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Abstract—This paper presents different Li-ion battery models
integrating energy efficiency and aging in the frame of microgrid
design. More specifically, it compares the quantitative and qual-
itative differences of the models considering multiple sizings and
scenarios associated with a simple microgrid. It also investigates
the impacts of each model on two techno-economic criteria: the
renewable energy share and net present value related to the
microgrid.

Index Terms—Index Terms : Battery Storage, Aging, Micro-
grids, Modeling

I. INTRODUCTION

The integration of renewable energy into electricity gen-
eration systems has recently become essential to reduce the
carbon impact in view of the current climate challenges,
especially in the context of smart microgrids. The design of
these networks has generally been addressed via optimization
problems that aim to minimize the sum of two costs, the
investment cost and the operating cost (CAPEX and OPEX)
while ensuring a certain level of self-sufficiency [1]. It turns
out that performing this optimization requires modeling the
system and by extension all its elements/components. In this
paper, the influence of the accuracy level of Li-ion battery
models are studied in order to identify the best compromise
between complexity and accuracy. Several models from the
literature [2]–[7] will be explored and analyzed, integrating in
a coupled or decoupled way energy efficiency and aging.

II. MODELS DESCRIPTION

A. The temporal model

Fig. 1. Temporal model and link between scales.

Our temporal model includes three time scales addressing
different missions. A fine scale modeled by an hourly step
to capture the intra-day dynamics of the system, as well as a
long scale with an annual step for investment management and
finally a monthly time scale to update our cycle based aging
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models. The link that is made between these time scales can
be seen in Fig. 1.

The set of hours, months and years are then respectively
defined as h ∈ H = {1..H}, m ∈ M = {1..M},
y ∈ Y = {1..Y = 20}, with a ∆h,∆m and ∆y time-step
verifying ∆y = 12 ·∆m = 8760 ·∆h.

B. The energy model

The energy model controls the state of charge (SoC ∈
[0, 1]) of the battery during its interaction with the system.
Specifically, here the batteries are operated within the limit of
SoCmin = 0.2 and SoCmax = 0.8.

To conduct our study, a linear model with constant effi-
ciency has been implemented. This model from [2] has few
parameters: the efficiency η and the nominal capacity Enom

of the battery in [kWh].

SoCh+1 = SoCh − (η · P ch
h − η−1 · P dch

h ) ·∆h

Enom
(1)

Equation (1) governs the battery SoC at hourly intervals ∆h,
where P ch

h ≤ 0 and P dch
h ≥ 0 respectively denotes the

Li-ion charge/discharge power at hour h. Those variables do
not coexist, meaning if one is non-zero the other one is.

C. The aging models

The aging models control the state of health of the battery
(SoH ∈ [0, 1]) during its interactions with the system. They
define the appropriate time to replace the degraded battery.
In this study the replacement threshold corresponding to the
battery End Of Life (EOL) is set to 80%, which means the
battery is replaced when SoH falls below 80% (we know that
stationary storage can be pushed to around 40%). However,
the models used in this study do not take account of the rapid
degradation phase. Furthermore, since the rate of degradation
increases substantially shortly after our 80% threshold, with
the curve forming a ”knee” [8], we believe it is best to limit
this study to an area for which aging is better known.

For this study, 4 aging models have been implemented.
They are presented in an increasing order of captured aging
dynamics.



1) Fixed lifetime model (FL): This first model simply
assumes that the battery has a fixed lifetime. At the end of
its life, the SoH drops from 100% to EOL, and the battery is
replaced.

The next three models implement at least a cycle aging
related to battery usage and a calendar aging associated with
the elapsing time. While the cycling degradation model is
different for each aging model, the calendar degradation model
is common to all of them and expressed as a linear degradation
extracted from the time stress function of [5] and similar to
[6].

