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Abstract. The use of automated decision-making based on machine
learning algorithms has raised concerns about potential discrimination
against minority group defined by protected features such as gender,
race, etc. Particularly, in some areas with high social impact such as jus-
tice, job search or healthcare, it has been observed that using protected
feature in machine learning algorithms can lead to unfair decisions that
favor one group (privileged) over another group (unprivileged). In order
to improve fairness in decision-making with regard to protected features,
many machine learning approaches focus either on discarding the pro-
tected features or maintaining an overall accuracy performance for both
unprivileged and privileged groups. However, we notice that these ap-
proaches have limited efficiency in the case where the protected features
are useful for the learning model or when dealing with imbalanced data.
To overcome this limitation when dealing with such issues, we propose
in this work FAPFID, a fairness-aware strategy based on the use of bal-
anced and stable clusters. To do this, we divide our input data into
stable clusters (subgroups) while ensuring that privileged and unprivi-
leged groups are fairly represented in each cluster. Experiments on three
real-world and biased datasets demonstrated that our proposed method
outperforms state-of-the-art fairness-aware methods under comparison
in terms of performance and fairness scores.

Keywords: Decision Systems · Bias · Fairness · Machine Learning · AI

1 Introduction

Nowadays, machine learning-based decision support systems have become in-
creasingly automated while assisting human judgment with largely data-driven
decisions. Since these systems are data-driven, they can be applied in a wide
variety of applications such as transportation [30], recruitment or employment
screening [32], healthcare [13], finance [1] and many more. However, concerns
have been raised [42] that machine learning algorithms may lead to decisions
against certain groups defined by sensitives or protected features such as gen-
der, race, religion. In areas with high social impacts such as justice, risk as-
sessment, online purchase and delivery, loan application, there are already many



2 G. Dorleon et al.

cases [41,29,17,37] where discriminatory decisions have already been made against
minority or unprivileged group with harmful consequences. Basically, two majors
problems were identified [33,7] as the main cause of the unfairness in automated
decision-making: the uncontrolled use of protected/sensitive features and the
used of imbalanced datasets [23]. Protected or sensitive features, according to
[12], are features that are of particular importance either for social, ethical or
legal reasons when making decisions. According to [7], a dataset suffers from
class imbalance when there is significant or extreme disproportion between the
number of examples of each class in the dataset. By class in the dataset we
mean, in the context of supervised machine learning and with a classification
task in particular, the label or output we want to predict based on a set of
inputs values. Based on a protected feature such as gender, a privileged group
(male for example) would be more likely to receive an advantageous treatment
than the unprivileged group (here, female for example). Such a behavior is not
only undesirable but may have serious impact on the unprivileged group [34].

To this end, many machine learning approaches have proposed to help im-
proving fairness in decision-making systems in areas where automated decision-
making based on machine learning algorithms are used. Some of the proposed
machine learning approaches [11] for fairness improvement with regard to pro-
tected features tend to remove them prior the learning model in order to obtain a
fair outcome. However, while this strategy may work, we found that it is limited
and can lead to a significant performance loss in the case where protected features
are relevant for the learning task. Some other approaches [5,18] to improve fair-
ness also tend to focus on maintaining an overall accuracy for both privileged
and unprivileged. Again, we noticed that this strategy may not always work
when using data that suffer from class imbalance. It has been proved [43,16]
that overall accuracy is not always a good performance indicator when using
imbalanced dataset since it tends to favor the majority group over the minority.
Since most of fairness-related datasets suffer from class imbalance, addressing
fairness with regards to protected features in machine learning algorithm also
requires addressing the issue of imbalanced dataset.

Thus, in our work, we focused on these two issues, the use of protected
features and class imbalance, that directly impact performance and fairness of
machine learning algorithms. To this end, we propose FAPFID: A Fairness-aware
Approach for Protected Features and Imbalanced Data. Our method allows to
handle protected feature and class imbalance while ensuring an efficient and
fair model for decision-making involving machine learning algorithms. Using the
input dataset, our method creates a set of balanced and stable clusters while
ensuring that both privileged and unprivileged groups are fairly represented in
each cluster. Then an ensemble learning model is built upon the aggregated
balanced and stable clusters which allow to obtain a cumulative and fair model.

