
HAL Id: hal-03954432
https://ut3-toulouseinp.hal.science/hal-03954432

Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Development and Implementation of an ANN Based
Flow Law for Numerical Simulations of

Thermo-Mechanical Processes at High Temperatures in
FEM Software

Olivier Pantalé

To cite this version:
Olivier Pantalé. Development and Implementation of an ANN Based Flow Law for Numerical Simu-
lations of Thermo-Mechanical Processes at High Temperatures in FEM Software. Algorithms, 2023,
16 (1), pp.56. �10.3390/a16010056�. �hal-03954432�

https://ut3-toulouseinp.hal.science/hal-03954432
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Pantalé, O. Development

and Implementation of an ANN

Based Flow Law for Numerical

Simulations of Thermo-Mechanical

Processes at High Temperatures in

FEM Software. Algorithms 2023, 16, 56.

https://doi.org/10.3390/a16010056

Academic Editor: Xiang Zhang,

Xiaoxiao Li

Received: 16 December 2022

Revised: 10 January 2023

Accepted: 12 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Development and Implementation of an ANN Based Flow Law
for Numerical Simulations of Thermo-Mechanical Processes at
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Abstract: Numerical methods based on finite element (FE) have proven their efficiency for many
years in the thermomechanical simulation of forming processes. Nevertheless, the application of
these methods to new materials requires the identification and implementation of constitutive and
flow laws within FE codes, which sometimes pose problems, particularly because of the strongly
non-linear character of the behavior of these materials. Computational techniques based on machine
learning and artificial neural networks are becoming more and more important in the development
of these models and help the FE codes to integrate more complex behavior. In this paper, we present
the development, implementation and use of an artificial neural network (ANN) based flow law for a
GrC15 alloy under high temperature thermomechanical solicitations. The flow law modeling by ANN
shows a significant superiority in terms of model prediction quality compared to classical approaches
based on widely used Johnson–Cook or Arrhenius models. Once the ANN parameters have been
identified on the base of experiments, the implementation of this flow law in a finite element code
shows promising results in terms of solution quality and respect of the material behavior.

Keywords: ANN flow law; constitutive behavior; radial return algorithm; numerical implementation;
VUHARD ; GrC15; Abaqus Explicit

1. Introduction

Numerical methods for simulating the behavior of structures subjected to high ther-
momechanical loads, as in the case of the high-temperature forming of metallic materials,
are generally based on the use of commercial finite element (FE) codes, such as Abaqus, or
laboratory codes, such as DynELA [1]. These FE codes are based on two types of equations:
conservation equations and constitutive equations. If the first equations are well established
on the basis of physics and mechanics, it is not the same for the second type of equations:
the constitutive equations. Thus, in a general way, the conservation equations concern the
fundamental principles of physics, such as the mass conservation law, the momentum law
(fundamental equation) and the energy law (declined as the first and second principles
of thermodynamics). By themselves, these laws are not sufficient to describe the behav-
ior of a material or a structure subjected to thermomechanical solicitations because the
nature of the material’s behavior translated through the behavior laws is not included
in the system previously proposed. Therefore, for each type of material, it is necessary
to define behavior laws whose formulation is based on observation in order to describe
the behavior of this material under external forces. The quality and the accuracy of the
results of any numerical simulation depend on the choice of these behavior laws and on
the ability of the user to identify the coefficients of these behavior laws for a given material
by performing experiments under conditions close to those encountered during the real
stress of the structure in service that one wishes to design [2]. Depending on the nature of
the solicitations, these tests are based on quasi-static or dynamic tensile or compression
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tests, tests on thermomechanical simulators such as Gleeble [3] or impact tests using gas
launchers or Hopkinson bars [4].

In the thermomechanical simulation of forming processes, these behavior laws define
the dependence [5] of the flow stress of the material σy as a function of the three input
variables, which are the plastic strain εp, the strain rate .

ε and the temperature T of the
material, so that the general form of the flow law can be written with the following
expression:

σy = f (εp, .
ε, T) (1)

These laws, due to the nature of materials and the phenomena involved [6,7] (work
hardening, movement of dislocations, structural hardening, phase transformations, etc.) are
highly non-linear, and their validity is restricted to a certain range of strains ε, strain rates .

ε
and temperatures T. From the observations made, we can define two main classes of behav-
ior laws: the flow laws based on physics and the empirical flow laws. From the mechanics
of continuous media and experimental tests and depending on the materials used, several
flow models have been developed in the past, including the Johnson–Cook flow law [8,9],
the Zerilli–Armstrong flow law [10] and their respective derived forms [11–19], the Hansel–
Spittle [20,21] or the Arrhenius [22–24] flow laws, to name only a few of the most widely
used in the metal-forming processes at high temperature. As an example, and because
it is widely used in numerical simulation of metal forming processes, the equation that
describes the Johnson–Cook flow law [8] is given as follows:

σy =
(

A + Bεpn
)[

1 + C ln
( .

ε
.
ε0

)][
1−

(
T − T0

Tm − T0

)m]
, (2)

where A is the initial elastic limit of the material, B is the strain hardening coefficient, n is
the strain hardening exponent, and C and m are the material constants that describe the
strain rate hardening coefficient and the thermal softening coefficient, respectively. The
Johnson–Cook model is the most widely used because it is simple to identify and use and
has few parameters to determine [25,26].

Once the choice has been made concerning the type of flow law to be used for a
material, it is then necessary, from a set of experimental tests carried out in the laboratory
under conditions close to those of the structure in service, to identify the parameters of
these flow laws by machine learning methods based on approaches of minimization of
the calculated experiment. Therefore, the use of the Johnson–Cook flow law defined by
Equation (2) requires the identification of 5 material parameters.

