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Abstract. Until humanity succeeds in massively producing clean energy to satisfy its 
inexhaustible needs, one of its biggest challenges is to save and use its resources as 
efficiently as possible. With outdoor lighting being responsible for 2% of worldwide 
electricity consumption, smart urban lighting has recently gained a lot of attention in 
this respect. As an integrated part of smart cities, smart urban lighting rests on the 
anal-ysis of sensed data to tackle highly dynamical problems. This sensed data shapes a 
representation of the environment in which the smart system will have to perform. To 
reduce problem complexity, distributed solu-tions commonly apply local lighting 
policies and therefore benefit from the knowledge of the geographical positioning of the 
relevant streetlights in the environment. In this paper, we propose an adaptive multi-
agent approach that aims at ensuring the robustness and coherence through time of the 
smart system’s environment representation. Our approach leverages real time series 
data returned by streetlight sensors informing on vehicles and pedestrians traffic. We 
exploit this data to perform a structural reconstruction of the streetlight “fleet” 
topology without any a priori knowledge about its internal structure. We then ensure 
its cor-rectness through time by handling internal structure changes in order to 
continuously provide a coherent foundation for the smart lighting system to perform 
upon.

Keywords: Multi-agent systems · Self-adaptation · Structural network 
reconstruction · Smart lighting · Smart cities

1 Introduction

To combat the upcoming environmental crisis, our biggest challenge probably
still resides in saving and using our resources as efficiently as possible. With
outdoor lighting being responsible for 2% of worldwide electricity consumption,
smart urban lighting recently gained some attention in this respect [15].
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Smart Cities and Smart Lighting. Recent breakthroughs in light emitting
diodes (LEDs) offered smart urban lighting the means it was lacking. Not only
do LEDs offer long lifetime and low energy consumption compared to traditional
streetlight technologies but they also provide much easier control opportunities
[9]. First solutions benefited from the implementation of light sensors within the
streetlights to strictly limit urban light use to low natural light situations. As
an integrated part of smart cities however, smart urban lighting state of the art
solutions nowadays rest on the analysis of more complex and informative sensed
data [11] to adapt the light to different users: motion detectors can generate data
informing about urban users’ trajectories, their speed and their type (vehicle,
cyclist or pedestrian). Moreover, in order to fully profit from such highly infor-
mative data and reduce problem complexity, an increasing number of distributed
solutions focus on applying local context-aware lighting policies [9].

These solutions therefore benefit from the knowledge of the geographical posi-
tioning of the relevant streetlights in the environment. More specifically, in the
already existing smart lighting solution that this research is aiming to support,
each streetlight is not only capable of detecting the presence of a user in the
street but also of communicating any relevant information to its nearest neigh-
bors. This communication allows streetlights to preemptively light up before
they even detect any user activity, in an effort to guarantee their comfort and
safety.

To ensure fluid communication however, every streetlight needs to be aware
of the identity, positioning and distance of its relevant neighbors. This requires
a precise manual configuration at the time when the technology is deployed,
which is hardly realistic considering how streetlights are deployed and maintained
in practice. Moreover, if the neighborhood happens to change (failure, street
works...) or if the sensors are moved or reset, this cumbersome configuration
step has to be repeated. We therefore propose an automatic solution capable of
determining each streetlight’s local neighborhood.

Multi-agent Systems (MAS) are a decentralized approach, based on self-
organisation mechanisms, where the calculation task is distributed over agents
which are virtual or physical autonomous entities (more complete definitions of
an “agent” are given in [12] and [5]). Each agent has only a local point of view of
the problem it is solving, corresponding to a local goal. This particularity enables
to easily distribute calculation tasks in the resolution process and consequently
reduces computational costs. That is why multi-agent approaches are preferred
where centralized approaches have limited flexibility and scalability.

Multi-Agent Systems are used in a wide variety of real-world application
domains: optimization algorithms [3], power systems [8], complex networks and
IoT [6], smart manufacturing [1], multi-robot systems [13].

We propose to adopt the Adaptive Multi-Agent Systems (AMAS) [2] theory
where cooperation [7] is the engine that drives the behavior of an agent and the
emergence of a global functionality.



2 Real-World and Simulated Environment

The research is conducted using both simulation software and real world data
collected from already deployed streetlight smart sensors.

