′, R′′). So AlgDef is complete.
• AlgReins1. It begins by computing (A′, R′) = GReins1(S) which, by Prop. 4
is a maximal answer to QReins1 . So, in particular, it is an answer to QReins1 .
Obviously x← choose(A′ \S) implies that x ∈ A′ \S. This would mean that
A′ \ {x} ⊂ A′, and thus that |A′ \ {x}| < |A′|. In addition, since x ∈ A′ \ S,
|(A′ \ S) \ {x}| < |A′ \ S|. As such, lines 2-5 compute (A′′, R′′) such that
R′′ = R′, A′′ ⊆ A′ (in cases A′ \ S = ∅ and |A′ \ S| = 1, we have A′′ = A′)
and it holds that |A′′ \S| ≤ 1. Let X = {a ∈ A |R−1(a) = ∅}. As (A′, R′) is
an answer to QReins1 , by Def. 13, we know that R′ = ∅ and S∩X ⊆ A′ ⊆ X.
But R′′ = R′, so R′′ = ∅, A′′ ⊆ A′, so A′′ ⊆ X and since x ∈ A′ \ S,
S ∩ X ⊆ A′′. In addition, if (A′ \ S) ∩ X = ∅, then (A \ S) ∩ X = ∅ by
Def. 13, but A′′ ⊆ X, so we have (A′′ \S)∩X = ∅ as well. Thus, by Def. 13,
(A′′, R′′) is an answer to QReins1 . Moreover, we know that |A′′ \S| ≤ 1, so by
Lem. 8, (A′′, R′′) is a minimal answer to QReins1 . So AlgReins1 is sound.

By Lem. 8, we know that |A′′ \ S| ≤ 1. AlgReins1 begins by computing
(A′, R′) = GReins1(S) which, by Prop. 4, is a maximal answer to QReins1 .
Since (A′′, R′′) and (A′, R′) are both answers to QReins1 , by Def. 13, we know
that R′′ = ∅ = R′. In addition, by Th. 9, we know that (A′′, R′′) ⊆ (A′, R′).
Let X = {a ∈ A | R−1(a) = ∅} and (A′′′, R′′′) be the result computed
by AlgReins1 . In the case where |A′′ \ S| = 0, by Def. 13 we have (A \
S) ∩ X = ∅, and thus, A′ \ S = ∅. So, in this case, A′ = S ∩ X =
A′′. In addition, lines 2-5 are ignored and AlgReins1 computes (A′′′, R′′′) with
(A′′′, R′′′) = (A′, R′) = (A′′, R′′). In the case where |A′′ \ S| = 1, we denote
A′′ \ S = {x0}. Since (A′′, R′′) ⊆ (A′, R′), A′′ ⊆ A′ and so x0 ∈ A′. We
denote A′ \ S = {x0, x1, . . . , xn}. Obviously x← choose(A′ \ S) implies that
x ∈ A′\S. This would mean that A′\{x} ⊂ A′, and thus that |A′\{x}| < |A′|.
In addition, since x ∈ A′\S, |(A′\S)\{x}| < |A′\S|. Thus, lines 2-5 compute
(A′′′, R′′′) such that R′′′ = R′ = R′′ and A′′′\S = (A′\S)\∆ with |A′′′\S| = 1.
As we already know that R′′′ = R′′, we only need to find a set ∆ such that
(A′ \ S) \∆ = A′′ \ S. {x1, . . . , xn} is such a set. So AlgReins1 is complete.
• AlgReins2. It begins by computing (A′, R′) = GReins2(S) which, by Prop. 4
is a maximal answer to QReins2 . So, in particular, it is an answer to QReins2 .
Obviously x ← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it
implies that (x, y) ∈ R′. This would mean that R′−1(y) \ {(x, y)} ⊂ R′−1(y),
and thus that |R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute
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(A′′, R′′) such that, A′′ = A′, for some y ∈ R−1(R+2(S)) \R+2(S), R′′−1(y) ⊆
R′−1(y) (in cases R′−1(y) = ∅ and |R′−1(y)| = 1, we have R′′−1(y) = R′−1(y))
and it holds that |R′′−1(y)| ≤ 1. Thus, lines 2-7 compute (A′′, R′′) such that,
A′′ = A′ and for all y ∈ R−1(R+2(S)) \ R+2(S), R′′−1(y) ⊆ R′−1(y) and
|R′′−1(y)| ≤ 1. Let X = {(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)} and
Y = {(a, b) ∈ R | a ∈ S, b ∈ R−1(R+2(S))}. As (A′, R′) is an answer to
QReins2 , by Def. 14, we know that A′ = S ∪ R+2(S) ∪ R−1(R+2(S)) and
X ⊆ R′ ⊆ X ∪ Y . But A′′ = A′, so A′′ = S ∪ R+2(S) ∪ R−1(R+2(S)),
R′′ ⊆ R′, so R′′ ⊆ X ∪ Y , and as y ∈ R−1(R+2(S)) \ R+2(S) and x ∈ S, we
deduce that (x, y) ∈ Y \ X and so X ⊆ R′′. In addition, if R′−1(y) = ∅,
then y /∈ R+1(S) by Def. 14, but R′′ ⊆ X ∪ Y , so we have R′′−1(y) = ∅ as
well. Thus, by Def. 14, (A′′, R′′) is an answer to QReins2 . Moreover, we know
that for all y ∈ R−1(S) \ R+2(S), |R′′−1(y)| ≤ 1, so by Lem. 9, (A′′, R′′) is a
minimal answer to QReins2 . So AlgReins2 is sound.