Our contributions in this work can be summarized as follows:

– We define a cumulative-fairness approach for dealing with protected fea-
tures in decision support, it is tested on a binary classification task using an
ensemble learning strategy.
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– The proposed approach is based on stable and balanced clusters, thus we
propose a clustering stability algorithm to this end.

– Our method takes into consideration protected features and class imbalance
while making fair decisions, so that the balanced-accuracy score remains
high.

– Our method to achieve fairness is based on Equalized of Odds as fairness
metric and it being tested on three real-world dataset suitable for fairness
study and is easily adaptable to any social decision problems with regards
to protected features and class imbalance.

The rest of this paper is organized as follows: in section 2, we summarize the
different existing methods to tackle the issues identified with their limitations.
In section 3, we introduce some basics concepts and definitions. We present our
new approach in section 4. The experimental results are described and analyzed
in section 5. Conclusions and future work are presented in section 6.

2 Related Work

Many existing work have proposed various machine learning methods to deal
with fairness issues related to the use of protected features and imbalanced
data [2]. Here we look at those existing methods under these two categories and
we also look at what previous work has defined in terms of fairness metrics.

Many definitions of fairness [39,14] have been proposed over the recent years.
Most of the recent proposed methods use fairness definitions such as demographic
parity [40,36,22]. This fairness metric suggests that a predictor is unbiased if the
prediction (ŷ) is independent of the protected feature such that positive predic-
tion rate between the two subgroups are the same. Other proposed methods have
instead used other fairness metric such as equalized odds [15,31,27]. Unlike de-
mographic parity, this fairness metric instead suggests that the true positive rate
and the false positive rate will be the same for both unprivileged and privileged
groups. However while each of these definition has merit, there is no consensus
on which one is consequently the best, and this issue is beyond the scope of
this article. Our goal is not to address the relative virtues of these definitions of
fairness, but rather to assess the strength of the evidence presented by a set of
subgroup that a model is unfair to a certain group based on a given metric and
the best possible trade-off between fairness and performance

For proposed methods that deal with fairness related to protected features,
we notice several approaches [25,24]. Particularly, we notice the work in [11,9]
where authors introduced naive approaches consisting of removing completely
all protected features of the dataset to ensure fairness. However, we notice that
these approaches may not solve the problem because there may be redundant
features or even proxies to the protected [38]. As underlined by [42], some features
known as proxies such as zip code, for example, can reveal the predominant
race of a residential area. Thus, this can still lead to racial discrimination in
a decision making problem such as loan application despite the fact that zip
code appears to be a non-protected feature. We also notice the work of [19]
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where authors introduced a framework that combines pre-processing balancing
strategy with post-processing decision boundary adjustment in order to deal with
fairness related to protected features and class imbalance. In the pre-processing
strategy, they created local subgroups where they performed random under-
sampling technique to guarantee equitable representation between minority and
majority groups. While this strategy may work on large datasets with thousands
of instances, we notice that it suffers from a performance loss when used on a
restricted dataset.

Given the limitations of the above approaches, there is a need for more in-
depth research to overcome these limitations. Thus, we propose FAPFID, a new
fairness-aware strategy that allows the obtaining of an efficient and fair models
with regards to protected features and imbalanced data. We would like to recall
here, as part of our approach, a given model is said to be ”fair”, or ”equitable”,
if its results are independent of one or more given features, in particular those
considered to be protected [28,21].

3 Basic Concepts and Definitions

In this paper, we consider an input dataset S =
(
Xm,n , Y1,n

)
that consists of

n observations and m features. Let f be a learning model and its performance
score f [S] which will be used to predict a binary output ŷ ∈ {0, 1}. Each sample
xi ∈ Xm,n is associated to a protected feature P , for simplicity we consider that
P is binary: P ∈ {P0 ,P1}. We consider P0 to be an unprivileged group and P1

a privileged group. For instance, P=‘gender’ could be the protected attribute
with P0 =‘female’, the unprivileged group, and P1=‘male’ the privileged one.
Likewise, we consider ŷ = 1 to be the preferred outcome, assuming it represents
the more desirable of the two possible outcomes.

