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Abstract

Motivation: High-content imaging screens provide a cost-effective and scalable way to assess cell states across di-
verse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating
raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a
critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available
for the high-performance Julia programming language.

Results: Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative
morphological profiles in Julia. The package contains all the necessary data structures to curate morphological
measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and
permutation tests enable quantification of the significance of the observed changes despite the high fraction of out-
liers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a
bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging
screen, in which the morphological profiles prove to be informative about the compounds’ mechanisms of action
and can be conveniently integrated with the network localization of molecular targets.

Availability and implementation: The Julia package is available on GitHub: https://github.com/menchelab/
BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/
BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.fig
share.14784678.v2.

Contact: joerg.menche@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-Content Screening (HCS) enables profiling cellular phenotypes
across hundreds of thousands of conditions by combining

automated microscopy with advanced image analysis methods. HCS
thus represents a flexible and cost-effective solution for replacing
multiple specific assays (Chandrasekaran et al., 2020; Simm et al.,
2018; Way et al., 2021a), and has been widely adopted in both basic
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and applied research. Notable achievements range from drug discov-
ery (Chandrasekaran et al., 2020; Scheeder et al., 2018; Simm et al.,
2018) to the elucidation of combinatorial drug effects (Caldera
et al., 2019) and to ex-vivo drug–response screening in patients
(Snijder et al., 2017). Depending on the application, the analysis of
HCS experiments may involve a variety of tasks. For instance, one
might perform a classification task to infer the mechanism of action
of candidate drugs (Ando et al., 2017; Ljosa et al., 2013; Pawlowski
et al., 2016), compare cellular phenotypes in various conditions
(German et al., 2021; Gustafsdottir et al., 2013; Rohban et al.,
2017) or describe interactions between cellular perturbations
(Billmann et al., 2016; Breinig et al., 2015; Caldera et al., 2019;
Fischer et al., 2015; Heigwer et al., 2018). All these cases involve
numerous experimental and analytical steps.

A typical HCS experiment starts from preparing microplates
with cells subjected to various perturbations, such as different drugs,
and stained using standardized protocols, such as the Cell Painting
assay (Bray et al., 2016; Fig. 1a). These microplates are then imaged
using automated confocal fluorescence microscopy, resulting in a
large number of images. Each image is then analyzed to extract
quantitative morphological measurements that describe the respect-
ive cellular phenotype. Some tools are commonly used for this nu-
merical feature extraction step (McQuin et al., 2018; Pau et al.,
2010), and recent deep learning approaches attempt to replace
expert-curated measurements with data-driven discriminative fea-
tures (Ando et al., 2017; Lu et al., 2019; Pawlowski et al., 2016).

While the analytical tasks of HCS experiments vary between
applications, they involve common data normalization and filtering
steps, and guidelines have been proposed for computing informative
representations of cellular phenotypes, usually referred to as mor-
phological profiles (Bougen-Zhukov et al., 2017; Caicedo et al.,
2017). An analysis pipeline suitable to facilitate morphological
profiling should meet several criteria. First, it should be versatile, to
adapt to different HCS use cases and to cope with the diverse chal-
lenges inherent to such experiments (Boutros et al., 2015; Caicedo
et al., 2017; Chandrasekaran et al., 2020; Ljosa et al., 2013). These
challenges include technical problems such as blurred images, poorly
adherent cells, saturated pixels, staining artifacts and segmentation
mistakes. HCS studies need to address these frequent limitations, as
in some experiments most images are affected (Fig. 1b and c).
Second, the approach should account for background noise, inten-
sity bias and potential confounders, including plate layout and batch
effects. Third, the considerable heterogeneity of the morphological
descriptors needs to be handled. Cellular morphology might vary
greatly in the analyzed cell populations due to the experimental
setup, heterogeneous cell types or cell states, inconsistencies in per-
turbation efficiency, or when timing-dependent phenomena are
imaged as snapshots.

The few actively maintained HCS analysis tools attempting to
fulfill these needs include CellProfiler Analyst and its graphical user
interface, designed to handle CellProfiler measurements (Jones et al.,
2008; McQuin et al., 2018), as well as the general-purpose cyto-
miner and Pycytominer in the R and Python languages, respectively
(Becker et al., 2021; Way et al., 2021b). There are also packages
addressing similar challenges but focusing on other modalities
(which generally provide less spatial information or less throughput
than high-content imaging screens) such as the R packages
cellHTS2, optimized for measurements from plate readers (Boutros
et al., 2006), and more recently cytomapper for analyzing imaging
mass cytometry experiments (Eling et al., 2021). Despite the exist-
ence of these tools, HCS analysts still heavily rely on custom imple-
mentations of morphological profile curation for each study to
account for different imaging modalities and analytical goals
(Ziegler et al., 2021).

