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Abstract

The control of inverters has degrees of freedom that opens the way to improve the output harmonic spectrum. Numerous works
dealing with this objective have been proposed in the literature particularly within the definition of switching angles. Among
them, the well known PWM techniques such as Quarter Wave Symmetry (QWS), Half Wave Symmetry (HWS) and Full Wave
Symmetry (FWS) are based on Optimal Pulse Patterns (OPP) computation using symmetries angles constraints. In this paper in
order to improve the harmonic quality, the symmetries angles constraints are not considered leading to a new OPP method: Phases
Symmetry Relaxation (PSR). To highlight the interest of the proposed PSR method, an evaluation in terms of Weighted Total
Harmonic Distortion (WTHD) is performed. Simulation and experimental tests are conducted in comparison with the well known
FWS, highlighting the interest of the proposed PSR strategy.

Keywords: Power electronics, Simulation and Experimental Model Validation, Optimization, Pulse Width Modulation, Optimized
pulse patterns, Phase symmetry relaxation.

Nomenclature

Acronyms & Notations

AC/DC Alternative/Direct Current

FWS Full Wave Symmetry

HWS Half Wave Symmetry

IGBT Insulated-Gate Bipolar Transistor

ObF Objective Function

OPP Optimal Pulse Patterns

PSR Phases Symmetry Relaxation

PWM Pulse Width Modulation
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QWS Quarter Wave Symmetry

SHEPWM Selective Harmonic Elimination PWM

SPWM Sinusoidal Pulse Width Modulation

SVM Space Vector Modulation

THD Total Harmonic Distortion

U.C. Under Constraints

WTHD Weighted Total Harmonic Distortion

Optimisation parameters and variables

αi Angle commutation number i

∆t Dead-time value

δtmin Minimum time gap between two switch-
ing

δθmin(ω) Minimum electric angle gap δθmin(ω) =
ωδtmin

ϵθ Angle tolerance

ϵV voltage tolerance

h Constraint vector

K Penalty coefficient vector
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x Decision variable Matrix (p × Nd)

xZ Decision variable vector (1 × Nd), Z ∈
J1; pK

αFWS HWS solution vector extended to FWS

αHWS QWS solution vector extended to HWS

αPS R FWS solution vector extended to PSR

αQWS QWS solution vector

θ Angle variable (electric angle), θ = ωt

f (θ) Designate an objective function which
depends of θ. In the results sections it
designate WTHD

fs Switching frequency defined as: fs =

2Nqp f1

fv Current objective value with constraints
penalties

lb Lower bound for the optimisation prob-
lem

Nd Number of decision variables

nm Number of harmonics computed

Nqp Number of commutation per quarter pe-
riod

ub Upper bound for the optimisation prob-
lem

xZ,k kth element of xZ , k ∈ [1,Nd]

System parameters

ω Fundamental electric pulsation desired
ω = 2π f1

EDC Bus voltage afforded by the battery

f1 Fundamental electric frequency desired

p Number of phases of the load

Measures, and analysis

an,I ,bn,I Current Fourier coefficients for harmonic
n ∈ N

an,V ,bn,V Voltage Fourier coefficients for harmonic
n ∈ N

In Harmonic current amplitudes vector n ∈
J2;∞K

V1 Fundamental desired voltage amplitude
vector

Vn Harmonic voltage amplitudes vector n ∈
J2;∞K

φZ,n nth harmonic phase shift for Z ∈ J1; pK

ac,n,W , bc,n,W Command Fourier coefficients vector for
W ∈ {QWS , HWS , FWS , PS R} and
n ∈ N

an,Z,V , bn,Z,V Voltage Fourier coefficients for Z ∈

J1; pK and harmonics n ∈ N

Esw(iZ(t)) Energy lost while switching current iZ(t)

IZ,n nth harmonic current amplitude for Z ∈
J1; pK

iZ(t) Instantaneous current at time t, for Z ∈
J1; pK

m Modulation index

mmax Maximal feasible modulation index
mmax =

2
π

Pcon(iZ(t)) Power lost inside the IGBT and the diode
because of iZ(t) current conduction

VZ,n nth harmonic voltage amplitude for Z ∈
J1; pK

VZ Single voltage of the leg Z, Z ∈ J1; pK

Others

α j,mi Angle number j corresponding to mi

Ψk Vector defined as Ψk =[
αk,m1 , · · · , αk,mimax

]t
Ψ̂k Estimated vector of Ψk

E(X) Expectation of X

Mj Vector defined as: Mj =

[m0,m1, · · · ,mimax]t

α̂ j,mi Estimated angle of α j,mi

mi modulation index of the solution number
i

mimax Maximum modulation index number

S i Initial command value (high: 1, low: 0)

S Z Command for the leg Z, Z ∈ J1; pK

Moreover, bold variables represents either matrices or vec-
tors.
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1. Introduction

In order to modulate the AC power of an electrical load, an
inverter is needed. It will transform a DC signal to an alterna-
tive one (voltage to current or current to voltage ). This alter-
native signal is composed of p-phases, with p ∈ N∗ the phase
number of the load. In electrical energy transformation, there
are many problems which have to be considered, the first one
is a cost problem. This problem often leads to consider a min-
imum number and cheap semiconductors. For example, this
constraint leads to consider only six switches, for the most com-
mon inverter, the three phases one. Each switch is composed of
an IGBT with a freewheeling diode. For this specific case, this
inverter is then composed of three legs, and is commanded by
two levels [1].

Carrier based PWM exist since middle of the XXth century
to control power electronic devices such as inverters [2]. Many
works tried to improve the PWM by injecting harmonics in the
modulated signal [1, 3, 4, 5, 6], or by vector modulation meth-
ods [7, 8, 9].

More recently, with the technical progress, the micro-
controllers and memory storage improvement. A new PWM
class appeared, the off-line ones [10, 11, 12]. This new class
is based on the storage of switching angles. The first benefit
of this technique is to use all the freedom afforded by the in-
verter structure. Indeed, previous works[1] show that only two
phases are necessary to drive an inverter. Then OPP exploit all
the possibilities to find the best PWM strategy possible. One of
the other main advantages of OPP, is that their working zone is
extended to the modulation index mmax =

2
π
, [1]. This extension

is significant in comparison with classical symmetries (as SVM
or THIPWM 1

6 for example) limited to mmax =
1
√

3
.