By Lem. 9, we know that for all y ∈ R−1(R+2(S))\R+2(S), |R′′−1(y)| ≤ 1.
AlgReins2 , begins by computing (A′, R′) = GReins2(S) which, by Prop. 4 is a
maximal answer to QReins2 . Since (A′′, R′′) and (A′, R′) are both answers
to QReins2 , by Def. 14, we know that A′′ = S ∪ R+2(S) ∪ R−1(R+2(S)) =
A′. In addition, by Th. 9, we know that (A′′, R′′) ⊆ (A′, R′). Let X =
{(b, c) ∈ R | b ∈ R−1(R+2(S)), c ∈ R+2(S)}, Y = {(a, b) ∈ R | a ∈ S, b ∈
R−1(R+2(S))}, (A′′′, R′′′) be the result computed by AlgReins2 and consider
y ∈ R−1(R+2(S)) \ R+2(S). In the case where |R′′−1(y)| = 0, ∄(x, y) ∈ R′′

with x ∈ S. So, by Def. 14 we have y /∈ R+1(S), and thus, still by Def. 14,
R′−1(y) = ∅. So, in this case, R′−1(y) = R′′−1(y) and lines 3-6 are ignored.
Thus, lines 3-6 compute (A′′′, R′′′) such that A′′′ = A′ = A′′, R′′′ = R′

and so, R′′′−1(y) = R′′−1(y). In the case where |R′′−1(y)| = 1, we denote
R′′−1(y) = {x0}. Since (A′′, R′′) ⊆ (A′, R′), R′′ ⊆ R′, so x0 ∈ R′ and in
particular, x0 ∈ R′−1(y). We denote R′−1(y) = {x0, x1, . . . , xn}. Obviously
x← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it implies that
(x, y) ∈ R′. This would mean that R′−1(y)\{(x, y)} ⊂ R′−1(y), and thus that
|R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A′′′, R′′′) such
that A′′′ = A′ = A′′ and R′′′ = R′\∆ with |R′′′−1(y)| = 1. So, we only need to
find a set ∆ such that (R′\∆)−1(y) = R′′−1(y). {(x1, y), . . . , (xn, y)} is such a
set. So, using ∆ = {(x1, y), . . . , (xn, y)} in the second case, lines 3-6 compute
(A′′′, R′′′) such that A′′′ = A′′ and for some y ∈ R−1(R+2(S)) \ R+2(S),
R′′′−1(y) = R′′−1(y). As such, lines 2-7 thus compute (A′′′, R′′′) such that
A′′′ = A′′ and for all y ∈ R−1(R+2(S)) \ R+2(S), R′′′−1(y) = R′′−1(y). Since
X ⊆ R′′′ ⊆ X∪Y and for all y ∈ R−1(R+2(S))\R+2(S), R′′′−1(y) = R′′−1(y),
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we deduce that R′′′ = R′′ and so (A′′′, R′′′) = (A′′, R′′). So AlgReins2 is
complete.
• AlgCA. It begins by computing (A′, R′) = GCA(S) which, by Prop. 4 is a
maximal answer to QCA. So, in particular, it is an answer to QCA. Obviously
x← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it implies that
(x, y) ∈ R′. This would mean that R′−1(y)\{(x, y)} ⊂ R′−1(y), and thus that
|R′−1(y)\{(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A′′, R′′) such that,
A′′ = A′, for some y ∈ A \ S, R′′−1(y) ⊆ R′−1(y) (in cases R′−1(y) = ∅ and
|R′−1(y)| = 1, we have R′′−1(y) = R′−1(y)) and it holds that |R′′−1(y)| ≤ 1.
Thus, lines 2-7 compute (A′′, R′′) such that, A′′ = A′ and for all y /∈ S,
R′′−1(y) ⊆ R′−1(y) and |R′′−1(y)| ≤ 1. Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}.
As (A′, R′) is an answer to QCA, by Def. 15, we know that A′ = A and
R′ ⊆ X. But A′′ = A′, so A′′ = A and R′′ ⊆ R′, so R′′ ⊆ X. In addition,
if R′−1(y) ∩ S = ∅, then y /∈ R+1(S) by Def. 15, but R′′ ⊆ X, so we have
R′′−1(y) ∩ S = ∅ as well. Thus, by Def. 15, (A′′, R′′) is an answer to QCA.
Moreover, we know that for all y /∈ S, |R′′−1(y)| ≤ 1, so by Lem. 10, (A′′, R′′)
is a minimal answer to QCA. So AlgCA is sound.