Kara Sensors. Kara is a smart urban lighting technology deployed in more
than 40 cities across France and developed by Kawantech (www.kawantech.com).
Their technology already guarantees a minimum energy saving of 55% on a LED
streetlight since they ensure that streetlights fully light up only when user pres-
ence is detected. The system consists of an optical sensor such as a low defini-
tion camera combined with a calculator unit and is directly mounted into each
individual streetlight. The smart system uses real time informative data about
moving entities in the urban environment to monitor the streetlight’s light level.
Moreover, the solution implements a variety of telecommunication technologies
such as Wi-Fi, LoRaWAN or DASH7. DASH7 ensures communication between
Karas in order for streetlights to exchange information and potentially preemp-
tively light up before they even detect any user activity.

In the scope of this paper, which objective is for each streetlight to be able
to determine its local neighborhood, we leverage Kara’s real time capabilities
to inform about the presence of moving entities in the street, their positional
tracking within the embedded camera’s field of view as well as their speed and
all associated timestamps.

Environment Simulation with GAMA. GAMA is a free, open-source sim-
ulation software designed for spatially explicit agent-based simulations devel-
opment [4]. We use it to simulate the university campus in which the Kara
technology is currently being deployed, as well as to generate and simulate var-
ious fictional urban lighting topologies. Fig. 1 shows such a fictional topology
example in which simulated users can navigate and streetlights inform about
real time user traffic just as if they were equipped with Kara sensors.

3 Objective and Methods

The objective of the research is to develop a solution that would lead each street-
light to identify and position its nearest neighbors without any prior knowledge
of their identity. By taking advantage of time series data observed by Kara
sensors, not only would the solution perform structural reconstruction of each
streetlight’s local neighbors topology but also continuously ensure its coherence
through time. Motivated by the fact that the knowledge of each streetlight’s
neighborhood is the very foundation of the smart lighting system’s functioning,
the solution would aim at improving overall robustness through a more generic
approach. It would therefore handle dynamic internal structure changes within
local topologies, as well as estimate distances and relative positions between
streetlights through time. Because of the dynamic and distributed nature of the
problem, we tackle it with an Adaptive Multi-Agent System approach.



Fig. 1. Example of a fictional but realistic urban lighting topology simulation in
GAMA. Yellow squares representing streetlights are positioned alongside traffic axes
represented by black lines. Black, green and red circles respectively represent pedestri-
ans, bikes and motorised vehicles (Color figure online)

3.1 Agent Modelling and Formalisation

We define an agent as an independent entity corresponding to a streetlight on
which a Kara sensor has been mounted. An agent can therefore acquire data
about user traffic happening in the street where it is located, and communicate
its observations to other agents. The criticality of an agent is defined by how
far an agent is from its local goal. In order to maintain a low level of criticality,
each agent has to accurately identify and position its nearest neighbors in the
environment. By comparing their respective sequences of observations and quan-
tifying their correlation, two agents can gather knowledge about the likelihood
of them being neighbours as well as, if applicable, their relative positioning in
the neighborhood (distance and direction).

An agent is able to detect user activity in the street where it is located and
can store this information in its local memory, hence forming time series data
referred as O, an array of observations:

O = (o1, o2, o3, ..., on) with oi = (si,
−→vi , ti) i ∈ [1, n] (1)

where si is the user’s speed and −→vi its average direction at ti, the associated
timestamp. An observation oi is removed from the internal memory of the agent
after a given time Δt. The agent also holds a list of contacts C = (c1, c2, c3, ..., cp),
representing other agents with whom communication is possible. The agent is



able to send its observations O to its contacts at any time as well as to receive its
contacts’ observations. With every contact ck, the agent associates three values
confk, distk and

−−→
dirk where:

– confk is the confidence with which the agent assumes ck to be part of its
neighborhood,

– distk is the estimated distance between the agent and ck,
–

−−→
dirk is the estimated direction in which ck is situated relatively to the agent.

If confk happens to become greater than an empirically determined thresh-
old δconf , the agent considers ck as a neighbor situated at a distance distk in the
direction

−−→
dirk. The objective of the agent is to accurately estimate these three

values for every contact in order to correctly reconstruct its neighborhood’s
topology. For the specific estimation of distk, the agent uses an additional explo-
ration distance λk, as well as a memory of optimal estimated distances Λk.