The work presented here deals with OPP, these solutions
will be used in a control loop to feed an inductive load. Here,
the control loop is considered as a black box. Furthermore, the
hypothesis that the command provides a correct information
is done. Information needed is the desired output signal
(current or voltage). Thanks to this information provided,
the inverter will work without any feedback and then work
in an open-loop mode. Many works treat the global problem
of power electronics control in a more global loop without
considering the PWM problem [13, 14]. And the purpose of
this paper is the opposite one. The Inverter, and furthermore,
the PWM are drove and the control loop is ignored. This
hypothesis is feasible as the global control loop have not the
same purpose than PWM control1. The first one is concerned
about, speed, torque, observation, etc.. and the second one is
concerned about the load harmonics and its impacts [1].

It also exists closed loop PWM[15, 16, 17], but their main
disadvantage it they need more sensors or observers (often,
voltage ones) to be effective. The OPP, on their side, only need

1Even if they have not the same purpose, it is obvious that PWM directly
depend on the global control loop as its computation is based on the closed loop
reference.

informations already provided by the control loop, as the de-
sired voltage and the motor angle for example.

This paper is concerned about a new open loop OPP with its
complete and directly applicable optimization problem. Solu-
tions are proposed for any number of phases p with a two levels
inverter. Nevertheless other works treat multilevel converters
[18, 19].

The study presented is based on one of the two following
main methods used in the literature.

The first one [10, 11, 20, 21, 22, 23, 24, 25] is concerned
about minimization of THD or WTHD with different algo-
rithms. Indeed it is very simple to compute harmonic distor-
tion, and, furthermore WTHD is a good way to evaluate current
behavior in an inductive load [12]. The weights on harmonics
of the WTHD will behave like in an inductive load with the ad-
vantage that it do not depends on any physical parameter. This
independence to parameters, is the main reason why WTHD is
a classical objective function in inverter PWM issues.

Other works are dedicated to SHEPWM. The principle is to
select the harmonics to eliminates and then trying to reduce
them, [10, 23, 26, 27, 28, 29, 30, 31]. This objective is the
second most classic objective function. As SHEPWM seems to
be a particular case of WTHD, it is not necessary to study this
objective function. Furthermore SHEPWM obliges to choose
among all the harmonics which one to eliminate. This choice is
quite complex and depend on the considered load and objective.

The following of the paper is concerned about an anteriority
study of QWS, HWS and FWS in section 2. The presentation
of the PSR is performed in section 3. Thanks to this optimiza-
tion description a computation method is provided in section 4.
Evaluation criteria is presented in section 5. Next, the proposed
PSR and the classical FWS are implemented and compared in
simulation (section 6) and experimentally (section 7), for the
most common inverter p = 3.

2. Anteriority background, QWS, HWS and FWS descrip-
tion

In articles [11, 32], it appears that, choosing the angles posi-
tion inside a same period, with respect to synchronism, affords
better results than SVM or carrier based PWM. Indeed choos-
ing precisely switching angles2 in order to perform the desired
voltage or current is known as the best method to solve the op-
timization tracking problem. Solving this problem is difficult
due to the large amount of different solutions. Here after is a
Fourier description of the classical angle model depending on
different symmetries.

2.1. The angle model

It exists three main types of symmetries (QWS, HWS and
FWS)[11].

2The switching angle is the switching time reported over a period, in or-
der to ignore the signal frequency, for the computation. Here after, ”angles”
designates a switching angles for the seek of simplicity.
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Figure 1: An example of Quarter Wave Symmetry

Figure 2: An example of Half Wave Symmetry

As seen on Fig. 1, the principle of the QWS is to select an-
gles of the first quarter period, and then deduce all the others
angles of the signal thanks to the known symmetry. The ad-
vantage of this solution, resides in the low number of angles to
compute. This number is half in comparison with HWS (Fig.
2) and fourth less than FWS (Fig. 3). With the angle knowl-
edge, computation of Fourier coefficients of the formal control
(0 or 1), driving the switches is performed, for each symme-
try. Then, Fourier decomposition provides a precise expected
behavior description of the inverter with only the angle knowl-
edge.

In a real application, and due to the switching of the
switches, it is impossible to realize a pure sine wave. However,
by imposing the angles on each phase it is possible to minimize
the harmonic distortion. [1, 11].

2.1.1. QWS equations
For the QWS strategy the command S 1 is described thanks

to the symmetries by ac,0,QWS =
1
2 and ac,n,QWS = 0 ∀n ∈ J1;∞K

and bc,n,QWS is defined by eq. (1). Harmonics multiples of two
are systematically removed due to the

(
1 + (−1)n+1

)
term.

bc,n,QWS =
1

nπ
(−1)S i

(
1 + (−1)n+1

)
2 Nqp∑

j=1

(−1) j+1 cos(nα j) − 1

 (1)

Figure 3: An example of Full Wave Symmetry

2.1.2. HWS equations
For the HWS strategy, ac,0,HWS = 1, ac,n,HWS is defined by eq.

(2) and bc,n,HWS by eq. (3). As for the QWS the
(
1 + (−1)n+1

)
term will remove all the harmonics multiples of two.

ac,n,HWS =
1

nπ
(−1)S i+1

(
1 + (−1)n+1

)
2Nqp∑

j=1

(−1) j+1 sin(nα j)

 (2)

bc,n,HWS =
1

nπ
(−1)S i

(
1 + (−1)n+1

)
2Nqp∑

j=1

(−1) j+1 cos(nα j) − 1

 (3)

2.1.3. FWS equations
For the FWS strategy, ac,0,FWS , ac,n,FWS and bc,n,FWS are re-

spectively defined by eqs. (4)-(6). Here the harmonics mul-
tiples of two, are not systematically removed due to the full
period symmetry.

ac,0,FWS =
1
π

(−1)S i+1

4Nqp+1∑
j=1

(−1) j+1α j + 2π

 (4)

ac,n,FWS =
1

nπ
(−1)S i+1

4Nqp+1∑
j=1

(−1) j+1 sin(nα j)

 (5)

bc,n,FWS =
1

nπ
(−1)S i

4Nqp+1∑
j=1

(−1) j+1 cos(nα j) − 1

 (6)

Then, with the previous equations, after the inverter com-
putation some harmonics will be removed (equal to zero). In-
deed, for a p-phases inverter, harmonics multiple of p will be
removed, for the seek of completeness it is demonstrate here
after, even if the demonstration is well known in the literature
[1].