Julia is a high-performance, high-level open-source programming
language specifically designed for scientific computing and data sci-
ence (Bezanson et al., 2017). It is increasingly adopted by researchers
in bioinformatics and biomedical research (Roesch et al., 2021), with
applications ranging from protein sequence analysis (Zea et al., 2016)
to structural bioinformatics (Greener et al., 2020) and flux balance
analysis (Heirendt et al., 2017). Julia is also ideal for tackling the

challenges of morphological analyses, as they are both computational-
ly demanding and inherently high-level. In this article, we introduce
BioProfiling.jl, the first Julia library for efficient and convenient mor-
phological profiling that (i) handles noisy data through systematic fil-
tering and robust statistics, (ii) provides dedicated functions to
normalize data and mitigate layout effects and (iii) implements statis-
tical tests for quantifying the strength of morphological changes that
take the variability of morphological profiles into account. Our inte-
grated software solution is thus bridging the existing gap between ex-
perimental data and biological interpretation. Furthermore, we
conduct an image-based chemical screen to validate our approach and
characterize the morphological impact of compounds in U-2-OS cells.

2 Materials and methods

2.1 Package implementation and features
We created BioProfiling.jl, a package for the Julia programming lan-
guage that compiles over 30 methods and data structures for all
steps in assembling and curating morphological profiles. To enable
the bioimage analysis community to apply BioProfiling.jl to their
own data, a complete documentation and a set of notebooks repro-
ducing the analyses described in this paper are provided. In brief, the
whole process of morphological profiling is conceptually simplified
by defining an Experiment object that includes both quantitative
data and metadata in a tabular format, and methods able to interact
with these objects directly to curate, transform and visualize the cor-
responding profiles. After creating the Experiment object from a
table of morphological features, such as measurements obtained
from CellProfiler (McQuin et al., 2018) or activation values from a
deep neural network (Ando et al., 2017; Lu et al., 2019; Pawlowski
et al., 2016), one would typically filter entries (rows representing
biological units) and select features (columns representing phenotyp-
ic descriptors) with the Filter and Selector types, respectively.
Convenient shorthand is provided such as the NameSelector type to
select features based on their name rather than their values, or the
CombinationFilter type to join simple Filter objects with any logical
operator. The selected measurements can then be transformed with
the logtransform! and normtransform! methods, and decorrelate!
discards highly correlated measurements. The filtered Experiment
objects also support uniform manifold approximation and projec-
tion (UMAP) visualizations (Mcinnes et al., 2018) as implemented
in UMAP.jl. The resulting feature profiles can be visually inspected
by highlighting images and individual cells matching a Filter with
the diagnostic_images method, currently implemented for TIFF
images in any accessible folder. Up to three distinct files can be
specified to produce an RGB image. Finally, robust_morphologi-
cal_perturbation_value and efficient implementations of statistical
distances, described in detail below, are available for quantifying the
significance of morphological changes induced by a particular per-
turbation. Freely available from GitHub and the Julia package regis-
try under the MIT license, BioProfiling.jl is part of a growing open-
source software ecosystem ensuring that it stays flexible, maintain-
able and interoperable. To ensure its stability, the package is thor-
oughly validated with more than 120 tests, systematically run on
multiple environments using GitHub Actions for continuous integra-
tion. The total testing coverage is reported using Codecov. Together
with the simplicity of its design and properties of the Julia language
itself such as multiple dispatch, BioProfiling.jl can easily be extended
by users to address their specific use cases if they are not yet covered
by the features we implemented. Finally, we encourage such contri-
bution to be integrated and shared through pull requests on the
BioProfiling.jl repository.

2.2 Cell culture
We selected the U-2-OS cell line as it is morphologically expressive
and commonly used in HCS experiments (Gustafsdottir et al.,
2013; Rohban et al., 2017; Wawer et al., 2014). U-2-OS cells
(ATCC HTB-96) were cultured in high glucose Dulbecco’s modi-
fied Eagle’s medium (Thermo Fisher #11960044), 10% fetal bo-
vine serum (Sigma-Aldrich #F0804), 1� penicillin/streptomycin
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(Biowest #L0022-020) and 1 mM sodium pyruvate (Thermo Fisher
#11360070) and maintained in a humidified incubator (5% CO2,

37 �C).

2.3 Chemical screen
A total of 311 compounds were selected to cover a wide range of
biological processes and based on their propensity to impact cellular
morphology in in-house and published studies (Wawer et al., 2014).