∆cal(t) = 1− et·ccal (2)

with ccal = 1.49 · 10−6 and t being the time in hours.
2) Exchanged Energy model (EE): In this second model

from [3] the battery state of health is a function of a total
amount of exchangeable energy and the part of it already
exchanged. The maximum exchangeable energy Eex

tot depends
on the achievable number of cycles N cycle

tot for a fixed Depth
of Discharge (DoD) and on the total capacity of the battery
Enom,

Eex
tot = 2 ·N cycle

tot ·DoDmax · Enom (3)

where DoDmax is the maximum depth that a half cycle
(charge or discharge) can reach. It is calculated via:

DoDmax = SoCmax − SoCmin (4)

In order to determine the parameter N cycle
tot we use the

number of cycle-to-failure (NCF) curve from [5] giving the
number of cycle before reaching EOL = 80%. Thus, thanks
to this curve, we obtain N cycle

EOL verifying the following relation
N cycle

tot × (1 − EOL) = N cycle
EOL . The hourly cycle degradation

is then computed according to the following equation with Ph

being Li-ion charge/discharge power in hour h.

∆cyc(h) =
Ph ·∆h

Eex
tot

(5)

The SoH is finally computed as:

SoHh+1 = SoHh −∆cyc(h)−∆cal(∆h) (6)

3) Rainflow model (RF): In this model inspired by [4] the
per cycle degradation is evaluated by a Rainflow count. The
method consists in calculating a fatigue as a function of a
SoC profile

−−→
SoC, in order to update the SoH. More precisely,

the total fatigue is obtained by adding the fatigue associated
to each half-cycle (charge or discharge) of the profile. The
induced fatigue is a function of the depth of the half-cycle
in question. In order to collect this profile, the calculation of
this fatigue is periodically performed once a month (every
∆m). The

−−−−−→
SoCy,m profile of the previous month SoC must

be processed to extract a vector containing the DoD of each
half-cycle performed during that month. Further explanation
of this process can be found in [4].

The value of the fatigue generated during the past month
is then obtained via (7) where

−−−→
DoD is the vector of DoDs

associated with the SoC profile:

∆cyc(m) =

|
−−−→
DoD|∑
i=1

1

2 ·NCF (
−−−→
DoDi)

(7)

The factor 2 in the denominator comes from our choice
to consider half-cycles, while the NCF function provides,
via the NCF curve associated with the battery and generally
supplied by the manufacturer, the number of cycles achievable
for a given DoD before EOL.

Finally, adding the calendar degradation gives us this final
equation for monthly update:

SoHm+1,h = SoHm,H −∆cyc(m)−∆cal(∆m) (8)

4) Semi-Empirical Model (SE): This model from [5] in-
corporates empirical and physical degradation parameters. It
differs from other models because it takes account of the
electro-chemical reaction taking place within the battery at the
beginning of its life, caused by the consumption of Lithium
ions and electrolyte solvents which form the passivation layer
called Solid Electrolyte Interphase (SEI). This layer is essential
for the longevity of the battery, as it protects the graphite from
direct contact with the electrolyte, but continues to grow and
thus degrades the battery capacity during its life [9] .

The general formula to compute the degradation for a new
battery is given by :

SoHt = αsei · e−βsei·fdt + (1− αsei)e
−fdt (9)

with fdt being the global stress undergone by the battery until
time t and depending on 4 parameters: the average depth of
discharge DoD, the elapsed time t, the average state of charge
SoC and the temperature T . Hence we consider fdunit as the
unit equivalent associated with a single half-cycle. Therefore
we define fdt as the sum of fdunit for each half-cycle up to
the instant t. fdunit is calculated via the following equation:

fdunit = [0.5 · SDoD(DoD) + St(t)] · SSoC(SoC) · ST (T )
(10)

where Sx are the stress functions defined in [5] which allows
the calculation of the stress associated with each parameter.

In this work, the influence of the temperature is not taken
into account. Hence, the temperature stress function is equal
to 1 (T = Tref ) during the simulation. We are aware of its
primordial nature (as stated e.g in [10]) and choose to assume
that in a stationary environment temperature can and should
be kept as close as possible to Tref = 298.15K.

5) Calibration of models for meaningful comparison: In
order to make our models comparable, we have chosen to
configure them using common data. The main resource is the
NCF curve for a NMC battery of [5] used to parameterize the
cycling degradation of Rainflow and Semi-Empirical models.
Finally, for the Exchanged Energy model, we take from this
NCF curve the number of cycles achievable for a DoD of 60%
(DoDmax), thus obtaining the parameter N cycle

EOL .