The main problem that researchers are confronted with after the phase of realization
of the experimental tests concerns the choice of the flow law to use according to the
observations made on these test results. This choice of flow law is also restricted by the FE
code used and the availability of such flow laws. Thus, a user of the Abaqus FE code will
turn more particularly to a Johnson–Cook [8] flow law, where it is natively implemented
in this software. The choice of another form of flow law, Zerilli–Armstrong, or Arrhenius,
for example, obliges the user to program himself the computation of the flow stress σy of
the material through a VUMAT subroutine in FORTRAN 77 as proposed by Gao et al. [27],
Ming et al. [28] for a Johnson–Cook flow law, or Liang et al. [24] for an Arrhenius type flow
law with the following expression:

σy =
1

α(ε)
ln





(
Z(ε)
A(ε)

)1/n(ε)
+

√

1 +
(

Z(ε)
A(ε)

)2/n(ε)


 (3)

with

Z(ε) = .
ε exp

(
Q(ε)

RT

)
, (4)

where Z is the Zenner–Hollomon parameter [29], Q(ε) is the apparent activation energy
(J mol−1), R is the universal gas constant (8.314 J mol−1K−1). Q(ε), A(ε), α(ε) and n(ε) are
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expressed as a function of the strain ε through polynomial functions of degree m (varying
from 1 to 9), which leads to the identification of up to 36 material parameters.

Implementing the flow law as a VUMAT FORTRAN subroutine requires the com-
putation of the derivatives ∂σy/∂εp, ∂σy/∂

.
ε and ∂σy/∂T of the flow stress σy, which can

quickly become relatively complex as the complexity of the flow law increases, i.e., the
relative complexity of the Arrhenius flow law defined by Equations (3) and (4), regarding
the relative simplicity of the Johnson–Cook model defined by Equation (2), one can refer to
the work proposed by Liang et al. [24] for details concerning this implementation using the
safe version of the Newton–Raphson method proposed by Ming et al. [28]. The choice of
the flow law to use for a problem is therefore doubly guided by the behavior of the material
on the one hand, but a more important aspect is the list of flow laws implemented natively
in the FE code we plan to use for the numerical simulation. At this time, there is not yet
a flow law generic enough to cover a wide range of material behavior that is simple to
implement and use.

As we have seen in the previous paragraph, the choice of the flow law to use is guided
mainly by the list of flow laws available in the finite element code used, and very often,
this choice is made at the expense of the quality of the model. For example, Zhou et al. [14],
proposed the identification of the flow law of a GCr15 alloy for a continuous casting
bloom with heavy reduction application as introduced by Ji et al. [30], who performed
compression tests on this material. In their study, Ji et al. [30] performed compression tests
on GCr15 cylinders in a temperature range of 750 ◦C to 1300 ◦C in 50 ◦C steps, strain rates
of 0.001 s−1, 0.01 s−1 and 0.1 s−1 and strains up-to 0.7. The results of these compression
tests, plotted in Figure 1, show a decrease in flow stress σy with respect to an increase in
the temperature T and a increase of σy with respect to an increase in the strain rate .

ε, as in
most metallic materials.

Figure 1. Original data extracted from the publication of Ji et al. [30].

The evolution of the flow stress as a function of the plastic deformation shows the
presence of a dynamic recrystallization (DRX) phenomenon within the material. This phe-
nomenon is an additional non-linearity of this type of material compared to other materials,
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mainly because of high temperatures and low strain rates, which should be considered
when describing the material behavior. As stated in the publication of Zhou et al. [14],
depending on the flow model used—Johnson–Cook, modified Zerilli–Armstrong, Arrhe-
nius or new modified Johnson–Cook—the fidelity of considering the real behavior varies
widely with the complexity of the flow model, which includes between 5 parameters for
the Johnson–Cook model and 16 parameters for the Arrhenius model. Thus, and for the
input data provided by Ji et al. [30], the two most common models, Johnson–Cook and
Zerilli–Armstrong do not correctly describe the material behavior. Only the modified
Johnson–Cook and Arrhenius models can describe correctly the behavior of the material
during the compression process. Unfortunately, and this is not part of their study, if these
last two models are satisfactory from a theoretical point of view, from a practical point of
view for the user of a FE code such as Abaqus, it will be necessary to carry out a numerical
implementation in a FORTRAN 77 VUMAT subroutine of the modified Johnson–Cook
flow law or the Arrhenius law as carried out by a few authors [24,27,28] to use these
laws for numerical simulation. This requires a certain expertise in the development and
implementation of flow laws, which is not available to all users of the Abaqus FE code.

From this observation, and from the necessity to select a flow law for a type of
material, then to identify the parameters of this flow law according to experimental tests,
and finally to implement this flow law as a user subroutine in FORTRAN in the Abaqus
FE code, we recently proposed in Pantalé et al. [31] an alternative approach based on
the ability of artificial neural networks (ANNs) to behave as universal approximators as
reported by Minsky et al. [32] and Hornik et al. [33]. In fact, artificial neural networks can
solve problems that are difficult to conceptualize using traditional computational methods.
Unlike a classical approach based on a regression method, an ANN does not need to know
the mathematical form of the model it seeks to reproduce; hence, we do not need anymore
to postulate the mathematical form of the constitutive equation to use it in a FE simulation
using this kind of approach. Using a neural network instead of an analytical constitutive
law can lead to a bias related to the validity of the answers according to the domain of use
and the learning domain. Thus, if ANNs are efficient for the interpolation of results inside
the learning domain, their behavior outside of it is not controlled. Therefore, if the input
values are far from those provided during the training, the outputs can be far from the
physical reality of the process. It is, of course, the same for analytical laws when modeling
non-linear behavior, but if the choice of the model is made properly, based on physical
considerations, they will provide results closer to reality than the ANN model. Therefore,
care should be taken when using ANN-based flow laws, and the validity of the model
input data should always be verified.