Let’s assume the leg command number k is described by:

C0,k(θ) = a0,k +
∑
n≥1

an,k cos (n (θ + kϕ))

+ bn,k sin (n (θ + kϕ)) (7)

The voltage of the first leg of a p-phases load can then be
described by eq. (10) thanks to matrix defined by eq. (8)
multiplied by vector of components eq. (7). Remark, as
the a0,k are equals, the resulting mean voltage is equal to 0,
p−1

p a0,1 −
1
p
∑p−1

i=1 a0,i = 0.

M =
1
p


p − 1 −1 · · · −1
−1 p − 1 · · · −1
...

. . .
...

−1 · · · −1 p − 1

 (8)

Voltage of all the phases can be deduced from the command
thanks to (7) and (8) and is written as follow.

4




V1(θ)
V2(θ)
...

Vp(θ)

 = EDC · M ·


C0,1(θ)
C0,2(θ)
...

C0,p(θ)(θ)

 (9)

With the previous equation (9), voltage of the first phase is
written as (10).

V1(θ) = EDC
p − 1

p

∑
n≥1

an,1 cos(nθ) + bn,1 sin(nθ)

−
EDC

p

∑
n≥1

an,2 cos(nθ + nϕ) + bn,2 sin(nθ + nϕ)

· · ·

−
EDC

p

∑
n≥1

an,p cos(nθ + n(p − 1)ϕ)

+ bn,p sin(nθ + n(p − 1)ϕ)
(10)

With ϕ = − 2π
p .

V1(θ) = EDC
p − 1

p

∑
n≥1

an,1 cos(nθ)

+ bn,1 sin(nθ)

−
EDC

p

∑
n≥1

an,2 cos(nθ) cos(nϕ)

− an,2 sin(nθ) sin(nϕ)
− bn,2 sin(nθ) cos(nϕ)
− bn,2 cos(nθ) sin(nϕ)

· · ·

−
EDC

p

∑
n≥1

an,p cos(nθ) cos(n(p − 1)ϕ)

− an,p sin(nθ) sin(n(p − 1)ϕ)
+ bn,p sin(nθ) cos(n(p − 1)ϕ)
+ bn,p cos(nθ) sin(n(p − 1)ϕ)

(11)

For n = p, cos(nϕ) = 1 and sin(nϕ) = 0, then the harmonics
of rank n = p of the voltage are systematically removed. This
demonstration can be done for each phase from 1 to p.

2.2. Problem modeling
In order to find the best angles solutions, for all the classical

symmetries, an optimization problem description is needed. Its
purpose is to minimize an objective function f chosen.
Remark: WTHD is the objective function in the discussion of
this paper.



ObF min( f (x))
U.C. αk ≤ αk+1 + δθmin(ω) ∀k ∈ J1; NdK

αNd ≤ ub

α1 ≥ lb
a1,V = 0
b1,V = m

(12)

symmetries Nd lb ub

QWS Nqp δθmin(ω) π
2 −

δθmin(ω)
2

HWS 2Nqp δθmin(ω) π − δθmin(ω)
FWS 4Nqp + 1 δθmin(ω) 2π − δθmin(ω)

Table 1: Optimization problem parameters

In the optimization problem eq. (12), there are two nonlinear
constraints, because they depend of the Fourier decomposition,
where a lot of trigonometric functions appears. Here, m desig-
nates the modulation index, defined as the percentage of use of
the DC bus. In the case of a voltage source modulation index
is equal to m = V1

EDC
, with V1 the desired voltage amplitude and

EDC the bus voltage.
In table 1 let’s remark that lb and ub are not equal to the the-

oretical bounds. The reason is technological, as the switches
gap, δθmin, must be taking into account in the bounds. Another
remark, is with problem defined in (12), it is only necessary to
focus on the first phase, because all the p − 1 other phases will
be deduced from this one. It is also the reason why the funda-
mental real part of the Fourier decomposition (a1,V ) is equal to
zero. This leads to the main assumption of classical strategies
(QWS, HWS and FWS), that is, angles of each phase are phase
shifted symmetrically according to the first phase angles.

As demonstrated before, this angle phase shift affords the ad-
vantage to eliminate harmonics multiple of p. On the other
hand, this limits the number of solutions. Consequently solu-
tions could be sub-optimal with respect to the set of possible
solutions. Next section will focus on this problem considera-
tion.

3. Phases Symmetry Relaxation method

The purpose of PSR method is to relax the angle phase shift
constraint. As Birth [11] showed that an angle symmetry re-
laxation in a single phase improves the harmonic quality. The
decision has been done to also do not consider the angle sym-
metry between phases. As an illustration of the proposed hy-
pothesis relaxation, Fig. 4 highlights a particular case of the
angle phase shift relaxation for three phases only. Doing so, the
solution set is expanded. Nevertheless the symmetry between
voltage (or current) phases will be imposed by constraints on
the optimization problem, with respect to a specific precision.

Without the symmetric assumption, the optimization prob-
lem is now written like eq. (15). The idea, here, is to find an
optimal solution for the angles, according to a chosen objective
function f (in this paper, the WTHD). This relaxation of the
constraints increases the WTHD quality of the solutions as it
will be shown in the sections 6 and 7.

3.1. Problem modeling

From the relaxations way of thinking, a new optimization
setting is proposed, generating new freedom degrees and also
extra constraints. Then three types of conditions must be met.
First, the angle between two switches cannot be lower than a
minimal angle δθmin(ω). This constraint will prevent narrow
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pulses and allows switches to commute properly with respect
to the dead-time (δθmin(ω) > 2ω∆t). Remark that, a narrow
pulse is a pulse lower than the minimal angle (δtmin > 2∆t).