A full list of the compounds and their concentration is provided in
Supplementary Table S1. Drugs were transferred to 384-well plates

(PerkinElmer #6057302) using a liquid handler, in which 32 di-
methyl sulfoxide (DMSO) wells were used as a reference to assess
the effect of the compounds as DMSO was used as solvent for the

chemical library. The positions of the compounds were randomized
on each plate while ensuring the presence of two DMSO control

wells in each row and of one to two in each column. Two drug
plates were seeded in 50ml of culture medium with U-2-OS cells at
750 and 1500 cells/well, respectively, and incubated at 37 �C with

5% CO2 for 72 h. Living cells were then washed three times with
phosphate-buffered saline (PBS) and stained for 10 min using
CellMask Orange Plasma membrane stain (Thermo Fisher

#C10045). Cells were washed three more times with PBS and fixed
with a solution of 4% Formaldehyde (Thermo Fisher #28908). After

washing three more times with PBS, cells were permeabilized with
50ml of permeabilization solution, consisting of PBS supplemented
with 0.1� saponin-based permeabilization solution (Invitrogen #00-

8333-56) and 5% fetal calf serum (Sigma #F7524), for 1 h. F-actin
was stained overnight with Phalloidin-488 staining solution (0.6 U/

ml in permeabilization buffer; Thermo Fisher #A12379). Nucleic
acids were stained with 30ml of 40,6-diamidino-2-phenylindoleDAPI
(DAPI, 5mg/ml in PBS, Thermo Fisher #D1306) for 10–20 min.

Finally, cells were washed three times with PBS and 50ml of PBS so-
lution was added per well. The entire surface of each well was

imaged (20 fields of view with a 20� magnification Long-Working
Distance (LWD) objective) on an Operetta High-Content Imaging
System (PerkinElmer) using three fluorescence channels to detect

DAPI (360–400/410–480 nm), Phalloidin (460–490/500–550 nm)
and CellMask (520–550/560–630 nm). All images are available

from FigShare (DOI: 10.1101/2021.06.18.448961).

2.4 Image analysis
We processed and analyzed microscopy images using CellProfiler
3.1.8 (McQuin et al., 2018), the full pipeline is available from
FigShare (DOI: 10.1101/2021.06.18.448961). In brief, the image
quality was assessed, the intensities were log-transformed, the illu-
mination on each image was corrected based on background inten-
sities before segmenting cell nuclei using global minimum cross
entropy thresholding. Two successive secondary segmentation steps
were performed using the propagation method (Jones et al., 2005)
and global minimum cross entropy thresholding first on the
CellMask then on the phalloidin channel to detect the cell bodies
surrounding each nucleus. Finally, measurements were acquired for
intensities in the nuclei and cytoplasms, granularity on all channels,
textural and shape features, intensity distributions and number of
neighboring cells <5 pixels away. This led to a total of 385 morpho-
logical features per cell.

2.5 Morphological profiling with BioProfiling.jl
All measurements were compiled for each cell in a BioProfiling.jl
Experiment object, and non-numerical and uninformative features
such as cell orientation were excluded from the profiles. We
designed four cell filters to exclude technical outliers such as poorly
segmented objects. Thresholds for the different filters were set by
based on the distribution of geometrical and intensity measure-
ments, so that extreme values would be discarded, while ensuring
that the filtered objects were indeed problematic via a systematic vis-
ual inspection with the diagnostic tools available in BioProfiling.jl.
These filters excluded cells with high CellMask to Phalloidin or
DAPI to CellMask segmented area ratios, with a low nucleus form
factor or with a high maximal CellMask intensity. From these cura-
ted measurements, we aggregated profiles for each field of view con-
taining three valid cells or more by taking the median value of all
cell-level values corresponding to each field of view, for each feature
individually. We then removed features which were constant across
all DMSO controls or over the complete plate, and log-transformed
the values to reduce the skewness of the distribution of some meas-
urements. To correct for plate effects and bring features to compar-
able scales, for each feature, individual field-of-view measurements
were centered and scaled based on the median and median absolute
deviation (MAD) of the control profiles in the same row or column,
as follows:

Fig. 1. HCS experiments require adequate analysis tools. (a) Standard analysis workflow of HCS experiments. (b) Quantification of imaging artifacts that may lead to biases in

HCS analyses in sample images from four published studies (Breinig et al., 2015; Caldera et al., 2019; Gustafsdottir et al., 2013; Rohban et al., 2017). (c) Examples of such

imaging artifacts. Boxes highlight regions of interest
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ŝx;y ¼
sx;y �median Sctrlx:y