By Lem. 10, we know that for all y /∈ S, |R′′−1(y)| ≤ 1. AlgCA begins by
computing (A′, R′) = GCA(S) which, by Prop. 4, is a maximal answer toQCA.
Since (A′′, R′′) and (A′, R′) are both answers to QCA, by Def. 15, we know
that A′′ = A = A′. In addition, by Th. 9, we know that (A′′, R′′) ⊆ (A′, R′).
Let X = {(a, b) ∈ R | a ∈ S, b /∈ S}, (A′′′, R′′′) be the result computed by
AlgCA and consider y /∈ S. In the case where |R′′−1(y)| = 0, in particular,
∄(x, y) ∈ R′′ with x ∈ S. So, by Def. 15 we have y /∈ R+1(S), and thus, still
by Def. 15, R′−1(y) = ∅. So, in this case, R′−1(y) = R′′−1(y) and lines 3-6
are ignored. Thus, lines 3-6 compute (A′′′, R′′′) such that A′′′ = A′ = A′′,
R′′′ = R′ and so, R′′′−1(y) = R′′−1(y). In the case where |R′′−1(y)| = 1, we
denote R′′−1(y) = {x0}. Since (A′′, R′′) ⊆ (A′, R′), R′′ ⊆ R′, so x0 ∈ R′ and
in particular, x0 ∈ R′−1(y). We denote R′−1(y) = {x0, x1, . . . , xn}. Obviously
x← choose(R′−1(y)) implies that x ∈ R′−1(y). In particular, it implies that
(x, y) ∈ R′. This would mean that R′−1(y)\{(x, y)} ⊂ R′−1(y), and thus that
|R′−1(y) \ {(x, y)}| < |R′−1(y)|. As such, lines 3-6 compute (A′′′, R′′′) such
that A′′′ = A′ = A′′ and R′′′ = R′\∆ with |R′′′−1(y)| = 1. So, we only need to
find a set ∆ such that (R′\∆)−1(y) = R′′−1(y). {(x1, y), . . . , (xn, y)} is such a
set. So, using ∆ = {(x1, y), . . . , (xn, y)} in the second case, lines 3-6 compute
(A′′′, R′′′) such that A′′′ = A′′ and for some y /∈ S, R′′′−1(y) = R′′−1(y). As
such, lines 2-7 thus compute (A′′′, R′′′) such that A′′′ = A′′ and for all y /∈ S,
R′′′−1(y) = R′′−1(y). Since R′′′ ⊆ X and for all y /∈ S, R′′′−1(y) = R′′−1(y), we
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deduce that R′′′ = R′′ and so (A′′′, R′′′) = (A′′, R′′). So AlgCA is complete.

The computation of minimal explanations thus relies on the computation
of maximal explanations, and the removal of some arcs (or arguments) in
them. The computation of maximal explanations is already known to be
polynomial (see [BDDLS22]). Moreover the complexity of the removal oper-
ation in the worst case is linear in the number of removed elements and this
number is either quadratic in the number of vertices in the graph when these
elements are attacks (so for any principle except the one for the first part of
reinstatement), or linear in the number of vertices in the graph when these
elements are vertices (for the first part of reinstatement). So globally, our
algorithms can be considered as computationally efficient.