Implementing ANNs for plasticity in thermomechanics has been studied, and a review
of the literature can be found, for example, in the work of Gorji et al. [34] concerning the
use of recurrent neural networks, in that of Jamli et al. [35] concerning their application in
finite element analysis of metal forming processes, or in that of Jiao et al. [36] concerning
the applicability to meta-materials and their characterization. A distinction must be made
between ANN-based flow models (the focus of this study) and ANN-based constitutive
models. Both approaches have been studied by many researchers during the last thirty
years. Ghaboussi [37] proposed an ANN-based constitutive model for concrete under
monotonic biaxial loading and cyclic uniaxial loading. They extended their work by
introducing adaptive and auto-progressive networks in [38,39], where the architecture of
the network evolves during the learning phase to better learn the complex stress–strain
behavior of the materials using a global load-deflection response, where the evaluation
of the flow stress of the material computed by the ANN is combined with a radial return
algorithm. Lin et al. [40] proposed an ANN to predict the flow stress of 42CrMo4 steel
in hot compression tests on a Gleeble thermomechanical device and showed a very good
correlation between the experimental results and the model predictions. Ashtiani et al. [41]
compared the predictive capabilities of an ANN versus an analytical model for Johnson–
Cook, Arrhenius, and strain-compensated Arrhenius laws and concluded that the neural
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network had better efficiency and accuracy in predicting the hot behavior of the Al–Cu–
Mg–Pb alloy.

The underlying idea proposed in our approach is to implement a flow law described
by a trained ANN as a FORTRAN 77 subroutine in the Abaqus FE code. This ANN was
previously trained from the data extracted from mechanical tests of the material and can
directly define the value of the flow stress σy as a function of the plastic strain εp, the strain
rate .

ε and the temperature T. After a training phase based on the use of the Python library
TensorFlow [42,43], the weights and biases of the trained neural network are transcoded
into a subroutine in FORTRAN 77, which is compiled and linked with the libraries of the
Abaqus FE code to include the behavior of the material by allowing the computation of the
flow stress σy as a function of εp, .

ε and T, and of its three derivatives ∂σy/∂εp, ∂σy/∂
.
ε and

∂σy/∂T.
The structure of this paper is as follows: Section 2 addresses the presentation of a

neural-network-based flow law and its training from the data proposed by Ji et al. [30] and
reported in Figure 1. The comparison of several neural network architectures regarding
accuracy and implementation complexity will be presented and compared. In Section 3, we
will present the transposition of this neural network into a FORTRAN 77 subroutine for
the Abaqus FE code. Validation is based on the numerical simulation Abaqus Explicit FE
code of a compression test in the same configuration as the one proposed by Ji et al. [30]
using four different ANN flow laws. In this Section, we will present the problems of over-
fitting the neural network and its visible consequences on the results concerning numerical
simulations. Finally, a conclusion and perspective section will conclude this paper.

2. Training of the ANN Flow Law

In this section, we briefly recall, as an introduction, some basic principles of artificial
neural networks that apply to this work. The global architecture chosen to model the
behavior of a material is based on a multi-layer feed-forward ANN, which, as proposed
by Hornik et al. [33], can be used as a universal approximator. The architecture retained
for this study concerns a neural network with two hidden layers containing a variable
number of neurons on these two layers, 3 input nodes corresponding to the plastic strain
εp, the strain rate .

ε and the temperature T, respectively, and a single output node for the
flow stress σy of the material. Figure 2 shows a graphical representation of the global
architecture of this neural network.

Figure 2. Global structure of the ANN flow law with two hidden layers, 3 input neurons (εp, .
ε, T)

and one output neuron σy.

The choice of the number of neurons in the two hidden layers is free, but must be
reasonable. Indeed, the more neurons the network contains, the more it will reproduce
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faithfully the training data, but the less it will generalize to new data (the classical problem
of the over-learning of neural networks). Moreover, the more neurons it contains, the more
complex its mathematical structure will be, and the more computation time it will require
for propagating the data inside of it within the routine included in the FE code. It is
therefore necessary to respect a balance between the capacity of the network to minimize
errors during the learning phase, its complexity and the computing CPU time once it is
transcribed into the FE code.

2.1. Neural Network Governing Equations

According to Figure 2, the proposed neural network has 3 inputs (referred as the
input vector −→x ) corresponding to the plastic strain εp, the strain rate .

ε and the temperature
T, respectively. These inputs are first normalized within the range [0, 1] to avoid an ill-
conditioning of the system as presented by many other authors in the literature [40,44]
since these three variables represent different physical data with very different amplitudes
(0.7 for the plastic strain, 100 s−1 for the strain rate and 550 ◦C for the temperature in the
case of the training data reported in Figure 1). Therefore, the three components of the input
vector−→x are coming from the plastic strain εp, the strain rate .

ε and the temperature T using
the following expressions:

−→x =





x1 = εp−[εp ]min
[εp ]max−[εp ]min

x2 = ln(
.
ε/

.
ε0)−[ln(

.
ε/

.
ε0)]min

[ln(
.
ε/

.
ε0)]max−[ln(.ε/

.
ε0)]min

x3 = T−[T]min
[T]max−[T]min

, (5)

where [ ]min and [ ]max are the boundaries of the range of the corresponding field. Concern-
ing the strain rate .

ε, and considering that its amplitude in a real case can reach 105 s−1,
as proposed in Pantalé et al. [31], we chose initially to substitute ln( .

ε/ .
ε0), with .

ε0 equal to
the lowest strain rate test, for the value of .

ε. After normalization, these three input variables
are introduced into the neural network and are propagated within it by the feed-forward
propagation mechanism.