Secondly, angles are bounded on a period, theoretically it
would be 0 to 2π and practically see table 2. Those two condi-
tions together correspond to 4

(
Nqp + 1

)
linear constraints.

Finally, all the optimized output signals must respect the cor-
rect amplitude and phase for the fundamental. Explaining why
the 3p nonlinear equalities constraints eq. (13) and eq. (14)
must be verified.

√
a2

1,V + b2
1,V = m ± ϵV (13)

tan(−
2(Z − 1)π

p
± ϵθ) =

b1,Z,V

a1,Z,V
, (14)

∀Z ∈ {1, 2, · · · , p}

Remark: For the particular case presented in section 6 and 7,
the equality constraint equations of the optimization problem
are imposed to be precise at 2% on the amplitude and of π25 on
phases.

The optimization problem, is now the following one with the
same objective function as 12:



ObF min( f (x))
U.C. x = [x1, x2, · · · , xp]

x1,k ≤ x1,k+1 + δθmin(ω)
x2,k ≤ x2,k+1 + δθmin(ω)
· · ·

xp,k ≤ xp,k+1 + δθmin(ω)
x1,4Nqp+2 ≤ ub,
x2,4Nqp+2 ≤ ub, · · ·
xp,4Nqp+2 ≤ ub

x1,1 ≥ lb, x2,1 ≥ lb, · · · , xp,1 ≥ lb
a0,1,V = 0, a0,2,V = 0, · · · , a0,p,V = 0
a1,1,V = 0
a1,2,V = m sin(− 2π

p ), · · ·
a1,p,V = m sin(−2π p−1

p )
b1,1,V = m,
b1,2,V = m cos(− 2π

p ), · · ·
b1,p,V = m cos(−2π p−1

p )

(15)

To analyze the command performances of the PSR, same
equations than for the FWS are used. Precisely, eq. (4), eq.
(5) and eq. (6) are the same for PSR, except that j vary be-
tween 1 and 4Nqp + 2. Here the symmetry between the angles
is not forced by a deduction from a single phase. Then no har-
monics will be forced to be equal to zero, which is the main
difference with FWS. Remark that in the problem eq. (15),
k ∈ J1, 4Nqp + 2K. It appears there is one more switching in
comparison with FWS and two more switching in comparison
with QWS and HWS. The first additional switching is due to
the symmetry which requires to have a switching in π (see Fig.
1 and Fig. 2). The second additional switching is due to the 2π

Nd lb ub

PSR 3(4Nqp + 2) δθmin 2π − δθmin

Table 2: PSR Optimization problem parameters

Figure 4: Three phases inverter example of PSR strategy

symmetry, this commutation is present in every classical sym-
metry (see Fig. 1, Fig. 2 and Fig. 3). This 2π periodicity is the
reason why an extra switching appears at the end of the period.

Concerning the dead-time (∆t), it is naturally implemented
during the experiences to avoid short circuits. Nevertheless it is
neglected on (15) to simplify the WTHD computation. Indeed
precise knowledge on dead-time influence is quite complex as
presented in [33]. This claim is confirmed under the hypothesis
of f1∆t << 1, which verifies the first order development of the
S Z Fourier decomposition and gives (16) and (17).

ãc,n,FWS = ac,n,FWS

−
ω∆t
π

(−1)S i

4Nqp+1∑
j=1

cos(nα j)

 + o(∆t2)

(16)

b̃c,n,FWS = bc,n,FWS

−
ω∆t
π

(−1)S i

4Nqp+1∑
j=1

sin(nα j)

 + o(∆t2)

(17)

Where ãc,n,FWS and b̃c,n,FWS are the Fourier coefficient with
dead-time effect. So under the assumption f1∆t << 1, equations
(16) and (17) gives ãc,n,FWS ≈ ac,n,FWS and b̃c,n,FWS ≈ bc,n,FWS .
Consequently as to take in consideration the dead time on the
FWS’s WTHD equation and on PSR, this increases the com-
plexity of the computation. It is why ∆t is neglected in this
paper. Nevertheless, if dead-time consideration is necessary to
take in account in future works, it would be done by modifying
(15) and δtmin.
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4. Computation Method

In order to compute an optimization solution, fmincon from
the optimization toolbox of MatLab (MathWorks®) is used.
Because the workspace has many local minimums, it is nec-
essary to correctly select starting points of fmincon.

The first step, before optimization, starts by creating some
random initial points. After that an evaluation of the quality of
each point is performed with eq. (18). This equation considers
the current value of the objective function, f , which is modified
to fv, in order to respects the constraints.

The initial decision matrix x0 is considered as an appropriate
starting point, with respect to fv, if the solutions has a good fit-
ness (a low f (x0)) and which violate a minimum of nonlinear
constraints (K2 term) and not deeply (K1 term). Linear con-
straints are not considered in eq. (18) because they are forced
to be verified in the initial matrix. Indeed it is easy to generate
a random sorted and bounded matrix.

fv = f (x0) + K1

3p∑
i=1

(max(ci, 0)) + K2

3p∑
i=1

g(ci) (18)

Where x0 = [x10, x20, · · · , xp0] is the initial decision matrix,
K1 and K2 are two penalty coefficients (In sections 6 and 7, K1
and K2 are chosen equal to 106). Furthermore, g is defined as
follow:

g(ci) =
{

1 if ci > ϵ
0 otherwise (19)

Moreover c =
(
c1, c2 · · · , c3p

)
is the vector of nonlinear con-

straints, these constraints are the same than for the problem eq.
(15). Equation (18) is inspired by the work of Sierra et al. [34].

The first penalty (K1 term) of eq. (18) indicates how far away
the solutions are from the acceptable domain3 and the second
penalty (K2 term) indicates how many constraints are outside
the acceptable domain.