Suppose for some samples we know the ground truth; i.e., the true value y ∈
{0, 1}. Note that these outcomes may be statistically different between different
groups, either because the differences are real, or because the model is somewhat
biased. Depending on the situation, we may want our estimate ŷ to take these
differences into account or to compensate them.

Choice of Fairness Metric: In this work, we have used Equalized Odds (EqOd)
as fairness metric since it is widely used and adopted by recent state-of-the-
art method and other methods. EqOd measures the difference of true classified
examples between privileged and unprivileged group in all classes [3]. That being
said, prediction ŷ is conditionally independent of the protected feature P , given
the true value y : Pr(ŷ|y, P ) = Pr(ŷ|y). This means that the true positive
rate and the false positive rate will be the same between the privileged and
unprivileged groups. To compute the difference between classified instances of
the two groups, EqOd is defined as follow:

EqOd = Pr(ŷ = 1|P1, y = yi)− Pr(ŷ = 1|P0, y = yi), yi ∈ {0, 1} (1)
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A fair value for this metric is between [−0.1, 0.1]. The ideal value of this metric
is 0. A value < 0 implies higher benefit for the privileged group and a value > 0
implies higher benefit for the unprivileged group.

Ensemble Learning Choice: We will use an ensemble learning strategy to help
obtaining a final model. Ensemble learning helps improving machine learning
results by combining several intermediate models. This approach allows the pro-
duction of better predictive performance compared to a single model. For our
ensemble learning strategy, we will use Bagging. Also known as bootstrap ag-
gregating, Bagging is the aggregation of multiple versions of a predicted model.
Each model is trained individually upon a subset, and combined using a major-
ity voting process. Thus, we believe using an ensemble learning is an efficient
technique to tackle imbalanced ratio towards protected feature as it divides the
learning problem into multiple sub-problems and then combines their solutions
(local models) into an final model. Intuitively, we found it easier to tackle the
problem related to fairness in the subset with locals models rather than in a
single and global model.

Fig. 1. FAPFID: the proposed approach with different steps

4 Proposed Approach

We introduce in this section our approach, shorten as FAPFID, to achieve fair-
ness as illustrated in Fig. 1. It works as follows: first the input data is divided
into K stable clusters by a clustering strategy; then we ensure that obtained
clusters are balanced with respect to the protected feature in each cluster. In
the case where some clusters are imbalanced, we apply an oversampling tech-
nique, SMOTE [6]. Then a final set of balanced clusters is constructed. The final
ensemble is then divided into bags where we apply an ensemble learning strategy,
Bagging. A learner is trained on each bag and then a final model is obtained by
majority vote. Below we describe each step.
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4.1 Stable Clustering

In this step, we use a strategy to ensure that the number of clusters that we
obtain are stable, i-e optimal. For this, we define a stability strategy to strengthen
our clustering solution.

Why stable clusters ? Obtaining stable clusters is useful to maintain a great
performance hence ensuring a reliable fairness. A stable clustering guarantees
a better homogeneity within clusters and ensure that the instances are really
in their respective clusters [8]. Thus, we establish a clustering stability strategy
based on K-means to avoid that wrongly clustered instances impact the balancing
strategy that we later perform. In order to guarantee the obtaining of stable
clusters, we define a statistical setup. Our stability strategy aims to provide
information on the variation of instances for different values of k between two
clusterings solutions of sub-samples of the same dataset. Thus, for each value of
k, we seek to obtain a stability rate by looking at the percentage of instances,
points or pairs of points on which the two clusterings agree or disagree. The
value of k whose instances variation percentage between the two clusterings is
closer to zero will be the one that guarantees the best stability, and therefore
the optimal value of k to choose.