Conforming to the structure of the ANN reported in Figure 2 any hidden layer k,
containing n neurons, takes a weighted sum of the outputs

−→̂
y (k−1) of the immediately

previous layer (k− 1), containing m neurons, given by the following equation:

y(k)i =
m

∑
j=1

w(k)
ij ŷ(k−1)

j + b(k)i , (6)

where y(k)i is the entry of the ith neuron of layer k, ŷ(k−1)
j is the output of the jth neuron of

layer (k− 1), w(k)
ij is the associated weight parameter between the ith neuron of layer k and

the jth neuron of layer (k− 1) and b(k)i is the associated bias of the ith neuron of layer k.
Those weights wij and bias bi, for each layer, are the training parameters of the ANN that
we have to adjust during the training process. For the proposed model, we selected the
sigmoid activation function so that each neuron in the hidden layer k provides an output
value ŷ from the input value y of the same neuron defined by Equation (6) according to the
following equation:

ŷ =
1

1 + e−y (7)

According to Equations (6) and (7), the output of each of the two hidden layers (−→y 1
for the first hidden layer and −→y 2 for the second hidden layer) are given by the following
two equations:

−→y 1 =
[
1 + exp

(
−w1 ·−→x −

−→
b 1

)]−1
(8)
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−→y 2 =
[
1 + exp

(
−w2 ·−→y 1 −

−→
b 2

)]−1
(9)

Then we compute the output s of the ANN from the output vector of the second
hidden layer −→y 2 using the following equation:

s = −→w T ·−→y 2 + b (10)

Finally, since no activation function is used for the output neuron of the ANN as is
usually done in regression ANN, the flow stress σy can be obtained from the output s using
the following equation:

σy = ([σ]max − [σ]min)s + [σ]min (11)

2.2. Computation of the Derivatives of the Neural Network

As introduced in Section 1, implementing a flow law in a FE code requires both the
computation of the flow stress σy as a function of the input data, performed using the
previous Equations (5)–(11), but also the evaluation of the three derivatives of σy with
respect to the input data to use a Newton–Raphson algorithm within the stress integration
scheme, as proposed by many authors [24,28,45,46] based on the radial return algorithm
in the Abaqus FE code. It is, therefore, necessary to perform a numerical evaluation of
these three derivatives based on the ANN to obtain these quantities. It seems obvious that
it is not possible to train a neural network to evaluate these values of derivatives insofar
as the training data are not physically collectible data during the experimental tests. It
is, therefore, necessary to predict these derivatives from the neural network architecture
itself. One straightforward, but not recommended, solution to this problem is to compute
numerically the derivative of σy with respect to εp, .

ε and T using the following relation:

∂σ(x)
∂x

=
σ(x + δx)− σ(x)

δx
, (12)

where δx is a small increase (δx = 10−6 for example) applied to one of the 3 variables εp, .
ε

and T. As reported in [31], we need to compute a result from the ANN 4 times to compute
the flow stress and approximate the three derivatives, which is quite time consuming.
The solution for this study consists, insofar as the architecture of the neural network is
known through Equations (6)–(10), in analytically deriving the output s of the network
with respect to the input −→x , then integrating the data normalization operations defined
by Equations (5) and (11). Given Equations (5)–(11), we can then establish in the case of a
neural network containing two hidden layers and a sigmoid activation function on the two
hidden layers that the derivative of σy with respect to the input data εp, .

ε and T is given by
the following procedure.

• First, we compute the internal terms of the ANN to compute the derivative of the
ANN with respect to the input vector −→x :





−→z 1 = exp
(
−w1 ·−→x −

−→
b 1

)

−→z 2 = exp
(
w2 · 1

1+−→z 1
+
−→
b 2

)

−→z 3 = −→w ◦
−→z 2

(1+−→z 2)
2

−→z 4 =
−→z 1

(1+−→z 1)
2

, (13)

where ◦ is the element-wise product, known as the Hadamard product, which is
a binary operation that takes two matrices A and B of the same dimensions and
produces another matrix C of the same dimension as the operands, where each
element Ci = Ai Bi.
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• Then, from the two terms −→z 3 and −→z 4, we can therefore compute the three derivatives
of the output s with respect to the input vector −→x with the following equation, where−→s ′ is a vector of 3 components containing the 3 derivatives ∂s/∂εp, ∂s/∂

.
ε and ∂s/∂T:

−→s ′ = wT
1 ·

[(
wT

2 ·−→z 3

)
◦ −→z 4

]
(14)

• Finally, from Equation (14) and conforming to the normalization of the inputs intro-
duced earlier, one can obtain the 3 derivatives of the yield stress σy with respect to the
three inputs εp, .

ε and T using the following final equation:





∂σ/∂εp = s′1
[σ]max−[σ]min
[εp ]max−[εp ]min

∂σ/∂
.
ε =

s′2.
ε
[σ]max−[σ]min
[
.
ε]max−[.ε]min

∂σ/∂T = s′3
[σ]max−[σ]min
[T]max−[T]min

(15)

Equations (13)–(15) define the derivatives of the yield stress σy with respect to εp, .
ε

and T, as computed by the ANN, and, as shown in [31], these derivatives can be used for
the numerical implementation of the ANN constitutive law in a FE code.

2.3. Training of the Neural Networks

In neural network learning, it is necessary to define the objective function to be
minimized and the evaluation of the model error. In this study, the error evaluation is
based on the mean square error (EMS) and the root mean square error (ERMS) given by the
following equation:

ERMS(MPa) =
√

EMS =

√√√√ 1
N

N

∑
i=1

(
□e

i −□y
i

)2
, (16)

where N is the total number of numerical training data used, □y
i is the ith value predicted

by the neural network, and □e
i is the corresponding experimental value coming from the

experimental tests. The accuracy and predictive ability of the models is assessed by the
mean absolute relative error (EMAR) defined by Equation (17):

EMAR(%) =
1
N

N

∑
i=1

∣∣∣∣∣
□y

i −□e
i

□e
i

∣∣∣∣∣× 100 (17)

The numerical implementation of the learning phase of the neural network was done
in Python language, using the TensorFlow library [42,43]. The minimization procedure
of the objective function is based on the use of the adaptive moment estimation (ADAM)
solver proposed by Kingma et al. [47].