6 Conclusion and Future Work

This paper has presented an extension of the work done in [BDDLS22] regard-
ing the Explanation Verification Problem (XVer). In particular, we defined
classes of answers to questions regarding the principles of abstract argumen-
tation semantics. We extended the results of [BDDLS22] to our classes,
providing ways of using them as explanations of argumentative results. In
addition, we studied these classes of explanations according to general prop-
erties such as maximality, minimality, emptyness and uniqueness. We showed
that the explanations studied in [BDDLS22] correspond to the maximal ex-
planations of our classes, thus providing a way to compute them using graph
operators. We also provided a way to compute minimal explanations from
the maximal ones, and proved this procedure to be sound and complete for
each class of explanation. A complete summary of the results is given in
Tab. 1. These results make an implementation of the proposed approach
ready to be done. From this implementation, like in any XAI approach, as
underlined by [ČRA+21b], an empirical evaluation should be conducted to as-
sess whether these visual explanations actually are helpful for human agents
to understand the answer to the Verification Problem. Such an evaluation
should be done in future work.

By defining classes of explanations, the system adapts to a wider set of
agents, be they human or artificial. This adaptation can go even further if
the question of the “realizability” of an explanation would be considered:
an agent may have in mind parts of an explanation (some arguments, some
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Principle π defined in
involved in:

link with specific
computation

[BDDLS22] explanations

CF Def. 11 Th. 1

P
ro
p
.
4

Lem. 1,

T
h
.
6,

7,
8,

9

AlgCF

P
ro
p
.
4,

5

Lem. 6

Def Def. 12
Th. 2, Lem. 2,

AlgDefProp. 2 Lem. 7

Reins1 Def. 13
Lem. 3,

AlgReins1Th. 3, 4, Lem. 8

Reins2 Def. 14
Cor. 1 Lem. 4,

AlgReins2Lem. 9

CA Def. 15
Th. 5, Lem. 5,

AlgCAProp. 3 Lem. 10

• Th. 1 to 5 and Prop. 2 to 4 establish links between our approach and
the approach described in [BDDLS22].

• Lem. 1 to 5 are dedicated to the characterisation of maximal explana-
tions. Lem. 6 to 10 are dedicated to the characterisation of minimal
explanations.

• Th. 6 is about emptyness. Th. 7 is about emptyness and uniqueness.
Th. 8 is about maximality and uniqueness. Th. 9 is about the link
between maximality and minimality.

• Prop. 4 is about the computation of the maximal explanations (using
a link with some results given in [BDDLS22]). Prop. 5 is about the
computation of the minimal explanations.

Table 1: Summary of the results
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attacks), but not a correct and complete explanation; determining whether
there exists such an explanation, and providing it, would ensure that an
explanation that suits best the agent would be provided. Classes of explana-
tions, by the wideness of the explanations that they propose, encourage the
feasibility of such an approach. In order to do so, a deeper investigation of
the inner structure of our classes of explanation, and more specifically of the
links that we think it could have with lattices, may be of help.

[BDDLS22] also proposed explanations to contrastive questions: general-
ising them to classes of explanations, following the approach presented in the
current paper, could be addressed. Extending XVer to additional semantics
(especially preferred and grounded) may also be considered.

In some cases, our notion of minimal explanations could be refined. Con-
sider for instance Fig. 1 and the question “Why is {b} not admissible?”. In
this case, when the explanation for the defence principle is built, all the at-
tackers of b in the initial framework must be considered (so the arguments c,
d and the attacks (c, b) and (d, b) belong to this explanation) whereas only
one would be useful for explaining that b is non defended, since neither c,
nor d are attacked. Thus, if we want to obtain such a minimal explanation,
we could consider either lifting some conditions in the definitions of our ex-
planations, or defining new classes dedicated to the case where a principle is
not respected by a set.

Finally, we plan to investigate more notions of Graph Theory in order
to provide other kinds of visual explanations. In particular, the notion of
graph isomorphism seems of great interest to us, especially to provide ways
of reasoning by association (explain a result via a structurally identical ar-
gumentation framework that the user already accepted).
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