After computing eq. (18), to a large quantity of initial ma-
trices, a selection of the initial matrix with the minimal fv is
done. Then this matrix is considered as a starting matrix for the
optimization problem defined by eq. (15), computed for exam-
ple with fmincon. Furthermore, in order to refine the solution
quality, other starting matrices are considered. Three of these
starting matrices are found by doing an extension of the previ-
ous symmetries. So QWS is extended to HWS eq. (20), the
HWS to compute FWS eq. (21) and FWS to PSR eq. (22). This
leads to the following extension of symmetries.

αHWS = [αQWS ,1, · · · , αQWS ,N ,

π − αQWS ,N , · · · , π − αQWS ,1] (20)

αFWS = [αHWS ,1, · · · , αHWS ,2N , π,

π + αHWS ,1, · · · , π + αHWS ,2N] (21)

3The acceptable domain is the domain where the constraints are respected
according to prefixed tolerance

αPS R = [αFWS ; sort((αFWS −
2π
3

) mod 2π);

sort((αFWS −
4π
3

) mod 2π) ] (22)

A scheme of the proposed algorithm is given in Fig. 5. This
algorithm computes the optimal switching angles of the PSR
method from the Nm desired signals depending on the modula-
tion index. If the index of the initial step j is lower than Nm

the algorithm stops. Otherwise, as explained previously, an ini-
tial matrix x0 is selected (eq. (18)) and stored in Lx0, j, from a
random set of matrices x. Then for each element i among the
nL, j matrices of Lx0, j, an optimization is performed from Lx0, j,i.
Next, the best solution found among all the starting matrices is
selected and stored in Σ f in (the set of final solutions for each
modulation indexes). The solution is also stored in Lx0, j+1, the
next step set of starting matrices and i = i + 1. This part of the
algorithm stops when i is greater than nL, j and then j = j + 1,
and the algorithm go to the j ≤ Nm test. In order to preserve
at least local minimum found from the previous step of the al-
gorithm. The solution from the previous modulation index is
also chosen as a starting matrix. It can be seen on Fig. 5 where
the jth solution is stored in the starting matrix list for the next
modulation index Lx0, j+1 .

Remark: All the results are obtained with a discretization
step of 0.001 and then, the solution found for m = 0.5, will
be one of the starting matrix of the computation for the next
discretization step m = 0.501.

5. Evaluation criteria

To evaluate the predicted losses inside the converter and the
load. A current, respectively voltage computation is needed,
indeed current respectively voltage value is responsible of
switches losses, losses inside the load, torque, etc..

5.1. WTHD

5.1.1. Inductive load
A lot of studies are based on WTHD, because it does not

depends on a load and allows to evaluate the solution quality
quite fast and easily. WTHD is an approximation of all the
currents norm inside the inductive load. This load is composed
with an inductance L with a resisting part R, subject to a voltage
signal of pulsation ω. Note that, through out the paper Lω and
R are constant.

WTHD is the norm of all the harmonics currents in a case
of purely inductive load (R = 0). In the case of only inductive
load, WTHD is an approximation of the current norm. The
approximation depends on the value of R

Lω << 1. This condition
is justified by the demonstration below [12].

Current can be expressed as the first order differential
equation eq. (23). I(t) =

[
i1(t), i2(t), · · · , ip(t)

]t
is the vector of

the current in the load p phases. V(t) =
[
v1(t), v2(t), · · · , vp(t)

]t
is the simple voltage vector (output of the inverter to neutral
point voltage) in the p phases.

7



Figure 5: Schematic view of the computation algorithm, Nm is the number of
modulation index considered and Σ f in is the final set of solutions found by the
algorithm

It is important to notify that in the next demonstration, square
roots, multiplication and divisions of vectors are assumed to be
term to term. The following demonstration is similar to the
Hartgenbusch one [12]. Nevertheless, in order to be self con-
tend a short similar demonstration is presented here after.

dI(t)
dt
=

V(t)
L
−

R
L

I(t) (23)

Thanks to the periodic property of the voltage and current,
and without considering the dead-time influence for the voltage
computation, it is possible to decompose the signal with Fourier
series.

V(t) = a0,V +
∑
n≥1

an,V cos(nωt) + bn,V sin(nωt) (24)

I(t) = a0,I +
∑
n≥1

an,I cos(nωt) + bn,I sin(nωt) (25)

dI(t)
dt
=
∑
n≥1

nωbn,I cos(nωt) − nωan,I sin(nωt) (26)

On the equation below, Fourier coefficient are p components
vectors, each for one phase.

Equations (23) to (26) lead to eq. (27)
0 = 1

L a0,V −
R
L a0,I

nωbn,I = 1
L an,V −

R
L an,I

nωan,I = R
L bn,I −

1
L bn,V

(27)

and then: 
a0,I = 1

R a0,V

an,I = 1
R2+(nLω)2

(
Ran,V − nLωbn,V

)
bn,I = 1

R2+(nLω)2

(
nLωan,V + Rbn,V

) (28)

Finally, considering nLω >> R ∀n ∈ N∗, current Fourier
decomposition can be approximated with eq. (29).

a0,I = 1
R a0,V

an,I ≃ −
bn,V

nLω
bn,I ≃

an,V

nLω

(29)

With this approximation amplitude of each current harmonic
(In) is given by eq. (30). As Lω is a constant, let’s define
I′n = LωIn. Indeed a constant do not influence direction of
variation of the current.
Remembering that the harmonics must be eliminated or at least
reduced, computation will be then performed thanks to I′n in-
stead of In, both equations are described below.

In =

√
a2

n,I + b2
n,I ∀n ∈ N∗ (30)

I′n =
1
n

√
a2

n,V + b2
n,V ∀n ∈ N∗ (31)

Remark that in eq. (31) the Fourier coefficients are with re-
spect to voltage instead of current as eq. (30).

Moreover I′n, can be described with respect to voltage ampli-
tude:
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I′n =

√
V2

n

n2 ∀n ∈ J2;∞J (32)

Finally, in order to have a scalar criteria, norm of all the I′n
for each phase is performed with eq. (33).

||I′n|| =
√∑

n>1

I′2n =

√∑
n>1

V2
n

n2 (33)

From eq. (33) the WTHD equation is written for each phase
as following:

VWTHD,% =
100
V1
||I′n|| =

100
V1

√∑
n>1

V2
n

n2 (34)

Under the assumption that angles from each phase are inde-
pendent eq. (34) and to reduce to a scalar, mean value of the
WTHD is computed below.