Stability Strategy. Here we define our clustering stability approach which is
based on K-means. The generic clustering algorithm receives as input a dataset

S =
(
Xm,n , Y1,n

)
and an additional parameter K. It then assigns clusters to

all samples of S. The dataset S is assumed to consist of n samples 1, . . ., xn

that have been drawn independently from a probability distribution T on some
space X.
Assume we agree on a way to compute distances d(C, C ′) between clusterings
C and C ′. Then, for a fixed probability distribution T , a fixed number K of
clusters and a fixed sample size n, the stability of the clustering algorithm is
defined as the expected distance between two clusterings CK(Sz), CK(S′

z) on
different samples Sz, S

′
z of size z, that is:

Cstab(K, z) = d(CK(Sz), CK(S′
z)) (2)

Algorithm 1 below shows how we performed the stability analysis.
In line (8), since the two clusterings are defined on the same samples, then it is

straightforward to compute a distance score between these clusterings using any
of the well-known clustering distances such as the Rand index, Jaccard index,
Hamming distance, Variation of Information distance [26]. All these distances
estimate, in some way or the other, the percentage of points or pairs of points
on which the two clusterings Cz and Cz′ agree or disagree. In our experiments,
we have used the Jaccard Index Distance [35].
Jaccard Index Similarity. The Jaccard similarity is a measure of how close
two clusters, Cz, Cz′ are. The closer the clusters are, the higher the Jaccard
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Algorithm 1: Clustering stability algorithm

Input: a set S of samples, a clustering algorithm A, kmax clusters and zmax

samples.
Output: Optimal value of K

1 Begin
2 for k = 2 ... kmax:
3 Generate zmax subsamples Sz (z = 1, ..., zmax) of S
4 for z = 1 ... zmax:
5 Split Sz into k clusters Cz using A
6 end for
7 for z, z′ = 1 ... zmax :
8 Compute pairwise distance d(Cz, Cz′) using Jaccard index

distance(4)
9 Compute stability as the mean distance between clustering Cz and

Cz′ as: Cstab(k, zmax) =
1

z2max

∑zmax
z,z′=1 d (Cz, Cz′)

10 Choose the parameter K with highest Cstab

11 end for
12 end for
13 End

similarity. We can associate an actual distance measure to it, which is called the
Jaccard distance. The Jaccard similarity of two clusters Cz and Cz′ is given by:

SIM(Cz, Cz′) =
Cz ∩ Cz′

Cz ∪ Cz′
(3)

The Jaccard distance d(Cz, Cz′) is then given by (4) and, it equals 1 minus the
ratio of the sizes of the intersection and the union of the clusters Cz and Cz′ .

d(Cz, Cz′) = 1− SIM(Cz, Cz′) (4)

4.2 Balanced Check Ratio

The main goal here is to divide the clusters into balanced and imbalanced clus-
ters. We compute the ratio rp (5) between privileged and unprivileged instances
for each cluster:

rp =
privileged

unprivileged
(5)

Clusters with ratio rp ̸= 1 are considered to be biased thus are sent to the over-
sampling stage to be oversampled using SMOTE [6]. We qualify these clusters
as biased by the fact that the ratio rp ̸= 1 reflects the presence of the demo-
graphic bias between privileged and non-privileged instances (group imbalance).
We apply the SMOTE strategy in a different way of what have being used. In
the original paper where SMOTE has been introduced [6], it is applied glob-
ally to the minority class. However, SMOTE in our approach is only applied
to protected features label, that means our clusters are balanced towards the
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unprivileged and privileged group and not the class label. Once the imbalanced
clusters are oversampled, we construct a set of final balanced clusters that are
therefore aggregated into a final set from which bags will be created to train
different classification models.

4.3 Bagging

Estimating the number of bags b must be sufficient to construct enough learners,
since we consider each bag as a sample of the training data. To ensure that all
the clustered instances are at least in one of the bags, we estimate the number
of bags b as: b = 2K+1, K is the number of stable clusters obtained in 4.1 with
Algorithm 1. Since we will consider a classification task, the final model will be
chosen by a majority voting strategy.