The training data used in this section are taken from the publication of Ji et al. [30].
Thus, data for which compression tests were performed for the 3 strain rates .

ε = 0.001 s−1,
.
ε = 0.01 s−1 and .

ε = 0.1 s−1, and the 12 temperature values between 750 ◦C and 1300 ◦C in
50 ◦C steps are used. For each pair of data ( .

ε, T), we have a record of 71 values of flow stress
σe corresponding to values of deformation between 0 and 0.7, regularly spaced of 0.01. We
use a database of 2556 quadruplets of values (εp, .

ε, T, σe) for the training of the ANNs.
The set of these data is used as training data for the neural network. Several neural

network architectures have been studied in this work; they differ from each other by
the number of neurons present in the two hidden layers. Among them, we selected 4
different architectures named 3-7-4-1, 3-9-4-1, 3-9-7-1 and 3-15-7-1 for which the name
3-n-m-1 translates an ANN with 2 hidden layers, having n neurons on the first layer and m
neurons on the second layer.

All models have been trained for the same number of iterations (50,000 iterations),
and around 50 min of training on a Dell XPS-13 7390 laptop running Ubuntu 22.04 LTS
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64 bits with 16 GB of RAM and an Intel 4-core i7-10510U processor allow obtaining the
converged parameters of the ANN models. Figure 3 shows the evolution of the training
error defined by the log10 of the mean square error (log10[EMS]) during the training phase.

Figure 3. Convergence of the ANN models during the training phase.

As we can see on this figure, after 50,000 iterations, we can consider that we have
reached a stationary state of the model learning and that it is useless to continue the
learning phase. As expected, the more neurons the model contains, the more it can follow
the non-linear evolution of the material’s behavior and therefore the more the mean square
error (EMS) during the learning phase decreases. Table 1 shows the main results of the
training of these neural networks.

Table 1. Results concerning the training of the four ANN flow laws.

ANN nv t EMS EMAR ERMS
(min) ×10−5 (%) (MPa)

3-7-4-1 65 48 3.91 1.88 3.05
3-9-4-1 81 48 3.29 1.70 2.75
3-9-7-1 114 49 1.83 1.25 2.44
3-15-7-1 180 50 1.01 0.97 2.30

It can be noted that the number of internal variables nv of the networks varies from 65
to 180 for the most complex and the most powerful one, but that this complexity has no
real influence on the learning time t which oscillates around a value of 50 min, regardless
of the architecture chosen. Concerning the internal accuracy EMS of the network, it varies
in proportions in accordance with the graphical representation of Figure 3. From the
plot in Figure 3 and the results reported in Table 1, the user would normally be tempted
to select the most complex model, namely 3-15-7-1, as it gives the smallest deviation
between predicted and experimental values of flow stress σy. This will be analyzed in the
next section concerning the numerical simulation of the compression of a cylinder on the
Abaqus Explicit software using the ANN flow law.

Since, as reported in Figure 3, the 3-7-4-1 model seems to have converged after the
training phase, we are going to compare it with the ’accurate’ model, the 3-15-7-1 model.
From a more physical point of view, Figures 4 and 5 show the correlation between the data
predicted by the neural network and the experimental data for the 3-7-4-1 and 3-15-7-1
networks, respectively.
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Figure 4. Comparison of the flow stress σy predicted by the 3-7-4-1 ANN (continuous line) and the
experimental data for the GCr15 (square markers).

Figure 5. Comparison of the flow stress σy predicted by the 3-15-7-1 ANN (continuous line) and the
experimental data for the GCr15 (square markers).

Analysis of Figures 4 and 5 shows a very good correlation between the ANN results
and the experimental results, which is reflected by the very low values of the EMAR and
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ERMS coefficients reported in Table 1. As reported by Phaniraj [48], the correlation coefficient
(R) is generally not a good measure in our case of study because it only shows the correlation
of the model with respect to the data and not its accuracy, which is a determining factor in
the qualification of a model. Therefore, this type of coefficient is not used in this work for
comparing the different models.

Concerning the performance of the ANN flow laws, the correlation results for both
reported models, are much better than the ones obtained by Zhou et al. [14] during his
work on the same material with four different analytical flow laws, especially since he had
to split the data into two groups according to the temperature value (one on the range
T = 750− 850 ◦C and one on the range T = 850− 1300 ◦C) and to identify two sets of
parameters for each flow law to reduce the error of his identified analytical models. This of
course raises the question of the usability of those analytical laws where the temperature of
the material changes from one group to the other during a thermomechanical transformation.

In our approach and by using an ANN flow law, the identified law is not only valid
over the whole temperature range, but it displays a EMAR value 5 times lower than the
best flow law proposed by Zhou et al. [14]: the Arrhenius law with an EMAR = 3.74%
over the range T = 750− 850 ◦C and EMAR = 5.76% over the range T = 850− 1300 ◦C,
while the EMAR = 0.97% for the 3-15-7-1 and EMAR = 1.88% for the 3-7-4-1 ANN flow laws
proposed here.

The disadvantage of developing a flow law model based on neural networks is the
number of internal variables in the network (180 in the case of the 3-15-7-1 network), which
makes it difficult to translate the network into printable results. Using a Johnson–Cook-
type flow law, for example, allows the reader to quickly get an idea of the law, where the
analytical formulation of the law is known to the users, and the behavior of a material is
based on the knowledge of only 5 internal parameters to be identified, which makes it easy
to publish in a table. Concerning an Arrhenius law, this task becomes a little more complex,
as one can have from 24 to 36 coefficients. However, in our case, the publication of the 65
coefficients of the 3-7-4-1 model or the 180 coefficients of the 3-15-7-1 model makes this task
delicate. As an illustration, we provide in the Appendix A all the coefficients of the 3-7-4-1
model identified during this study.