VWTHD,% =
1
p

100
V1

p∑
i=1

√√∑
n>1

V2
n,i

n2 (35)

In previous equation, V1 becomes V1, because all the terms
of the vector are equals and the vector division is done term
to term. Finally, eq. (35) provides the WTHD considered as
an objective function f in the optimization problem described
with eq. (15).

5.1.2. Capacitive load
According to a capacitive load, and then a current source, eq.

(23) will be transformed to equation (36).

dV(t)
dt
=

I(t)
C
−

1
RC

V(t) (36)

With the same way of thinking, WTHD of eq. (34) becomes
eq. (37)

IWTHD,% =
100
I1

√√∑
n≥2

I2
n

n2 (37)

As for its voltage counterpart, the considered current WTHD
is finally written as:

IWTHD,% =
1
p

100
I1

p∑
i=1

√√∑
n≥2

I2
n,i

n2 (38)

Consequently for capacitive load, eq. (38) provides the
WTHD, considered as an objective function f in the optimiza-
tion problem described with eq. (15).

Because the angles are set precisely with an OPP strategy,
it exist a risk that between two angle sets with a near operat-
ing point, the angles are strongly different. This problem must
have to be considered, indeed, a non homogeneous set of angles
will generate strong discontinuities in the inverter. It is why, in
the next section a way to evaluate smoothness quality is inves-
tigated.

5.2. Smoothness
This section is concerned to present a load independent

criteria in order to decide if the smoothness of the angle set
can be considered as good or poor. In other terms: What
influence will have a tiny mistake on angles on the voltage or
current load behavior? To evaluate this influence, a polynomial
regression is done on the switching angles, the idea behind
is, if the variation for a specific angle is polynomial than its
smoothness is considered as a good one.

In the following a precise methodology to evaluate this
smoothness is presented. This methodology provides a num-
ber based on all the solutions found for a single symmetry. For
OPP, decision variable in the algorithm is a vector or a matrix
for PSR. Considering all the operating points a matrix could be
establish where each line is a set of angle for a specific modu-
lation index. Then a search for a polynomial equation eq. (39)
of a specific order n is performed which fit a maximum with the
evolution of an angle. Finally the correlation factor between
estimated angles with a polynomial function and the real an-
gles set is computed eq. (42). This number will be called the
smoothness factor.

If the smoothness factor is close to 1 (a good smoothness)
that mean that the two curves (the one described by eq. (39)
and the solution set) are similar. The angle evolution can be
then approximated by a polynomial equation of the specific or-
der n. Otherwise correlation factor near 0, means there is no
correlation between the computed curve and the real one. Then
a degradation of the selected objective function must be consid-
ered in order to increase smoothness factor.

P(m) = cnmn + cn−1mn−1 + · · · + c0 (39)

Where ci ∀i ∈ J0; nK are computed with eq. (40). Note that
in this equation the multiplication is a usual one of matrix by a
vector. Consequently the Hankel matrix composed of H j have
to be inverted thanks to the pseudo-inverse matrix of Moore-
Penrose because the H j matrix is not regular. Then the cho-
sen estimated angles minimize the euclidean norm to the angles
computed with the algorithm (15).

H0 · · · Hn

H1 · · · Hn+1
...
. . .

...
Hn · · · H2n

 ·

c0
c1
...

cn

 =

T0
T1
...

Tn

 (40)

Where T j and H j are defined in eq. (41){
T j =

∑n
i=1 m j

iα j,mi

H j =
∑n

i=1 m j
i

(41)

As Ψk =
[
αk,m1 , · · · , αk,mimax

]t a vector of mimax dimen-
sions of the angle number k computed with the problem de-
fined with eq. (15). On the other hand Ψ̂k is a vector
of estimated values of Ψk, according to the solution found
by eq. (39), Ψ̂k =

[
P(m1), P(m2), · · · , P(mmax)

]t
=[

α̂k,m1 , α̂k,m2 , · · · , α̂k,mmax

]t
.
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Parameter value
ϵθ ±π/25rad
ϵV ±2mEDC/100V

K1,K2 106

δtmin 1µs
nm 300

EDC 400V
f1 50Hz

Table 3: Values of the parameters in order to find the presented results

rk = 100

(
E(ΨkΨ̂k) − E(Ψk)E(Ψ̂k)

)2(
E(Ψ2

k) − E(Ψk)2)(E(Ψ̂2
k) − E(Ψ̂k)2

) (42)

Where rk is the smoothness factor.
In order to highlight the well founded of the proposed method

(i.e. optimization problems and criteria) an example of compu-
tation is proposed in the next section on a three phase voltage
inverter.

6. Simulation results

6.1. WTHD comparison

The WTHD comparison, in simulation, is done with respect
to the parameters given by table 3. In this section, only FWS
and PSR are presented because Birth’s paper [11] showed the
superiority of FWS over the QWS and HWS. Note that this
superiority has been also found while the investigations but are
not presented here.

Because the more Nqp is great, the more a QWS consider-
ation is enough to obtain good results, the decision have been
done to limit the computation to Nqp = 5. Furthermore, the
choice have been done to consider only a three phases voltage
inverter in order to highlight the well founded of the proposed
method.

In the Fig. 6 and Fig. 7 WTHD comparison are shown re-
spectively for Nqp = 2 and Nqp = 5.

Figure 6: Comparison between FWS and PSR method according to WTHD for
Nqp = 2 when the objective function is WTHD

Figure 7: Comparison between FWS and PSR method according to WTHD for
Nqp = 5 when the objective function is WTHD

The curves show that the PSR method provides best solu-
tions than the other ones. For the WTHD objective function,
the advantage of PSR method is for m around 1

π
for Nqp = 5

and around 1
√

3
for Nqp = 2. Furthermore tables 4 and 5 show

an improvement in comparison to other strategies.
Strategy Nqp = 2 Nqp = 5

QWS 8.16% 4.30%
HWS 8.16% 4.26%
FWS 8.11% 4.21%
PSR 8.06% 4.16%

Table 4: Simulation mean value of WTHD for different solutions in percentage
according to (35)

Nqp m = V1
EDC

ε

Nqp = 2
0.53 3.52%
0.55 7.11%
0.57 15.85%

Nqp = 5
0.27 5.02%
0.3 5.67%

0.33 4.84%

Table 5: Simulation comparison between FWS and PSR for six specific operat-
ing points inside the improvement zone. Percentage of improvement have been
computed thanks to (34) and (43).