4.4 Proposed Method

Using the basic concepts that we previously defined in section 3, the algorithm
defined below takes as inputs a clustering algorithm A, a set of samples S,
K number of clusters, privileged group P1, unprivileged group P0 and a base
classifier G. We start by initializing an empty set of balanced clusters M (2)
which later will contains the final balanced clusters as explained in 4.2. Then
split S into K clusters (the value of K is known for each dataset with algorithm
1) using A to obtain Ci, i = 1...K (3). For each Ci cluster, we compute the
imbalance ratio between privileged group P1 and unprivileged group (P0) of
clusters Ci. If the computed ratio is equal to 1, we add the current cluster Ci to
M (4-6), that means this cluster is balanced toward privileged and unprivileged
group. However, if the computed ratio is not equal to 1, we oversample the
current cluster Ci using SMOTE [6] to obtain a balanced cluster Cbal

i . We add
this balanced cluster Cbal

i to the final set M then we start over using a different
value of i(7-11).

Once we have used all the values of K and obtain our final list of balanced
cluster M , we create a balanced dataset X ′ from M (12). Then, we create b,
(b = 2 ∗K + 1), number of bags from X ′. For each bag X ′

j extracted from X ′,
we train a model using the base classifier G (14-16). The final output ensemble
model E is obtained by a majority vote over Gj (17).
After obtaining the final ensemble model E, we then compute the performance
scores based on accuracy and balanced-accuracy, and we compute the fairness
score using Equalized of odds (EqOd).

5 Experiment and Results

In this section we detail on the experimental approach, our goal, the learning
parameter, the dataset used, baseline and results.
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Algorithm 2: Pseudo-code of the proposed method

Input: a clustering algorithm A, S samples, K number of clusters, privileged
group P1 & P0, a base classifier G

Output: Ensemble Model E
1 Begin
2 M← { } //final set of balanced cluster
3 Split S into K clusters Ci, i = 1...K using A
4 for i = 1...K :
5 if rp Ci(P1)/Ci(P0) = 1:
6 M ← M ∪ {Ci}
7 else

8 Cbal
i ← SMOTE(Ci)

9 M ← M ∪ {Cbal
i }

10 end if
11 end for
12 Create X ′ from M
13 for j = 1...2K + 1 :
14 Extract boostrap sample X ′

j from X ′

15 Fit Gj(X
′
j)

16 end for
17 Output E : ensemble model of Gj

18 End

5.1 Goal

We carried out an experimental approach with the goals of i) comparing our
method FAPFID to existing methods of fairness [20,19,5] and ii) assessing the
impacts of the imbalance ratio between P0 and P1 on the performance of FAPFID
(section 5.7). In particular, for the first goal, the comparison was made based on
two criterion: performance and fairness score. For performance score, we have
used Accuracy and Balanced-Accuray. Accuracy summarizes the performance
of the classification task by dividing the total correct prediction over the total
prediction made by the model. It is the number of correctly predicted samples
out of all the samples. However, since all of the three datasets used are highly
imbalanced, we also use Balanced-accuracy [4] in order to shade more lights on
our model’s evaluation on imbalanced datasets compared to the Accuracy. It is
the arithmetic mean of the true positive rate for each class.

5.2 Learning, evaluation and parameters

To evaluate and compare the proposed method to existing methods, we pro-
ceeded to a learning task by considering a binary classification problem over
the three datasets that we described below in section 5.3. For this binary clas-
sification problem, Decision Tree is used as base classifier. This choice is made
in order to be consistent with the evaluation protocol for concurrent methods.
For training and testing, first we use the classic train-test split strategy with a
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70%-30% respectively then use k-fold validation on the train set, 2K + 1 folds
in total with K the number of clusters obtained for the used dataset. The folds
are made by preserving the percentage of samples for each class.