3.2 Local Neighborhood Discrimination

In order to understand the topology of its neighborhood and discriminate neigh-
bors from simple contacts, the agent compares its observations with its con-
tacts’ observations through communication. This comparison enables the agent
to update confk, distk, λk and

−−→
dirk associated with the involved contact ck.

Ghost Observations. When an agent receives observations Ok =
(ok1 , ok2 , ok3 , ..., okm

) with oki
= (ski

, −→vki, tki
) as defined in Eq. (1) from a contact

ck, four arrays G1, G2, G3 and G4 referred as ghost observations are computed
as follows:

Gj = (gj1 , gj2 , gj3 , ..., gjm
) j ∈ [1, 4]

with gji
= (τji

,−→vki
) i ∈ [1, m] where τji

= tki
− dj

ski

(2)

and d1 = distk

d2 = λk − Δλ

d3 = λk

d4 = λk + Δλ with Δλ a given small distance.

Gj therefore represents the observations the agent should have made if ck is
indeed a neighbor and if the distance dj between them is accurate.

Paired Observations. Each Gj is then compared to the actual agent’s observa-
tions O = (o1, o2, o3, ..., on) as defined in Eq. (1). This comparison is performed
to determine which distance dj ensures the best correlation between the agent’s
observations O and its contact’s observations Ok. The objective is therefore to
converge with steps of size Δλ towards the real distance, if it only exists, after



several communication rounds. Four arrays P1, P2, P3 and P4 referred as paired
observations are then computed from G1, G2, G3, G4 and O as follows:

Pj = (pj1 , pj2 , pj3 , ..., pjm
) j ∈ [1, 4] with pji

= (gji
, ωji

) i ∈ [1, m] (3)

where ωji
∈ O = (o1, o2, o3, ..., on) is the agent’s observation for which |τji

−
tl|l∈[1,n] is minimum, τji

being the timestamp of the current ghost observation
gji

and tl the timestamp of ol for l ∈ [1, n]. This results in every ghost observation
gji

∈ Gj being matched with the temporally closest agent’s observation ωji
∈ O.

Not every oi ∈ O is however necessarily matched with a ghost observation and
several ghost observations can be matched with the same agent’s observation.

Each array of paired observations Pj is then used to compute three scores
referred as matchj , gapj and ratej .

Match. This score corresponds to the proportion of observations that have
successfully been paired with a ghost observation out of all observations. We
note matchj = Nj

n with Nj the number of observations in O that have been
paired with a ghost observation in Gj and n the overall number of observations
in O. We consider matchA better than matchB if matchA > matchB .

Gap. This score corresponds to the average absolute time difference between a
ghost observation’s timestamp and its associated observation’s timestamp.

gapj =
1
m

m∑

i=1

|τji
− tji

| (4)

with τji
the timestamp of gji

and tji
the timestamp of the associated ωji

, for
i ∈ [1,m] and m the number of paired observations in Pj . We consider gapA

better than gapB if gapA < gapB .

Rate. This score corresponds to the proportion of paired observations for which
the absolute time difference between the ghost observation’s timestamp and its
associated observation’s timestamp is less than or equal to δt, a given tolerance
threshold, out of all paired observations. We note ratej = Mj

m with Mj the
number of paired observations in Pj for which |τji

− tji
| < δt and m the overall

number of paired observations in Pj . We consider rateA better than rateB if
rateA > rateB .

The paired observations Pbest is chosen out of P1, P2, P3 and P4 resulting
in the best rate, match and gap, by this order of priority. This represents the
criticality of the agent whose goal is thus to improve it by modifying its position
as described in the following.

Confidence Update. The confidence confk with which the agent assumes ck

to be part of its neighborhood holds a gliding average of the S most recent rates



the agent evaluated. The current ratebest resulting from Pbest is therefore used
to update confk as follows:

confk ← confk − confk − ratebest

S
(5)

Moreover, if confk becomes greater than the threshold δconf then ck is now
considered as a neighbor by the agent. The contrary leads ck to be considered
as a regular contact.