It is interesting to note that all the symmetries relaxation
allow to improve the results. Finally PSR strategy improve
FWS with a mean value VWT HD,% = 8.06% for Nqp = 2 and
VWT HD,% = 4.16% for Nqp = 5 according to (35). It could seem
negligible because all the solutions give the same WTHD, on
a wide range of modulation indexes. Nevertheless as it can be
seen in Figs. 6 and 7 but also in table 5, the maximum improve-
ment of PSR in terms of WTHD in comparison with FWS is
ε = 16.15% for Nqp = 2 and ε = 6.37% for Nqp = 5 according
to (43). Then, even if the global mean value affords a small im-
provement, some operating points improve the WTHD of 16%.
Furthermore the improvement zone is not negligible as it covers
more than 30% of the feasible operating points.

ε = 100
WT HDFWS −WT HDPS R

WT HDFWS
(43)
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6.2. Smoothness
Another criterion identified is the smoothness. To illustrate

this criterion Fig. 8 and Fig. 9 show the regularity of the solu-
tions.

Figure 8: Example of smoothness for the first angle of the WTHD, for the FWS
solution with Nqp = 5

Figure 9: Example of smoothness for the first angle of the WTHD, for the PSR
solution with Nqp = 5

Strategy Nqp = 2 Nqp = 5
QWS 85.6% 84.5%
HWS 85.6% 83.7%
FWS 67.7% 76.1%
PSR 63.8% 86.1%

Table 6: Value of smoothness for different solutions in percentage (computed
with WTHD) according to (42)

The smoothness computation has been done with a 8 order
polynomial approximation. In this case the smoothness is con-
sidered good enough, verified by the smoothness factor given
in table 6). In this table QWS affords the best smoothness and
PSR the worst one for Nqp = 2 but for Nqp = 5 the PSR is the
best one.

For QWS and HWS, the smoothness is better than FWS, this
is due to the imposed symmetries inside the solutions which
reduces the gaps between angles solutions.

Fig. 8 and Fig. 9 illustrate how works the smoothness factor.
Indeed those curves are examples for the first angle of the first
phase solution set, which is respectively equal to rk = 75.2%
and rk = 89.6% according to (42).

6.3. Switching losses influence
About the influence of PSR on switching losses, it was de-

cided to compute the efficiency of FWS and PSR in simulation

for a particular case and compare both of them. The compar-
ison is performed by computing the relative gap between the
two efficiencies (49). In the following example the number of
phases is also set to p = 3.

First, the efficiency η is defined thanks to eq. (44) and
eqs.(45)-(48)

η =
Pu

Ptot
(44)

Pu designates the useful power and Ptot the total one. As the
three phases could be different, it is mandatory to compute their
power independently.

Pu =

p∑
k=1

Vk,1Ik,1 cos(φk,1) (45)

Ptot = Psw + Pcon +

p∑
k=1

∞∑
h=1

Vk,hIk,h (46)

Psw = f1
p∑

k=1

Nd∑
j=1

Esw

(
ik
(xk, j

ω

))
(47)

Pcon = f1
p∑

k=1

∫ 1
f1

0
S k(t)Pcon(ik(t))dt (48)

Remark that Pcon and Esw includes the losses of the IGBT and
the diode for the two switches composing the leg k.

Thanks to previous equations and arbitrary parameters of R,
L, IGBT and diode components 4, it is possible to compare the
FWS efficiency ηFWS and the PSR efficiency ηPS R with eq. (49).

εη = 100
ηFWS − ηPS R

ηFWS
(49)

As shown in figures 10a and 10b the influence of angle sym-
metry relaxation is positive on efficiency for highest operating
points when Nqp = 2. For Nqp = 5 losses impact is almost neg-
ligible, because the impact is lower than 1%. Even if for this
last configuration PSR decrease a little the efficiency value in
comparison of FWS. These conclusions are not surprising as it
is well known that the main influence on the switching losses
is the switching frequency fs. Furthermore a reader who would
specifically reduce switching losses or increase efficiency can
easily change the objective function in eq.(15) from WTHD to
efficiency one or whatever he desires.

In this paper it is shown that the PSR strategy provides best
results than FWS one. The superiority of PSR, in simulation, is
then established for two purposes, increasing the solution qual-
ity and increasing the smoothness quality (as defined in section
5.2) without increasing drastically the switching losses.

4R = 10mΩ; L = 170µH;
switch: https://www.onsemi.com/pdf/datasheet/ngtb40n60ihlw-d.pdf
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(a) εη for Nqp = 2

(b) εη for Nqp = 5

Figure 10: Efficiency relative gap for Nqp = 2 and Nqp = 5.

7. Experimental results

In order to confirm experimentally the well funded of the
proposed strategy, an experimental setting has been set up. It
is composed of a DSpace© system (RTI 1103 with MatLab©

2010) that is generating the PWM signals sent to a three legs
two levels inverter via I/O ports. Each switch is composed of a
MOSFET with two freewheeling diodes. The power of the in-
verter is provided by a stabilized DC generator of 25V for safety
reasons. Then the inverter is connected to a balanced three-
phases inductive load composed with R ≈ 12.9Ω, L ≈ 1.2H.

Remark that the angular precision in simulation section is
equal to 100π · 10−6 rad for an electrical frequency of 50Hz.
Then in order to at least respect this angular precision and the
experimental device limitations, the experimental electrical fre-
quency is set to 1Hz. Indeed a technical limitation of the micro-
controller sampling period equal to 30µs. By doing so the an-
gular precision is equal to 60π · 10−6 rad, which is lower than
the simulation one. Since the simulink scheme is real time the
dead-time is equal to one step of controller computation and
then is equal to 30µs≡ 60πµrad

Concerning the voltage measurement, a Rohde Swartz’s©

probe is used and connected between the input of the RL load
and the neutral point. The voltage is sent to the DSpace, by sav-
ing datas for ten periods (i.e. 10s). Then the harmonic spectrum
of the voltage is extracted and finally the WTHD is computed
by using equation (34). A video of the experimental bench can
be found in [35] and on figure 11, the parameters are sum up in
table 7.