D. Coupling between energy models and aging models

4 types of coupling are considering as follow :
• The absence of coupling.
• The energy (E) coupling, which induces a loss of capacity

for the battery and defined as follows: E(t) = Eini ·
SoHt.

• The internal resistance (R) coupling, which induces a loss
of efficiency by a linear decrease as proposed in [6] or
[7] via: η(SoHh) = ηini − 1−SoHh

4 with an initial
efficiency ηini of 95%.

• The E and R (ER) coupling which applies both simulta-
neously.

III. DESCRIPTION OF OUR CASE STUDY

A. The microgrid

We consider a microgrid with storage represented in Fig. 2
to observe the impacts of the battery modeling on the various
techno-economic indicators. The choice of a simple case study
operated with a trivial management policy allows us to conduct
our analyses over a 20-year horizon with an hourly time step.
The system sizing variables are:

• Ebat [kWh]: The battery size.
• Ppv [kWp]: The peak power of the photovoltaic panel.
• Psub [kVA]: The subscribed power which, if exceeded,

will generate additional costs.

B. Techno-economical metrics

We evaluate the system from two main indicator, the cost
of the system and its self-sufficiency level.

1) Renewable Energy Share (RES): The solar production
share is a metric of the system self-sufficiency, it measures the
share of energy supplied by the PV panel in the total energy
consumption of the system. Since the system has two possible
suppliers, PV panel or grid, this share is obtained from its
complement (the grid share) :

RES = 1−
∑

P g,+

P load
(11)

2) System costs: The cost metric used in this study is the
Net Present Value (NPV). For its calculation we define Ci

y ,
Co

y , respectively the investment and operating costs for year y.
Cs

Y is the residual value of the equipment, calculated at the
end of the time horizon y = Y (non-zero only for y = Y ).

Storage

Demand

Generation

Grid

Fig. 2. Simplified diagram with power flows of our microgrid.

For the battery, a linear decrease of its value is considered,
reaching 0% at EOL. Finally, the discount rate is set at 4.5%.
We deliberately exclude from the calculation the cost Cbase

y

(the cost of meeting demand over the simulation horizon by
relying exclusively on the grid) because it is independent of
the battery modeling choices. The modified NPV, NPV* is
then defined by (12).

NPV ∗ =

Y∑
y=1

(−Ci
y − Co

y + Cs
y)

(1 + τ)y
(12)

C. Key data associated with costs

• Subscription cost (made continuous by inter/extrapolation
for analysis purposes): 6 to 36 kVA for 144 to 494 C/year

• Electricity tariffs VAT included for peak hours (with a
0.75 factor for off-peak hours) : 0.19 C/kWh.

• Cost of exceeding the subscription limit per hour of
excess: 11.11 C

• Cost of PV cells: 1300 C/kWp [11]
• Cost of the Li-ion cells : 300 C/kWh [11]
• Selling price : 0.01 C/kWh

D. Details about our simulation environment

In order to simulate the use of the microgrid and be able
to carry out analysis on our models, we use a set of 20-year
scenarios with an hourly time step. They provide for each
hour the energy demand and solar radiation. Their generation
is done according to the method described in [12] with data
from Ausgrid of 20 consumers over the years 2010 to 2012.

Battery energy operation is performed as follows:
• In case of surplus (P load

h − P pv
h < 0) the battery is

charged. If its SoC is above SoCmax, the difference is
sold to the grid.

• In case of a deficit (P load
h − P pv

h > 0) the battery is
discharged. The grid takes over if it reaches SoCmin.

Finally, we need to provide its sizing parameters. Assuming
that the magnitude of the observed effects may depend on the
size of the assets, the subscribed power Psub is fixed at 10 kVA
and the values of the couple (Ppv , Ebat) are generated by a
Sobol sequence whose bounds are min = (5,10), max = (50,80)
in order to cover the space under consideration as uniformly
as possible despite a small number of sizings. Thus 64 designs
are generated. By associating these sizings to our scenarios,
we provide a set of 512 input configurations (64 sizings x 8
scenarios) to simulate the microgrid.

IV. RESULTS

A. Comparison of Aging models on Artificial SoC profiles

In this section, aging models are compared according to
the artificial SoC profiles of Fig 3. Those profiles which
are voluntary simple allows characterizing the effect of the
following variables related to the cycles: average state of
charge, depth of discharge and frequency.