Direction Update. The estimated direction
−−→
dirk in which ck is situated rela-

tively to the agent holds a gliding average of the S most recent relevant directions
the agent evaluated. Are considered relevant the users directions in the paired
observations in Pbest for which |τbesti

− tbesti
| < δt for i ∈ [1, n]. The average

direction −−→μbest resulting from these relevant users directions is therefore used to
update

−−→
dirk as follows:

−−→
dirk ← −−→

dirk −
−−→
dirk − −−→μbest

S
(6)

Distance Update. The exploration distance λk previously used to compute
the ghost observations G2, G3 and G4 is simply the most recent best evaluated
distance dbest from which Pbest is originated. This distance dbest is therefore used
to update λk as follows: λk ← dbest.

Moreover, if ratebest > 0, dbest is saved in the optimal estimated distances
memory Λk. The update of the estimated distance distk between the agent and
ck then requires to sample a random value λsp from this optimal estimated
distances memory Λk. This sampled distance λsp is then used to update distk as
follows: distk ← distk + sgn(λsp − distk) · Δdist where sgn is the sign function
and Δdist a given small distance.

Although the exploration distance λk is quite sensitive to dynamic noise and
can quickly deviate from the real distance between the agent and ck, distk is
at all time converging with steps of size Δdist towards one of the most optimal
estimated distances stored in Λk. We therefore consider λk as a good tool to
ensure exploration and distk as the most relevant and robust estimated distance
between the agent and ck.

3.3 Evaluation Metrics

We use a number of metrics to evaluate our topology reconstruction performance.
Three criteria are taken into account:

– the correctness of the neighbors discrimination,
– the accuracy of the estimated distances between the agent and its neighbors,
– the accuracy of the estimated directions in which the neighbors are situated

relatively to the agent.



Neighbors Discrimination. For a given agent with N true neighbors and
Ne estimated neighbors, we name PT the number of true positives and PF the
number of false positives within the estimated neighbors. We use these basic
quantities to build two standard metrics referred as RTP (true positive rate)
and Precision [10] as follows: RTP = PT

N and Precision = PT

PT +PF
= PT

Ne

Distances Estimation Error. For a given agent with N true neighbors, the
local distances estimation error is the average absolute difference between the
estimated distances and the real ones, for all N neighbors.

Directions Estimation Error. For a given agent with N true neighbors, the
local directions estimation error is the average absolute difference between the
estimated angles and the real ones, for all N neighbors.

4 Results and Discussion

Confidence Threshold Determination. For the solution to function once
deployed, there is no strict need for the streetlights to be able to discriminate neigh-
bors from regular contacts in a binary way. Indeed, since each streetlight associates
a neighbor confidence score with each one of its contacts, such a score can be used
in a flexible manner to infer a variety of different lighting policies depending on
the specific needs of the user. However, for the metrics to accurately evaluate the
reconstruction performance of the solution, it is necessary to perform a binary dis-
crimination between estimated neighbors and regular contacts. We thus provide
the agents with a confidence threshold δconf , whose role is to ensure such a dis-
crimination during the performance evaluation task only.

For a given network whose structure is to be reconstructed, Fig. 2 exhaus-
tively shows all confidence scores within the agent population after a simulated
period of 48 h (in the following, all durations are simulated). In this example, we
see that true neighbors have been given significantly higher confidence scores by
the system than regular contacts.

Fig. 2. Exhaustive confidence score distribution within the agent population after a
simulated period of 48 h for a realistic topology. Green lines represent confidence scores
associated with agents that have been validated as neighbors by humans (true neigh-
bors) whereas red ones represent those that are not. Indirect neighbors (i.e. a direct
neighbor is situated between them and the agent) are not displayed. The empirically
chosen threshold δconf is represented in blue. High confidence is correlated with true
neighborhood. (Color figure online)



Confidence score therefore appears to be a good tool to whether or not con-
sider a contact as a neighbor. Empirically, we choose δconf = 0.14 since this
value appears to accurately discriminate neighbors from regular contacts.

In the scope of the neighbors discrimination evaluation task in this sim-
ulated environment, we can therefore consider any contact with a confidence
score higher than 0.14 as an estimated neighbor, the contrary leading it to be
considered as a regular contact.