� �

mad Sctrlx:y

� � ;

with sx;y being the initial value of a field of view in row x and col-
umn y for feature s, ŝx;y its value after correction, and Sctrlx:y

the set
of all values in control wells either in row x or column y. After this
transformation, a high feature spread corresponds to a large devi-
ation from the negative control profiles for some perturbations. We
then reduced redundancy in the profiles by ordering features by
decreasing MAD, which prioritizes features displaying changes com-
pared to controls, and sequentially removing features with a
Pearson’s correlation coefficient higher than 0.8 with any of the pre-
viously selected features. We obtained the list of most variable
selected features using to the most_variable_features method
(Supplementary Table S2). Lastly, we reduced the profiles to four
dimensions with UMAP (Mcinnes et al., 2018), aiming to preserve
the cosine distances between points, with min_dist set to 2 and all
other parameters left to default values. We also visualized the results
when no filters were applied using a two-dimensional UMAP
embedding with default parameters and projecting cell-level profiles
for all objects. We found several clusters driven by artifacts and bio-
logical outliers (Supplementary Fig. S1).

2.6 Hit detection with the robust Hellinger distance
BioProfiling.jl offers several statistical distances for quantifying the
significance of morphological changes in HCS. The Mahalanobis
distance takes the spread of the data in each dimension into account,
which can be useful to compare two experimental conditions as pre-
viously described (Hutz et al., 2013). We also implemented the ro-
bust Mahalanobis distance which does not get biased by outliers by
replacing the mean and covariance matrix by robust estimators of
location and dispersion obtained using the minimum covariance de-
terminant (MCD) algorithm (Cabana et al., 2019; Rousseeuw and
van Driessen, 1999). This approach was used previously in an HCS
analysis (German et al., 2021), yet without efficient, ready-to-use
implementation. In comparison, the profile curation could be twice
as compact when taking advantage of BioProfiling.jl’s logtrans-
form!, normtransform! and decorrelate_by_mad! methods. The
nearly 100 lines of code dedicated to the quantification of morpho-
logical activity could be reduced to a one-liner and significantly
accelerated thanks to parallelization and to the speed of Julia. This
could be achieved via a single call to the robust_morphological_per-
turbation_value method, thus avoiding the definitions of the MCD
computation, of the robust Mahalanobis distance, and of the permu-
tation scheme, as well as the aggregation of the results.

Note that the Mahalanobis distance is defined between a single
point and a distribution. The Hellinger distance generalizes this con-
cept for two distributions, by incorporating estimators of location
and scatter of two distributions, and is defined as follows:

H2 ¼ 1� det S1ð Þ
1
4 � det S2ð Þ

1
4

det Sð Þ
1
2

e�
1
8 l1�l2ð ÞT S�1 l1�l2ð Þ;

with S ¼ ðS1 þ S2Þ=2; where S1, l1, S2 and l2 are the covariance
matrices and means of the distributions 1 and 2, respectively. As for
the robust Mahalanobis distance, we can substitute the covariance
matrices S1 and S2 and the centers l1 and l2 using the MCD estima-
tors and thus define the robust Hellinger distance (RHD) that we
used to quantify the distance between DMSO controls and each
chemical perturbation. One requirement for the MCD computation,
and therefore for using the RHD, is to have twice as many measure-
ments per condition as dimensions. The filtering scheme described
above results in some field-of-view profiles being discarded in many
wells, yet most wells had more than eight valid fields of view. We
thus chose to work in a four-dimensional space in order to charac-
terize most treatments. To assess the statistical significance of these
values, we conducted a permutation test by shuffling the label of the
points (perturbation or control) and calculating again the RHD
5000 times, which formed a null distribution associated with an em-
pirical P-value. As the statistical power of this test depends on the

number of permutations, an empirical P-value of zero corresponds
to the case where no permutation led to a distance greater than the
one actually observed between profiles and can be interpreted as an
estimation of a P-value <1/5000. To accelerate this process, the per-
mutations were computed in parallel by distributing computations
on 16 threads. After Benjamini–Hochberg false discovery rate
(FDR) correction, we obtained a significance score coined the robust
morphological perturbation value (RMPV) and defined all com-
pounds with an RMPV<0.1, equivalent to an FDR cutoff of 10%,
as morphological hits. Of note, the list of hits (Supplementary Table
S1) was stable when doubling the number of permutations, showing
that the process converged correctly.

To compare our results with other approaches that could be
adopted with BioProfiling.jl, we quantified the Mahalanobis dis-
tance between the centroid (arithmetic mean of all points) and the
centroid of the DMSO controls, either from unreduced profiles or
after PCA transformation to two dimensions, which preserved
97.8% of the dataset variance. These distances were used in a per-
mutation test as previously described to obtain FDR-corrected P-
values describing how likely it is to observe such distances in the ab-
sence of a compound effect.