Once the identification phase is complete, it is now necessary to transpose this ANN
model into a subroutine in FORTRAN or C++ that can be used by a FE code, such as
Abaqus (for the FORTRAN 77 version) or DynELA (for the C++ version not presented in
this paper). This is the main topic of the next section.

3. ANN Flow Law Implementation in FE Software

Once the neural network is trained as presented in Section 2.3, it can be used in a finite
element code for the numerical simulation of a structure subjected to thermomechanical
loading. This requires the extraction of the internal variables of the neural network and
their transfer as a subroutine in FORTRAN 77 based on equations proposed in Sections 2.1
and 2.2.

3.1. Implementation of the ANN Flow Law

If we refer to the general flowchart of a finite element code as shown in Figure 6,
integrating the flow law described by the ANN concerns the computation of the stress
tensor σ1 at the end of an increment, in the yellow rectangle on the figure.
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START

Figure 6. General flowchart of a FE code, focus on the stresses computation using an iterative solving
procedure.

Within the framework of a FE formulation in large deformations such as the one used
in thermomechanical modeling of processes, this computation of the stress tensor σ1 is to
be carried out on all the integration points of each element of the studied structure. Since
the numerical model can include thousands of elements, themselves comprising between 1
and 8 integration points depending on the elements used, this stress computation must
be as fast as possible in order not to increase the CPU time too much, but precise enough
so that the results are under the physics of the process. This is even more important if we
want to integrate this flow law in an explicit FE code, such as Abaqus/Explicit, for which
one second of physical simulation corresponds to several million iterations of these stress
computations. Thus, the complexity of the ANN, i.e., the number of computational steps
that must be performed to compute the flow stress as a function of the input variables,
is a major parameter in the choice of the neural network. As an example, for the model
presented in Section 2.3, 180 internal variables, 15 neurons on the first hidden layer and
7 neurons on the second hidden layer were listed. Given the equations described in
Sections 2.1 and 2.2, it will be necessary to compute 22 exponentials, to make matrix–vector
products of size 15× 3 and 15× 7 plus many other numerical operations to compute the
flow stress σy and the 3 derivatives of it with respect to εp, .

ε and T.
Implementing the ANN flow law identified above is realized here in a VUHARD

subroutine, similarly as proposed by van Rensburg et al. [49], used by the Abaqus Explicit
FE code in order to allow a user to program the computation of the flow stress σy and its 3
derivatives as a function of the model input data. This subroutine is used when calculating
the stress tensor σ1 at the end of an increment from the stress tensor at the beginning
of the increment σ0, the deformations, the material parameters and the history of the
deformation at each finite element integration points, according to the stress integration
algorithm based on the radial return method as described in Simo et al. [46] for the general
aspects, Ming et al. [28] for Abaqus Explicit FE code, or Pantalé et al. [1] for the DynELA
FE code. Thus, without going into too much detail about the stress integration scheme
used in finite element codes (the curious reader can refer to [1,24,28,45] for details about
this method), Figure 7 shows the location of the VUHARD subroutine used to compute the
flow stress σy and its derivative ∂σy/∂Γ used in the writing of the two quantities γ(Γ) and
γ
′
(Γ) used in the Newton–Raphson solving procedure from the following relation:

dσy

dΓ
=

√
2
3

(
∂σy

∂εp +
1

∆t
∂σy

∂
.
εp +

ησy

ρCp

∂σy

∂T

)
, (18)
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where Γ is the consistency parameter used in the radial return algorithm as defined by
Simo et al. [46], ∆t is the time increment, η is the Taylor–Quinney coefficient defining the
amount of plastic work converted into heat energy, Cp is the specific heat coefficient, ρ
is the density of the material and ∂σy/∂εp, ∂σy/∂

.
ε and ∂σy/∂T are the three derivatives

defined in Equation (15).

Start

Elastic predictor : str, σ tr
Γ = 0

σ tr > σ y No

Yes

ε p
1 = ε p

0 +
√

2
3 Γ

.ε1 = 1
∆t

√
2
3 Γ

Use the ANN to compute:
σ y; ∂σ y/∂ε p; ∂σ y/∂ .ε p; ∂σ y/∂T

dσy

dΓ =
√

2
3

(
∂σy

∂ε p +
1
∆t

∂σ y

∂
.
ε + ησ y

ρCp
∂σy

∂T

)

γ(Γ) = σ tr −
√

6GΓ− σ y

γ ′(Γ) = −
√

6G − dσy

dΓ
∆Γ = −γ(Γ)/γ ′(Γ)

Γ ← Γ + ∆Γ

∥∆Γ∥ < NRprec
No

Yes

s1 = str − 2GΓ str
∥σ∥

End

Figure 7. General flowchart of the radial return algorithm to compute the final stress tensor σ1.

3.2. Numerical Simulations and Benchmarks Tests

To validate the proposed approach and to compare the different neural network
architectures proposed in Section 2.3, we propose here to simulate on the Abaqus Explicit FE
code the high-temperature compression of a cylinder on a Gleeble-type thermomechanical
device. We consider a cylinder in compression with an initial diameter d0 = 8 mm and
an initial height h0 = 12 mm made of GCr15 material, for which the final height after
compression is h = 6 mm, which is a reduction of 50% of its total height. The compression
of the sample is done in 10 s so that the strain rate .

ε is in the corresponding range of the
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characterization of the material behavior defined by Ji et al. [30]. Concerning the flow
laws, the 4 models presented in Section 2.3 will be used and compared between them.
Unfortunately, it is not possible here to compare these results with the experimental results,
even if the initial shape of the specimen is the same, as these are not available in the
references of the work of Zhou et al. [14] or Ji et al. [30].