5.3 Datasets

To evaluate our method, we carried out experiments using three well-known
and real-world datasets [10]. They each contain known protected features, which
allowed us to evaluate our method on appropriate cases. These datasets were
chosen on the basis of the differences and the characteristics, i.e, number of
instances, dimensionality and class imbalance. These datasets also provide an
interesting benchmark, which is tough, for fairness evaluation as most of recent
proposed fairness approaches in the literature have used them. Moreover, they
facilitated our comparison with other competitors.

– Adult census income dataset [10] contains census data from the U.S whose
task it to predict whether someone’s income exceeds ”50K/yr”. After remov-
ing duplicate instances and instances with missing values, we ended up with
n = 45, 175 instances. Like our competitors, P = gender was considered as
protected feature with P0 = female and P1 = male. Ratio between unpriv-
ileged and privileged instances is 2.23 and 3.53 between classes.

– Bank dataset [10] is related to direct marketing campaigns of a Por-
tuguese banking institution with n = 40, 004 instances. The task is to deter-
mine whether a person subscribes to the product (bank term deposit). As
target class we consider people who subscribed to a term deposit. Again like
our competitors, we consider P = maritalstatus as protected feature with
P0 = married and P1 = unmarried. The dataset suffers from severe class
imbalance with global ratio between unprivileged and privileged instances of
2.13. Imbalance ratio between classes is 7.57.

– KDD census dataset [10] is basically the same with Adult census, however
the target field of this data, was drawn from the ”total person income” field
rather than the ”adjusted gross income” and, therefore, behave differently
than the original ADULT target field. This dataset is very skewed, the global
ratio between unprivileged and privileged instances is 1.09 . P = gender was
considered as protected feature with P0 = female and P1 = male like in
the other methods used for comparison. This is a very skew dataset in terms
of class imbalance, the ratio between classes is 15.11. More details on these
datasets are given in Table 1.

5.4 Experimental Baseline

We compare our approach to three other recent state-of-the-art proposed meth-
ods tackling the problem of imbalance and protected attributes with the aim of
improving fairness. The three other approaches used for comparison are:
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Table 1. Experimental Datasets used and characteristics. For each dataset, n instances:
number of instances of each dataset, m Features: number of features, P Feature: pro-
tected feature, P Ratio: ratio between privileged (P1) and unprivileged (P0) group of
the protected feature, Class Ratio: ratio between class label of the dataset

Adult Income Bank KDD Adult

n Instances 45175 40004 299285
m Features 14 16 41
P Feature Gender Marital S. Gender
Privileged Male Unmarried Male
Unprivileged Female Married Female
P Ratio 2.23 2.13 1.09
Class Ratio 3.53 7.57 15.11
Majority Label 1 1 1

– AdaFair [20]: This method is a fairness-aware boosting approach that adapts
AdaBoost to fairness by changing the data distribution at each round based
on the notion of cumulative fairness.

– Fairness Aware Ensemble (FAE) [19]: This strategy is fairness aware classifi-
cation that combines pre-processing balancing strategies with post-processing
decision boundary adjustment. They use a bagging approach to create sub-
datasets while handling the imbalance by an undersampling strategy.

– SMOTEBoost [5]: This is an extension of AdaBoost for imbalanced data
where new synthetic instances of the minority class are created using SMOTE [6]
at each boosting round to compensate the imbalance. This strategy does not
tackle the fairness problem, however we used its performance score to evalu-
ate fairness and see if by addressing only the imbalance between classes, the
fairness problem can be resolved.

5.5 Results Analysis

We present in the Tables 2, 3, 4 and 5 the results obtained with the different
methods. For every dataset, first, we present the result for our stability algorithm
that allows us to select the K numbers of stable clusters to use prior our learning
strategy. Secondly, for predictive performance, we report on Balanced Accuracy
(Bal. Acc.) and Accuracy, for fairness, we report Equalized of Odds (EqOd).