2.7 Morphological and network distances
We integrated morphological profile information with publicly
available data about each compound. First, we collected mecha-
nisms of action (MOAs) and molecular targets from the LINCS per-
turbation database (Stathias et al., 2020). We queried the
Application Programming Interface ( API) for exact name matches
or removed pharmaceutical salts or chirality when necessary to find
the correct compound. All annotations are presented in
Supplementary Table S1. In total, 141 compounds had known tar-
gets and 112 were annotated with one or several MOAs. In particu-
lar, 23 MOAs were associated with 2 or more compounds and
considered for downstream analysis. The largest changes induced
for several MOAs were obtained using the characteristic_features
method (Supplementary Table S3). To compare morphological pro-
files between pairs of MOAs, we projected the profiles of the 59 hit
compounds in four dimensions using UMAP and computed pairwise
RHDs as described above. The morphological distance between two
MOAs was then defined as the average pairwise distance between
compounds annotated to each MOA. We also obtained all human
protein–protein interactions (PPIs) from the HIPPIE database
(Alanis-Lobato et al., 2017), filtered out those with a confidence
score below 0.63 (median of the score distribution), and assembled
them into a PPI network. The conversion between gene symbols and
ENTREZ identifiers of the targets was done with MyGene.info (Xin
et al., 2016). We define the targets of an MOA as all known targets
of the hit compounds associated with this MOA. We then assessed
the network separation between the targets of each MOA using the
sAB score, which was previously found to be a good metric to study
disease module and drug module separation (Caldera et al., 2019;
Menche et al., 2015). The score is defined as

sAB ¼ lAB �
lAA þ lBB

2
;

where lAA and lBB are the means of the minimum shortest network
distances among the targets of MOA A and B, respectively, and lAB

is the mean of the minimum shortest distance between the targets of
MOA A and B.

2.8 Counting and classifying image artifacts
To quantify the prevalence of common imaging artifacts in HCS
experiments, we visually inspected images from published studies
deposited in the Image Data Resource (Breinig et al., 2015; Caldera
et al., 2019; Gustafsdottir et al., 2013; Rohban et al., 2017;
Williams et al., 2017). Depending on the study, we manually anno-
tated either all four fields of view from the wells A1 to A6 and B1 to
B6 (Breinig et al., 2015; Caldera et al., 2019) or all nine fields of
view from the wells A1 to A3 and B1 to B3 (Gustafsdottir et al.,
2013; Rohban et al., 2017). Artifacts included dye clots and
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precipitations, cells not properly attached to the substrate, and other
less frequent artifacts such as out-of-focus images or visible micro-
well edges. Despite only covering a fraction of each plate and includ-
ing parts of the well edge, where evaporation frequently leads to
altered phenotypes (Bray et al., 2016; Caicedo et al., 2017), this
sample demonstrates that there are many obstacles to overcome in
HCS analyses. The most common artifacts only affected a restricted
region of the image, suggesting that the unaffected parts of the
images could be informative nonetheless, and motivating the exten-
sive image filtering and quality controls performed in the respective
studies. Given the overall abundance of such artifacts, however, we
expect that a fraction of them will fail to be excluded and thus im-
pact the image analysis and lead to outlier measurements. The issue
was also present in the experiment we conducted, as artifact and
outlier clusters were observed in the absence of filtering
(Supplementary Fig. S1).

2.9 Profiling overexpression in Cell Painting

experiments
We used a dataset from the Cell Painting Image Collection, a re-
source made publicly available under the CC0 1.0 license for the
CytoData Hackathon 2018 and compiling several HCS experiments
(Caicedo et al., 2018). We retrieved CellProfiler measurements
aggregated per well from two plates in an experiment characterizing
the overexpression of 135 genes in A549 cells using the Cell Painting
assay (Bray et al., 2016), identified as ‘BBBC041-Caicedo’. From the
untransformed measurements, we filtered out metadata and features
related to object localization, excluded genetic targets with less than
four replicates per plate, log-transformed the data and decorrelated
the features by decreasing MAD as previously described. Finally, we
reduced these profiles to two dimensions using UMAP, with the
spread parameter set to 10 and other values left to default. The pro-
cess was repeated independently for both plates, resulting in two
sets of selected features and two distinct UMAP embeddings.