Fig. 4 shows the strong effect of the average SoC only
modeled in the Semi-Empirical model in which, above the
reference value (here set to 0.5) accelerates aging, while on the
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Fig. 4. Lifetime before reaching EOL of batteries undergoing artificial SoC
profiles from Fig. 3.

contrary, is slowed down when the battery is operated below
the reference value. Best example are comparing profiles 2
with 3 and 4 with 5.

Note that if, out of all the profiles, the Semi-Empirical
model is generally the one with the shortest lifetime, it is
because it incorporates an additional irreversible degradation
due to the formation of the SEI. The only cases contradicting
this statement are those where this effect is compensated
by the effect of the average SoC mentioned in the previous
paragraph. This is observable on profiles 3 and 5 as well as
their equivalent 9 and 11.

Because Semi-Empirical model is taking account of all the
aging factors considered in this study, its ER coupled version
is hereafter taken as a reference model. Now that we have
observed how the models react to artificial profiles depending
on their aging factors, let us observe the impact of coupling
on those factors.

B. Impact of coupling on aging factors

In order to explain the potential impact of model coupling,
a linear SoH degradation of 10% per year was staged and
substituted for the aging models. This was done in order to
observe the evolution of the influencing factors of our aging
models and the techno-economic indicators under the effect
of the different couplings. The above-mentioned influencing
factors are the amount of exchanged energy, the DoD and the
average SoC. Although the EOL of the battery is set to 80%,
we observe these effects over the interval SoH ∈ [100%, 40%]

in order to further understand the dynamics. The intervals are
plotted to visualize the extent to which these effects can vary
due to the simulation input parameters.

All following results in this section are expressed as a
percentage change from a baseline, in this case the absence
of coupling. In addition, it may be confusing, but a DoD of
30% undergoing a 10% growth due to coupling will result in
a DoD of 33%.

1) Battery Exchanged Energy: Fig. 5 shows an almost
perfect correlation between the amount of energy exchanged
with the capacity of the battery due to E coupling. As expected,
when capacity decreases, storage is reduced and thus the
amount of energy stored and subsequently delivered also
decreases. The energy exchanged by the battery is not really
affected by the efficiency, the effect is even further reduced
when the two couplings are combined.

2) Cycle Depth of Discharge: Fig. 6 shows that for a
consistent annual demand, the decrease in capacity caused
by E coupling leads to an increase in DoD. The increase
appears relatively linear, however the impact on battery life
is superlinear, with higher cycles resulting in greater fatigue
per percent of DoD.

3) Cycle Mean SoC: Fig. 7 shows opposite effects on the
average SoC, with E coupling leading to an increase and
R coupling to a decrease. The variations caused by these
couplings remain very small, however, the fact that they
compensate each other almost nullifies the ER coupling effect.

4) Energy Purchased: This section studies the impact of a
techno-economic influence factor. Indeed, one can expect that
the decrease in capacity and therefore in the energy exchanged
leads to an increase in the energy purchased and thus in the
cost. This can be seen in Fig. 8 which shows an opposite
effect to the one observed in Fig. 5. It is logical that for years
with the same demand, a decrease in the amount of energy
exchanged results in a similar increase in energy purchased.
In addition, the grid has to compensate the missing energy due
to the decrease in efficiency caused the by R coupling.

It is noticeable that the intensity of the E coupling depends
on sizing while the intensity of R coupling mostly does not
(see the interval bands in Fig. 5 to 8). Also it is important
to keep in mind that the intensification of an impact factor
by decreasing the SoH creates a positive feedback loop, also
known as a snowball effect (e.g. Rainflow, with the DoD).
However, the opposite effect can also exist, e.g. the Exchanged
Energy model where the feedback is negative, with aging
causing the amount of exchanged energy to decrease.

C. Measuring the deviation from a reference

Here we measure the gaps in the assessment of the techno-
economic indicators of our models in comparison with a
reference. The chosen reference is the Semi-Empirical aging
model with the ER coupling for aforementioned reasons, see
Section IV-A) We measure the percentage deviation from the
reference, according to different metrics. For each model con-
figuration (aging, coupling), 512 simulations are performed.
It is important to remember that the cost results could be
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different with other input values (for the price of battery cells,
or grid prices for example). Nevertheless, we try to show the
kind of effect that could be expected by modeling batteries
with different levels of accuracy.