The mesh of the sample is made with 850 axis-symmetric quadrilateral finite elements
with 4 nodes and reduced integration (named CAX4R in the Abaqus software) with 50
elements in the vertical direction and 17 elements in the radial direction, respectively.
The cylinder is between two rigid surfaces, and the Coulomb friction law with a friction
coefficient at the contact surfaces was set to µ = 0.15. The simulation time being fixed at 10 s
in order to reduce the simulation time, considering that an explicit integration scheme is
used, a global mass scaling is used for all simulations. The VUHARD subroutine is compiled
using the GNU gfortran 11.3.0 and linked to the main Abaqus Explicit executable. All
benchmarks tests were solved using Abaqus Explicit 2022 on a Dell XPS 13 laptop running
Ubuntu 20.04 64 bits with 16 GiB of RAM and one 4 core i7-10510U Intel Processor. All
computations were performed using the double precision option of Abaqus, with parallel
threads execution on two cores.

Figure 8 shows the plastic strain field εp contourplot within the structure at the end of
the simulation for both the 3-7-4-1 (left side) and the 3-15-7-1 (right side) flow laws, while
Figure 9 shows the temperature field T contourplot for the same models.

(Avg: 75%)
PEEQ

+3.870x10-1
+4.338x10-1
+4.807x10-1
+5.275x10-1
+5.743x10-1
+6.212x10-1
+6.680x10-1
+7.148x10-1
+7.617x10-1
+8.085x10-1
+8.553x10-1
+9.022x10-1
+9.490x10-1

Figure 8. Equivalent plastic strain εp contourplot for the compression of a cylinder using the 3-7-4-1
(left side) and the 3-15-7-1 (right side) ANN flow laws.

(Avg: 75%)
TEMP

+7.717x10+2
+7.737x10+2
+7.758x10+2
+7.779x10+2
+7.799x10+2
+7.820x10+2
+7.841x10+2
+7.861x10+2
+7.882x10+2
+7.902x10+2
+7.923x10+2
+7.944x10+2
+7.964x10+2

Figure 9. Temperature T contourplot for the compression of a cylinder using the 3-7-4-1 (left side)
and the 3-15-7-1 (right side) ANN flow laws.

Both sides of the figures look more or less the same with some visible differences
from the left to the right concerning the shape of the isovalues zones and the maximum
value, but in fact, the two models with the lowest and the highest number of neurons give
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coherent results concerning for the plastic strain εp and temperature T contourplots. The
maximum plastic strains are concentrated in the center of the specimen with a maximum
value of εp = 0.89 for the 3-7-4-1 model and εp = 0.95 for the 3-15-7-1 model, which is
slightly beyond the limit set by the training data, which varies from 0 to 0.7. As shown by
Pantalé et al. [31], the flow laws defined by neural networks are able to correctly extrapolate
the flow stresses σy when the plastic deformations are higher than at least 150% of the
maximum plastic strain used during training. Concerning the temperature T, the maximum
value is around T = 795 ◦C and T = 799 ◦C, which is very close and in accordance to the
experiments used for the learning phase.

Figure 10 shows the evolution of the maximum radius r of the cylinder (measured at
the middle of the sample height) as a function of the vertical displacement of the top of
the cylinder.

Figure 10. Evolution of the external radius r of the specimen during the compression process using
the four ANN flow laws (only the 3-15-7-1 model differs).

This figure shows a slight difference of the four models during the numerical simula-
tion. In the rest of this section, the four models will be referred to as M1234. The final value
therefore differs from r = 5.870 mm for M1 to r = 5.917 mm for M34.

Table 2 gathers the results allowing the comparison of the four identified flow laws.

Table 2. Compression of a cylinder using the four ANN flow laws, results for the center element of
the structure.

Model ANN Ninc t r εp T σ
(s) (mm) (◦C) (MPa)

M1 3-7-4-1 1,367,147 886 5.870 0.891 794.74 161.95
M2 3-9-4-1 1,405,471 941 5.895 0.927 798.29 178.78
M3 3-9-7-1 1,408,680 1023 5.917 0.965 798.76 164.25
M4 3-15-7-1 1,418,586 1263 5.917 0.950 796.56 165.80

It appears from the study of this table that the modification of the number of neurons
in the hidden layers has an influence on the computation time t, which increases with the
complexity of the network structure as expected and varies within the range from 886 s to
1263 s approximately since this information is hard to capture from a commercial software
that does not contain accurate CPU time reports as the Abaqus software. It is obvious from
this table that all models do not give exactly the same results. The computing time increases
from M1 to M4, proof that the increase in complexity of the ANN has an influence on the
global computation time t.
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The results, both from the point of view of the dimensional characteristics of the
sample (maximum radius r), or the internal fields, such as the temperatures T and the
plastic strains εp and equivalent stresses σ in the center of the sample, are more or less the
same for all M1234 flow models.

To have a better analysis of the difference between models M1234, Figure 11 shows the
evolution of the equivalent von Mises stress σ for the element in the center of the cylinder
during the compression.

Figure 11. Evolution of the equivalent von Mises stress σ of the specimen during the compression
process using the four ANN flow laws.

As shown in this figure, the M1234 models give equivalent results with more or less
the same value of the equivalent stress σ at the end of the cylinder compression as shown
in Table 2. The appearance of the curve for the M3 and M4 models is very oscillating in the
first 1/3 of the graph. This is probably related to the fact that the M34 models are over-fitted
and cannot serve as a universal approximator for the flow stress.

To verify this assumption, Figure 12 shows a plot of the predicted flow stress σy using
the 3-15-7-1 ANN model as a function of the plastic strain εp and the plastic strain rate .

ε for
a fixed temperature T = 750 ◦C.