3 Results

3.1 Profiling chemical perturbations with BioProfiling.jl
We conducted and analyzed a chemical HCS experiment to study
the morphological effect of small molecules in human osteosarcoma
cells and demonstrate the applicability of BioProfiling.jl. In brief, we
selected 311 compounds at a single concentration based on their
morphological activity, and on their wide range of MOAs and dis-
ease associations. U-2-OS cells were seeded on top of drug plates,
and were fixed and stained to display nuclei, F-actin and total pro-
tein. Fluorescence images were acquired at a 20� magnification
(Fig. 2a). The images were analyzed with CellProfiler (McQuin
et al., 2018) and morphological descriptors were measured for each
cell. These measurements were imported in Julia and used to define
an Experiment object to be processed with BioProfiling.jl (Fig. 2b).
Two Jupyter notebooks enable the reproducibility of the following
morphological profiling analysis (see Availability and implementa-
tion). First, filters are iteratively defined to identify cellular outliers
based on extreme values. For instance, cells with unusually large
cytoplasms compared to their nuclei were likely to be missegmented
and therefore excluded (Fig. 2c). After aggregating the profiles per
image and discarding the least informative features for characteriz-
ing chemical effects compared to DMSO controls, we reduced the
dimensionality of the profiles to four dimensions using UMAP
(Mcinnes et al., 2018). The most discriminative measurements con-
tained various descriptors of both nuclei and cytoplasm, as well as
intensities of all dyes, suggesting that all aspects of morphology con-
sidered in our study were relevant (Supplementary Table S2). These
features formed a morphological space in which the profiles of some
compounds, such as Vinblastine (tubulin inhibitor) and Wiskostatin
(actin polymerization inhibitor) but also Pentamidine (antifungal
agent), were clustered away from images of DMSO treatment
(Fig. 2d and Supplementary Fig. 2a). Using the dedicated methods
for quantifying the significance of statistical distances implemented

in BioProfiling.jl, we identified 248 compounds with a significant
morphological activity compared to DMSO controls in a plate
seeded with 750 cells per well (Fig. 2e) with an FDR of 10%, coined
morphological hits. In comparison, 242 hits were identified in a
denser plate seeded with 1500 cells (Supplementary Fig. 2b). Of
note, the seeding density had only a minor impact on whether com-
pounds were identified as hits or not (Supplementary Fig. 2c). The
hits on the two plates showed a large and highly significant overlap
given the total number of tested compounds (Jaccard index of 0.78;
v2 test of independence: P¼1.5e�13). This observation also held
true for a more stringent FDR of 5% (Jaccard index of 0.73; v2 test
of independence: P¼9.0e�13).

3.2 Investigating curation strategies
The curation of these profiles exemplified a particular set of meth-
odological choices adapted to the specific experimental dataset at
hand. BioProfiling.jl does not enforce any single approach and other
options could be considered at all steps, from feature selection to
dimensionality reduction and quantification of profile distances. As
a comparison, we also used one of the other implemented distance
metrics, namely the Mahalanobis distance between the center of a
perturbation’s profiles and the refence profiles. When no dimension-
ality reduction was applied, we observed that all profiles were sig-
nificantly distant from the DMSO. This reflects one consequence of
the curse of dimensionality, namely that pairwise distances tend to
be similar in high-dimensional spaces (Supplementary Fig. S3a).
Using PCA in a strategy analogous to the mp-value (Hutz et al.,
2013), we obtained a space where the first axis explained the major-
ity of the data variance, but still displayed some compound cluster-
ing (Supplementary Fig. S3b). When comparing the hits obtained
with this approach to the initial hit list obtained with UMAP and
the RHD (Supplementary Fig. S3c), we observed a partial but sig-
nificant overlap (Jaccard index of 0.23; v2 test of independence:
P¼1.5e�13). The hits obtained with PCA were only a subset of the
hits initially obtained, suggesting that certain morphological changes
can be better detected using nonlinear dimensionality reduction
techniques. Overall, the choice of methodology has a considerable
impact on which perturbations are identified as morphologically ac-
tive, and consequently on all downstream analyses.

Note that BioProfiling.jl is not only versatile in respect to the
profiling approaches, but also supports multiple experimental setups
and data types, as any tabular data compatible with the common
DataFrame structure can be used as input to define an Experiment
object. We provide one additional example from a publicly available
dataset using the Cell Painting assay (Bray et al., 2016) to character-
ize overexpression constructs. By curating and representing profiles
for two plates, we observe a visible clustering for some target genes
(Supplementary Fig. S4a and b). Overall, comparing the RHD of
each target to non-targeting controls correlates well across plates
despite processing both plates independently (Supplementary Fig.
4c), which supports the robustness of the chosen approach.