Global Reconstruction Performance (Simulation). To validate the global
reconstruction performance of our solution in a simulated environment, we
run multiple simulations on the same fictional urban lighting topology, shown
in Fig. 1. In Fig. 3, we demonstrate that with the chosen threshold δconf =
0.14, both our neighbors discrimination metrics RTP (true positive rate) and
Precision quickly increase and exceed 0.9 after a simulated period of 2–3 hours.
Precision tends to reach a rate of 1 after 2 h, which means that every estimated
neighbor is indeed an actual neighbor. However, it takes about a day for the
system to fill the gap between an RTP of 0.95 and an RTP of 1. This shows that
even if 5% of the true neighbors seem harder to identify, the system eventually
discriminates them correctly after some time. Moreover, we show that once the
system converges, it is not impacted by dynamic noise and durably maintains
both a Precision and an RTP of 1. This points out the absence of false positives,
as well as an exhaustive identification of all true neighbors.

Fig. 3. Evolution through time of RTP (true positive rate, on the left) and Precision
(on the right) for 15 simulation runs on the same fictional urban lighting topology. An
RTP of 1 indicates that all true neighbors are identified by the system and a Precision
rate of 1 indicates that all estimated neighbors are true neighbors (i.e. true positives)

In addition, Fig. 4 clearly shows the distances estimation convergence, with
an average absolute error smaller than 1 m after 12 simulated hours. The system
then reaches an average minimum distances estimation error of about 30 cm
(streetlights are usually situated at a distance between 15 and 35 m from each
others). With regard to the directions estimation error, it also significantly drops



in the first few hours, before reaching 1 degree of error in average after about
7 h. These low error values are maintained durably.

Fig. 4. Evolution through time of absolute distances estimation error (on the left) and
absolute directions estimation error (on the right) for 15 simulation runs on the same
fictional urban lighting topology

Global Reconstruction Performance (Real World). To test the global
reconstruction performance of our solution in a real world situation, we ran
experiments on real data collected by Kara sensors on two different occasions
in the same street. The urban lighting topology in question only consists of a
single street along which are located four streetlights, separated by a distance
of about 28 m in average. Since the topology is so simple, all streetlights share
the same neighborhood. Therefore, we do not study the neighbor discrimination
performance of our solution but focus on the distances and directions estimation
evaluation.

Figure 5 shows the distances estimation convergence on such real data, with
an average absolute error dropping somewhere between 3 and 5 m after 40 oper-
ating hours. With respect to the directions estimation error, it significantly drops
in the first few hours before reaching about 4 degrees of error in average after
14 operating hours. These values are maintained durably.

Discussion. We demonstrate that our solution performs particularly well in
the case of a simulated urban lighting topology, with close to perfect neighbors
discrimination evaluation rates and negligible absolute distances and directions
estimation errors after a few simulated hours. Because the studied topology is
sufficiently varied and realistic, these results suggest that the solution would
perform well on a grand variety of urban lighting topologies. However, further
simulations are needed to explore more specific topologies as well as scaling-up.



Fig. 5. Evolution through time of absolute distances estimation error (on the left) and
absolute directions estimation error (on the right) on two real world data sets

It is noteworthy that the agents only communicate the events they perceive,
and have no other information about their position nor do they sense the other
agents, as is the case in multi-robot topology reconstruction research [14].

When we test our solution in a real world situation, although the system still
converges, results are not as accurate as in a simulated environment, especially
in terms of distances estimation. While simulated user traffic may not be as real-
istic as real user traffic, simulated Kara sensors certainly collect more accurate
data about a simulated world than real Kara sensors do about the real one. In
this respect, uncertainties about the users detection timestamps, their speed as
well as their positional tracking in the real world are elements possibly explain-
ing the difference between our system’s performance in a simulated and a real
environment. In addition, we did not test our system’s neighbors discrimination
performance in a real world situation as Kara sensors are still being installed on
a larger scale.

5 Conclusion

In order to reduce computational costs as well as problem complexity, smart
urban lighting solutions commonly aim to adopt distributed approaches, imple-
menting local lighting policies within autonomous streetlights. In some cases,
the possibility for streetlights to exchange information offers opportunities for
more flexible and relevant lighting policies.

Motivated by the fact that the effectiveness of such local lighting policies
highly depends on the quality of each streetlight’s environmental representation,
we proposed, implemented and evaluated a solution that enables each streetlight
to continuously identify and position its nearest neighbors. We demonstrate the
performance of our solution when embedded in simulated environments and
obtain encouraging results when tested in a real world situation.

As Kara sensors are currently being deployed on the campus of our university,
we will be able to upscale real-world testing in the following months.
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