Cluster Stability. In Table 2 below, we report the results for our stability
algorithm, the value of K and the stability rate for each dataset. For Adult
Income dataset, the best and stable value for K is 4 with a stability rate of 93%.
This means, among all of possible values for K, we tried 12 values, K = 4 is the
one that allowed us to obtain more consistent and stable clusters. For the other
datasets, the respective stability rates are 90 and 93%
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Table 2. Cluster stability

Adult Income Bank KDD Adult

K Value 4 5 4
Stability Rate 93% 90% 93%

Adult Income Dataset. Performance results with the different approaches
for this dataset is presented in Table 3. For predictive performance, we can see
that three methods, our proposed one, AdaFair and FAE achieve the same and
highest performance score of 83% for Accuracy. However, like we stated above,
Accuracy is not as good when we are dealing with imbalanced data. Since this
dataset suffers from class imbalance, Balanced-Accuracy is the metric that will
tell us how good our model is in terms of performance score. For Balanced-
Accuracy, our proposed method outperforms our competitors with a score of
83% as the highest, then FAE and SMOTEBoost both with 81%. We notice
that our proposed method performance score is the same for Balanced-Accuracy
and Accuracy, this is meaningful since it highlights our strategy of balancing with
regards to the protected features in each subgroup prior training the classifier.
For fairness score, we see clearly that our proposed method has surpassed the
other three methods used for comparison. Our proposed method has the lowest
Equalized Odds score, 0.05 ( the lower the better for EqOd) following by AdaFair
with 0.08. In short, the proposed method outperforms our competitors on this
dataset in terms of Balanced-Accuracy and Fairness score.

Table 3. Adult Income: Predictive and Fairness performance, the best results are in
bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.83 0.78 0.81 0.81
Accuracy 0.83 0.83 0.83 0.80
EqOd 0.05 0.08 0.15 0.47

Bank Dataset. Performance results with the different approaches for this
dataset is presented in Table 4. For predictive performance, our proposed method
and SMOTEBoost achieve the same and highest performance score of 90% on Ac-
curacy. However, since we are dealing with imbalanced data, we look at Balanced-
Accuracy instead. For this, our proposed method achieves the highest score for
Balanced-Accuracy, 88% following by the others with a Balanced-Accuracy score
under 79%.
For fairness score, our proposed method has surpassed the other three methods
used for comparison since it has the lowest Equalized Odds score, 0.06 following
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by FAE and SMOTEBoost with -0.12 and 0.12 respectively, which based on the
definitions of Equalized Odds are not fair at all . Again, the proposed method
outperforms our competitors on this dataset in terms of Balanced-Accuracy and
Fairness score.

Table 4. Bank Dataset: Predictive and Fairness performance, the best results are in
bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.88 0.77 0.78 0.74
Accuracy 0.90 0.87 0.83 0.90
EqOd 0.06 0.27 -0.12 0.12

KDD Adult Dataset. Performance results with the different approaches for
this dataset is presented in Table 5. For predictive performance, we can see that
FAE achieves the highest performance score of 95% for Accuracy following by
SMOTEBoost, 94% then the proposed method, 92%. However, our proposed
method has the highest Balanced-Accuracy score, 91% which is the one we look
at if since this dataset is highly imbalanced. Despite the fact that FAE has the
highest Accuracy score, it fails to provide a great Balanced-Accuracy score, it
achieves the lowest score of 66%. That means, since this dataset is highly im-
balanced, FAE has a higher predictive rate for one group at the expense of the
other. FAPFID, our proposed approach instead, has a better fairness score, 0.01
which is the lowest here on this dataset.
In brief, FAPFID outperforms our competitors on this dataset in terms of
Balanced-Accuracy and Fairness score.

Table 5. KDD Adult: Predictive and Fairness performance, the best results are in
bold.

Score FAPFID AdaFair FAE SMOTEBoost

Bal. Acc. 0.91 0.84 0.66 0.76
Accuracy 0.92 0.86 0.95 0.94
EqOd 0.01 0.07 0.27 0.36

5.6 Discussion

The results on these three datasets show that our method performs well. Com-
pared to the three other fairness-aware methods for dealing with protected fea-
ture and data imbalance, we clearly see that our a method has a higher score for
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Balanced-Accuracy and the lowest score for fairness evaluation. Even in the case
where other methods achieve a higher or equal value for Accuracy, our method
still outperforms them in terms of Balanced-accuracy and fairness core (EqOd).
This is very interesting for handling social decisions problems guarantying a fair
outcome for different groups.