3.3 Exploring MOAs of active compounds
We next went on to characterize the compounds with a strong mor-
phological impact identified on the plate seeded with 750 cells per
well using the approach relying on UMAP reduction and RHD.
Among the wide range of MOAs covered by the library, 10 hit com-
pounds were known Dopamine receptor antagonists, six hit com-
pounds were annotated to Calcium channel blockers and six to
Adrenergic receptor antagonists (Fig. 3a). In this experiment, some
MOAs were likelier than others to induce morphological changes,
often in accordance with their biological role. In particular, all
Tubulin inhibitors caused cytoskeletal defects and were identified as
hits. In contrast, only half of the Topoisomerase inhibitors, which
modulate DNA replication and transcription and are more likely to
impact cell shape indirectly, if at all, were found to modulate the
morphology. We note the presence of many oncological and chemo-
therapeutic agents (PDGFR receptor inhibitors, Topoisomerase
inhibitors, KIT inhibitors, Tubulin inhibitors) and neurological
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drugs (Dopamine receptor antagonists, Tricyclic antidepressants,
Norepinephrine reuptake inhibitors) among the morphological hits.
Cell shape indeed plays an essential role in cancers, as cancerous
cells are typically diagnosed by pathologists based on their morph-
ology. Cell proliferation and several signaling pathways are also
associated with cell geometry (Aragona et al., 2013; Dupont et al.,
2011; Sero et al., 2015). Some compounds used to treat neurological
disorders were also previously reported to induce morphological
changes (Wawer et al., 2014), yet the mechanisms linking morph-
ology and disease phenotype are still to be uncovered.

3.4 Integrating target properties and morphological

profiles
We also compare effects between compounds to further exploit the
richness of the morphological profiles. We quantified the similarity
between the morphological impact of MOAs by aggregating the
mean of the pairwise RHD between their respective hit profiles
(Fig. 3b). While each MOA had a distinct signature, Glycogen
synthase kinase inhibitors and CDK inhibitors were consistently
distant from all other MOAs, hinting that modulation of kinase
activity and cell signaling is likely to impact the cellular

Fig. 2. Robust cellular profiling with BioProfiling.jl characterizes the morphological diversity induced by pharmacologically active compounds. (a) Experimental setup of the

HCS experiment. Images are uncropped examples of untreated (top) and treated (middle) cells. (b) Computational workflow using BioProfiling.jl. Boxes are annotated with

the name of the notebooks with which to reproduce the analyses. (c) Example of images displaying cells kept in the analysis (left) or problematic cells discarded by one of the

quality-control filters (center, right). Cytoplasm and nucleus centers are marked with a white cross for each cell. (d) UMAP embedding preserving the cosine distance between

the morphological profiles aggregated per field of view in the plate seeded with 750 cells/well. Two out of four dimensions are represented. (e) RHD and RMPV (FDR-cor-

rected P-value) of each compound in the plate seeded with 750 cells/well compared to DMSO. Vertical dotted line indicates an FDR threshold of 0.1 and all compounds on its

left are defined as morphological hits

Fig. 3. Morphological profiling and data integration characterize compound MOAs. (a) Number of hits and total number of compounds for the most common MOAs in the

chemical library. (b) Dissimilarity of the molecular targets on a PPI network (sAB score, upper triangle) and of the morphological profiles (RHD, lower triangle) for the MOAs

with at least two hit compounds. (c) Relation between drug module separation (bins of sAB scores) and morphological distance (RHD)
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morphology in broad and distinctive ways as opposed to inducing
a particular cytoskeletal defect. The largest changes induced by
compounds of these MOAs were impacting shape, intensities and
distributions of multiple dyes (Supplementary Table S3). Of note,
Kenpaullone is both a CDK inhibitor and a Glycogen synthase kin-
ase inhibitor (Supplementary Table S1) which partly explains the
observations shared for both MOAs.

While the morphological profiles are informative by themselves,
they are best used by integrating additional information about the
perturbations they describe. Here, we used available information on
the targets of the compounds to contextualize their molecular envir-
onment within the PPI network. We quantified the network separ-
ation between the targets of different MOAs via the sAB score,
which was used previously to quantify the separation of disease and
drug modules (Caldera et al., 2019; Menche et al., 2015). A positive
score is associated with well-separated sets of nodes, whereas a
negative score corresponds to an overlap. We found that all the
strongest network overlaps between MOAs corresponded to shared
drug classes. Tricyclic antidepressants and Norepinephrine reuptake
inhibitors corresponded to non-selective monoamine reuptake inhib-
itors (ATC code N06AA). Serotonin receptor antagonists and
Dopamine receptor antagonists both included Antipsychotics (ATC
code N05A). PDGFR receptor inhibitors and KIT inhibitors were
annotated to the exact same compound, Imatinib mesylate,
Pazopanib and Sunitinib, which are all protein kinase inhibitors
(ATC code L01E).

When comparing morphological profiles, Histamine receptor
antagonists were close to many other MOAs and showed the most
striking similarities with selective serotonin reuptake inhibitors and
Norepinephrine reuptake inhibitors. All three affected primarily the
cell shape (Supplementary Table S3). Of note, Histamine receptor
antagonists displayed a consistent level of network similarity with
all other MOAs. The sAB values close to zero reflect in part the
spread of their 12 molecular targets on the PPI network, suggesting
that generic PPI alteration patterns may correspond to morphologic-
al effects that are distinctive, but not unique.