In the table 9, three specific points where selected for Nqp = 2
and Nqp = 5, with respect to the improvement zone visible on
Figs. 6 and 7. The table results are computed with (43), and
show a WTHD improvement of the PSR against the FWS.

In order to verify the behavior of the PSR against the FWS

Figure 11: Schematic representation of the experimental bench.

Parameter Value
f1 1Hz
δtmin 30µs
∆t 60µs

EDC 25V
R 12.9Ω
L 1.2H

Table 7: Experimental parameters

in all the validity domain. Other operating points are evaluated
and are represented on Figs. 12 and 13. The shape of the curves
is very similar to the simulation ones (Figs. 6 and 7). Thanks
to these experiments a mean value of improvement was also
computed and the results have been compiled in the table 8.
As for simulation results the mean increase is not that much
impressive, but, by considering a local improvement with table
9, the value of the PSR strategy is then much more visible.

Figure 12: WTHD value for Nqp = 2, the points have been computed with a
step of 0.02
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Figure 13: WTHD value for Nqp = 5, the points have been computed with a
step of 0.02

Strategy Nqp = 2 Nqp = 5
FWS 6.44% 3.85%
PSR 6.34% 3.79%

Table 8: Experimental mean value of WTHD for FWS and PSR in percentage.
This percentage was computed with the same points than Figs. 12 and 13.

Nqp m = V1
EDC

ε

Nqp = 2
0.53 5.53%
0.55 9.03%
0.57 16.02%

Nqp = 5
0.27 3.28%
0.3 4.12%
0.33 4.39%

Table 9: Experimental comparison between FWS and PSR

for six specific operating points inside the improvement zone.
Percentage of improvement have been computed thanks to (34)
and (43).

Experimental results confirm the superiority of the PSR
method against QWS, HWS or a FWS for low Nqp. For higher
Nqp the results are similar for all the considered methods be-
cause significant voltage harmonics of eq. (34) would be in
high enough frequency to be negligible.

Experimental results are also validated thanks the simulation
ones as table 4 corroborates with table 8, but also table 5 is
similar in terms of improvement to 9.

As the experimental results depends on dead-time, it is
shown there is no significant influence of ∆t on experimental
results. Nevertheless for higher electrical frequencies, it would
be necessary to start again an optimization in order to ensure
this kind of solutions quality (see fig. 16). Indeed an increase
of electrical frequency will also decrease the angular precision
as δtmin is set to 1µs.

Fig. 14 is the Fourier transform of the phase voltage of Fig.
15 obtained with Nqp = 2 and m = 0.57. It can be seen from
Fig. 14 in red color (PSR) the harmonics multiple of three are
not removed (see zoom on first harmonics), which confirms the
relaxations constraint of angle symmetry between phases (see
eq. (11) and the comment below) for PSR strategy.

About general implementation issues of classical methods
and PSR method, the computed angles have to be stored inside

Figure 14: Fourier spectrum for the FWS and PSR for Nqp = 2 and m = 0.57.

Figure 15: Voltage waveform for the FWS and PSR for Nqp = 2 and m = 0.57.

a micro controller [11, 36]. The controller always reads the
tables and send an interruption when the internal clock value
(converted in angles) corresponds to the table one (Fig. 16).
As the precision is function of the sampling time and electrical
frequency, it is necessary for the same precision to increase the
speed of a micro controller if the electrical frequency increases.
In the same way of thinking for a fixed controller speed the
precision can be increased by lowering the electrical frequency,
which is done in this section. It is important to remark that
the storage of PSR is three times greater than the one of FWS
and twelve times greater than the one of QWS. Nevertheless,
the size of the tables is still technologically and economically
acceptable.

Even if the previous example is dedicated to three phases RL
load, the proposed strategy can be used for p-phases and any
inductive or capacitive load.

8. Conclusion

In this paper a proposition of a new PWM method with a
relaxation of symmetry for low switching frequency, called
Phases Symmetry Relaxation (PSR) was done. A simulation
evaluation of this strategy was performed according to WTHD
compared with classical PWM symmetry strategies for the spe-
cific case of a three phases voltage inverter. Furthermore exper-
imental results corroborates the first results obtained in simula-
tion for the same conditions.
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Figure 16: Off-line PWM control in the particular case of a three phase inverter.
Solutions depends also on fundamental frequency for the angular precision. For
this third dimension, each table should be understood as a frequency interval
and not as a specific frequency.

For all the studied operating points, PSR strategy affords the
best results in comparison with the classical OPPs solutions as
FWS, described in [11]. Indeed computation and experiments
performed shows an improvement of WTHD for some specific
modulation index and for low switching frequency.

As a generic optimization problem was defined without spe-
cific load, it was highlighted that PSR method can be ap-
plied to a p-phases inverter to feed either an inductive (volt-
age WTHD) or a capacitive load (current WTHD). Furthermore
a new smoothness criterion (Evaluates the smoothness of the
switching angles when the modulation index changes) was pre-
sented and simulation results shown that PSR is competitive
with other OPPs.

In future works experimental validation of the proposed strat-
egy will be done on a synchronous electric motor, which im-
plies a variation of the electrical frequency and modulation in-
dex dynamically. Furthermore even if WTHD and smoothness
are the most important criteria, some other criteria could be in-
teresting to study in future works. In addition, the WTHD opti-
mization related to PSR probably underestimate the benefits of
the technique. Indeed on a motor with a non sinusoidal electro-
motive force, the interest is intuitively better for PSR as it plays
with the phases symmetry. Nevertheless showing the PSR im-
prove the WTHD is an important step as it is easy to understand
and classic for OPP considerations especially thanks with the
generic optimization proposed.
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