In general, on these 3 datasets, we get satisfactory results and we have main-
tained a good level of performance (Balanced-accuracy) and the best fairness
score (the lowest) in terms of Equalized of Odds.

5.7 Effects of Imbalance Ratio

The second goal of our experiments is to evaluate the effects of different im-
balance ratios on the performance. Our method is able to achieve efficient and
reliable results on the benchmarks datasets above. However, in this section, we
investigate the effects of imbalance ratio between privileged and unprivileged
group for a given dataset. The goal is to observe the evolution of performance
scores of the proposed method with regards to different imbalance ratio. Thus,
for a given dataset, we create 10 sub-samples where we maintain a fixed im-
balance ratio between privileged and unprivileged group, then we report the
balanced accuracy for these 10 sub-samples using box-plot.

Basically we proceed as follow: we consider a ratio of 40/60 between un-
privileged (P0) and privileged(P1) group and create 10 sub-samples, i-e, each
sub-sample is created with 40% of (P0) and 60% of (P1). We repeated this by
varying the ratio such that we obtain different imbalanced ratios between privi-
leged and unprivileged group. The different ratio that we used are: 30/70, 20/80,
10/90 and 1/99.

We report on Fig. 2 the results obtained with Adult Income dataset for
performance using Balanced-Accuracy.

As we can see, there is a huge difference between performance scores for different
ratio of imbalance. For an imbalance ratio of at least 20% (for P0), our method
still maintains a great averaged Balanced-Accuracy score of 80% at least. With
an imbalanced ratio of 10/90, our method suffers from a decreasing in terms
of Balanced-Accuracy. We also tested on an extreme case of imbalance ratio
between P0 and P1 :1/99 where we observed a performance loss. This is because
there are not enough P0 in the cluster so the oversampling method used, SMOTE,
can not generate as many meaningful samples for the under-represented group
P0.

We also report on Fig. 3 the results obtained with Adult Income dataset for
fairness using Equalized of Odds. For an imbalanced ratio between 20/80 and
40/60, we get satisfactory results in terms of fairness score with an average score
under 0.1 which acceptable for Equalized Odds. However, starting at 10/90 to
lower, our method has limited ability to maintain a high level of fairness on this
dataset due to the limitations of the oversampling method used and the lack of
data for the under-represented group. A limitation that we will later overcome
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Fig. 2. Effects of Imbalanced Ratio on Balanced-Accuracy

in our future work.

6 CONCLUSION

In this article, we have proposed a fairness-aware ensemble learning method
based on balanced and stables clusters. The proposed method achieves fairness
with regards to protected features and class imbalance while maintaining a great
performance score.
To do this, we divide the inputs dataset into stable clusters and ensure that
privileged and unprivileged groups are fairly represented in each clusters. To
obtain stable clusters, we introduce a stability clustering approach that helps
maintaining a better homogeneity within clusters. To ensure that privileged and
unprivileged instances are fairly represented in each cluster, we have used a
novel strategy where we compute a balanced ratio rate within cluster and apply
SMOTE only on clusters where the balanced ratio is ̸= 1.
The performance of our method was experimentally evaluated on three well
known biased datasets. Compared to three recent state-of-the-art fairness-aware
methods, we obtain satisfactory results and the proposed approach outper-
forms our competitors in terms of performance (Balanced-Accuracy) and fairness
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Fig. 3. Effects of Imbalanced Ratio on Fairness

(EqOd) scores. The comparative results obtained show our method’s effective-
ness in boosting fairness while maintaining a high level of performance.

For our future work, we will look forward to generalise our approach on datasets
that are not part of this benchmark and improve our model’s performance in
dealing with datasets that suffer from a high (10/90) imbalance ratio.

Source Code: The full source code including data of our experiments is avail-
able on GitHub under request.
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