Fig. 9 displays part of our results, firstly it shows that the
metric mainly impacted by the level of modeling seems to
be the NPV*. Meanwhile the RES is mainly affected by the
choice of incorporating or not the coupling.

Secondly, we observe that the dispersion of the deviations
for the cost metric is quite large and that its amplitude
increases when the models incorporate fewer features, up to
approximately [−25,+10]% with the Fixed Lifetime model.
The deviation can be positive or negative although it is mostly
negative. Not incorporating the coupling increases the trend
towards the negative part. This results in an underestimation
of the cost due to an overestimation of the life expectancy
of the battery, which ultimately leads to an increased amount
of purchased energy (as shown in Fig. 8) as well as fewer
replacements (or a higher salvage value).

Finally we can measure the effect of modeling the coupling
alone by comparing the reference to its equivalent without
coupling.

D. Quantitative differences but qualitative similarities?

The quantitative deviations of the battery models investi-
gated in the paper have been characterized in the previous
section with regard to the RES and NPV* criteria. We now
examine the qualitative differences of those models with
respect to the microgrid configurations and real scenarios of
Section III-D. For each model, 512 simulations are carried out



and sorted in ascending order of the considered criterion (i.e.
RES or NPV*). The similarity of the rankings between two
models i and j is estimated using the Spearman correlation
defined as follows:

rij = 1− 6

n(n2 − 1)

n∑
k=1

d2k (13)

where n = 512 is the total number of tests and dk denotes
the difference between two rankings in the sorts. A value of
rij close to 1 indicates similar rankings (i.e. same behavior
between models i and j) while a value of rij close to 0 means
that both models are totally uncorrelated.

TABLE I
SPEARMAN CORRELATION COEFFICIENT FOR COST (NPV*) RANKINGS

BETWEEN CONFIGURATIONS. LEGEND: ∅ IS THE ABSENCE OF COUPLING
AND ER MEANS BOTH COUPLINGS (E AND R)

Model FL EE RF SE
Coupl. ∅ ER ∅ ER ∅ ER ∅ ER

FL ∅ 1
ER 1 1

EE ∅ .96 .96 1
ER .97 .97 .98 1

RF ∅ .97 .97 .98 .99 1
ER .95 .95 .99 .98 .98 1

SE ∅ .90 .90 .95 .94 .93 .95 1
ER .88 .88 .94 .93 .92 .94 .99 1

Table I compares 8 battery aging models with respect to
the rij coefficient and NPV* criterion. It can be seen that
Spearman coefficients are relatively high leading to similar
behaviors. Without surprise, the lowest coefficient is between
the fixed lifetime model (considered as the less quantitatively
accurate) and the Semi-Empirical model (supposed to be the
most quantitatively accurate). Nevertheless, it should be noted
that this conclusion may depend on the choice of the economic
factors considered. This result should be confirmed by an
additional study of economic factor sensitivity but it is not
within the scope of the paper. The results of the Spearman
coefficient associated with the RES are not displayed because
all values are higher than 0.99 which implies a perfect
similarity between all models. This can be justified by the
small quantitative differences and low dispersion noted for that
criterion in Fig. 9.

V. CONCLUSION

In this paper, several battery models integrating energy
efficiency and aging have been compared in the frame of
microgrid design. In particular, the quantitative and qualitative
differences have been analyzed for a simple microgrid with
respect to the RES and NPV* criteria considering artificial and
real SoC profiles. Results show that the Semi-Empirical model
is probably the most accurate reference including various
aging effect (SEI degradation, mean of SOC cycles, cycle
frequency). However, the similar trend and behavior noted
from the qualitative study suggest that it can be substituted
by the exchangeable energy model avoiding the cycle counting
which can drastically increase the CPU time and the nonlinear

features in a microgrid optimization process. We will try to
verify this hypothesis in the perspective of this paper by
investigating the optimal design of a simple microgrid with
each model. The present study will also be extended to more
refined energy models such as the tremblay-Dessaint battery
model [13] including aging, loss of capacity and loss of
efficiency.
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