Figure 12. Predicted flow stress σy as a function of (εp, .
ε) for a fixed temperature T = 750 ◦C using

the 3-15-7-1 model.
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This figure shows that when .
ε varies between 0.001 s−1 and 0.01 s−1, and for a value

of εp < 0.3, the representative curves of σy ‘cross’ demonstrate the poor interpolation of the
flow stresses σy when the strain rate varies (there is a zone in black dashed lines above the
blue line). Thus, for a strain rate between 0.001 s−1 and 0.01 s−1, and for a plastic strain less
than 0.3, the flow stress σy is greater than the value of σy calculated for the same plastic
strain and .

ε = 0.001 s−1, which is physically not admissible for the behavior of GCr15
material. This causes the oscillations visible in Figure 11. For comparison, Figure 13 shows
a similar study to Figure 12 for the 3-7-4-1 model.

Figure 13. Predicted flow stress σy as a function of (εp, .
ε) for a fixed temperature T = 750 ◦C using

the 3-7-4-1 model.

This time, there is no visible area where the representative curves ’cross’, except
perhaps for low values of the strain, where it is hard to distinguish the curves.

This problem occurs for the 3-15-7-1 ANN because we do not have enough training
points regarding the strain rate .

ε (only 3 strain rates are used) regarding the number of
internal variable of the ANN, and this leads to erroneous calculations of the flow stress
σy when the strain rate values differ from those used during training (0.001 s−1, 0.01 s−1

and 0.1 s−1). Even though the M4 model has the lowest values of EMAR and ERMS during
the training phase, it is not usable for numerical simulation of the GCr15 flow law in FE
simulations. The same type of conclusions can be drawn for the M3 model.

We can conclude here that only the two first models M12 can be used for numerical
simulation of the compression of a cylinder, but we must avoid the models M34, as it seems
to be over-fitted, and the behavior of the GCr15 alloy is badly represented, even if the
curves reported in Figure 5 show that the prediction of model M4 is excellent.

4. Conclusions and Future Work

In this paper, a flow law based on an artificial neural network capable of predicting the
flow stress of a material as a function of input data, such as the plastic strain εp, the strain
rate .

ε and the temperature T, for a metallic material subjected to high thermomechanical
loading is presented.

From the equations that govern the writing of the neural network, the expressions of
the derivatives of the flow stress of the model as a function of the plastic strain εp, the strain
rate .

ε and the temperature T were established. These expressions allow the transfer of the
neural network behavior into a VUHARD subroutine written in FORTRAN 77 language to
allow the use of this network for the computation of the material flow stresses within the
Abaqus FE code.
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In a first step, data from the works of Ji et al. [30] and Zhou et al. [14], allowed to
train several architectures of the proposed model and to compare the results of these ANN
models regarding the fidelity of reproduction of the experimental behavior. The comparison
of the results obtained allowed to validate the approach and to show the superiority of
the ANN model compared to the analytical models based on Johnson–Cook or Arrhenius
flow laws, both in terms of the fidelity of the model and quality of the results. In a second
step, after transferring the training data to the VUHARD subroutines for the Abaqus FE
code, we showed the consistency and quality of the numerical results obtained during the
numerical simulation of the compression of a GCr15 alloy cylinder. In the same section,
we also discussed the problems of over-fitting the ANN when the number of neurons is
too large compared to the training data ranges. It is therefore important to always adjust
the structure and size of the neural network to the experimental data that we wish to
approximate to avoid this over-fitting phenomenon.

This work thus allowed to highlight the significant contributions of flow laws based on
neural networks in numerical simulation by finite elements on a commercial FE code, such
as the Abaqus software. The quality of the results obtained allows us to go further in the use
of the simulation results and in particular to consider that the results of these finite element
simulations can predict the phase transformations and the dynamic recrystallization within
the material during the thermomechanical transformation at high temperature.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
DRX Dynamic Recrystallization
CPU Central Processing Unit
FE Finite Element
VUMAT User subroutine to compute the stress tensor for Abaqus/Explicit
VUHARD User subroutine to compute the flow stress for Abaqus/Explicit

Appendix A. ANN Flow Law Coefficients

In order to complete this paper, we report here after the computing process and the
65 coefficients of the artificial neural network ANN-3-7-4-1 model used in Section 2.3. The
weight matrix for the first hidden layer w1 is a 7× 3 matrix:

w1 =




−0.4234 0.6361 −3.3756
0.9035 −2.0141 −85.3653
6.3799 −1.9357 −0.3671

−26.7227 0.9218 −2.5756
−0.7105 0.7599 11.5957
−0.4727 −18.4137 11.6583

3.4733 6.0173 −2.2098



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The biases of the first hidden layer
−→
b1 is a 7-component vector:

−→
b 1 =




1.1200
0.8351
−2.9032
−1.1547
−4.7023
−3.9429
−7.2849




The weight matrix for the second hidden layer w2 is a 4× 7 matrix:

wT
2 =




1.0488 −2.2694 4.7134 −8.6149
1.2225 1.7295 0.6877 8.2364
−0.9681 −16.4026 −1.9820 −0.2577
−2.2942 −7.3726 −14.0394 16.5637
−11.3020 −2.9066 −1.9601 0.3557
−35.7421 −3.0537 −1.8083 0.1603

0.9444 3.5816 0.4988 −0.6497




The biases of the second hidden layer
−→
b2 are a 4-component vector:

−→
b 2 =




−1.0302
−1.6695
−1.6705

1.7122




The weight vector for the output layer −→w is a 4-component vector:

−→w =




0.6684
3.0013
0.1998
−0.1879




The bias of the output layer b is a scalar:

b = 0.1631

The boundaries of the range of the corresponding field are as follows:

• εp∈ [0.0, 0.7]
• .

ε∈
[
0.001 s−1, 0.1 s−1]

• T∈ [750 ◦C, 1300 ◦C]
• σ∈ [3.052 MPa, 306.096 MPa].

The reference strain rate is .
ε0 = 0.001 s−1.
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