By comparing morphological distances to molecular network
separation, we observed that overlapping target modules are associ-
ated with more similar morphological profiles (Fig. 3c). The effect
does not fully explain morphological variability, which emphasizes
the presence of intermediate regulatory processes between genotype
and phenotype, and that the disruption of some biological processes
is not detectable with general cell shape descriptors as experimental
readouts. The quantification of morphological distances between
profiles based on the UMAP-reduced space also means that part of
the information contained in the original data is lost or distorted.
Future development of methodologies leveraging the manifold learn-
ed by the UMAP method without the need for an embedding in
Euclidean space will further alleviate this limitation. However, our
results so far already confirm that there is a general association be-
tween the PPI network neighborhood targeted by a compound and
their morphological outcome. This could be further explored to sys-
tematically link cellular morphology to function in health and
disease.

4 Discussion

HCS experiments offer a scalable and cost-efficient way to assess
multiple conditions in a single experiment with a rich cellular read-
out. Assembling morphological profiles to describe these experimen-
tal conditions is thus essential and requires dedicated tools for data
curation, feature selection, quality control, visualization and quanti-
fication of morphologically active perturbations. We implemented
these tools in a single open-source software with intuitive and flex-
ible data structures and syntax. We demonstrated by a concrete use
case how BioProfiling.jl enables new research and allows the explor-
ation of changes in cellular morphology by easing the analysis of
large high-content imaging screens.

As Julia is an efficient programming language and allows paral-
lelization of the computations, BioProfiling.jl can process large

datasets in a performant manner. The biggest limitation for analyz-
ing large experiments at the single cell level is currently the memory
usage, as the full set of morphological measurements needs to be

loaded, which can be an issue on personal computers. This may be
improved in the future by using lazy loading and allowing the user

to process the data by batches. In regard to profile interpretability,
BioProfiling.jl can help identify which features are varying the most,
rank features by absolute fold-change when comparing two condi-

tions, highlight correlated measurements and format the data for
other tools, for instance to represent the typical cell morphology in a

particular condition (Khawatmi et al., 2021; Sailem et al., 2015). Of
note, BioProfiling.jl offers a systematic way to define filters for data
curation and feature selection. This simplifies the automated defin-

ition of these steps and could contribute toward the future develop-
ment of data-driven feature engineering and machine-learning-

powered artifact removal techniques to further streamline the pro-
cess of morphological profiling.

BioProfiling.jl expands the existing landscape of resources avail-

able for biological data analysis, as illustrated in our application
where we processed morphological measurements so that they can

be integrated with PPIs as well as chemical annotations. The library
contributes to the growing package ecosystem for bioinformatics in
Julia (Roesch et al., 2021) which ensures that the morphological

profiling analyses can be combined in larger projects together with
other tasks ranging from sequencing to systems biology (Greener

et al., 2020; Heirendt et al., 2017; Zea et al., 2016), and other libra-
ries are conveniently available to integrate these different data types
(Zakeri et al., 2018). Julia’s interoperability with other program-

ming languages also makes the onboarding easy for users with prior
programming experience who, for instance, might prefer to perform

certain tasks in R or Python. This is demonstrated in the provided
Jupyter notebooks, with all plots being generated using R’s ggplot2
library (Wickham, 2016) and with the computation of the MCD

estimators for robust statistical distances which relies on R’s robust-
base package, which in turn calls efficient Fortran routines.

Despite being initially designed and extensively tested for mor-
phological profiling, the ability of BioProfiling.jl to handle large
high-dimensional datasets and provide dedicated robust normaliza-

tion and comparison methods could also be leveraged for other data
analyses such as single cell transcriptomics or metabolomics experi-

ments, which also require the curation and transformation of data
in tabular format.

To provide an exemplary full use case of the BioProfiling.jl pack-
age, we conducted and analyzed a chemical high-content imaging
screen for characterizing the effect of small molecules across diverse

MOAs. The compounds used in the screen were selected to cover a
wide range of morphological activity. While large-scale, hypothesis-

free screening of small molecules can offer an unbiased view of the
compound types that affect cellular morphology (Bryce et al., 2019;
Wawer et al., 2014), our library design enabled us to observe signifi-

cant changes induced by more than three quarters of the used com-
pounds. At the same time, the focused library design limits the

interpretation of MOA enrichment among hits. We observed both
commonalities and differences in the effects induced by different
MOAs, which alter cellular morphology via different molecular

changes, involving cytoskeleton, nucleus and protein relocation
(Supplementary Tables S2 and S3). The corresponding morphologic-
al profiles were further integrated with the information available

about the PPI network properties of the compound targets, which
proved to offer complementary views of compound effects and

emphasized the role HCS could play in unraveling the relationship
between cellular morphology and function.
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