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Abstract

Surrogate modelling can alleviate the computational burden of design activities

as they rely on multiple evaluations of high-fidelity models. However, the learn-

ing task can be adversely affected by the high-dimensionality of the system,

complex non-linearities and temporal dependencies, leading to an inaccurate

surrogate model. In this paper we present an innovative dual-phase Long-Short

Term Memory (LSTM) Autoencoder-based surrogate model applied in an indus-

trial context for the prediction of aircraft dynamic landing response over time,

conditioned by an exogenous set of design parameters. The LSTM-Autoencoder

is adopted as a dimensionality-reduction tool that extracts the temporal features

and the nonlinearities of the high-dimensional dynamical system response, and

learns a low-dimensional representation of it. Then, a Fully Connected Neural

Network is trained to learn the simplified relationship between the input pa-

rameters and the reduced representation of the output. For our application, the

results demonstrate that our LSTM-AE based model outperforms both Princi-

pal Component Analysis and Convolutional-Autoencoder based surrogate mod-

els, in predicting the parameters-dependent high-dimensional temporal system

response.
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Nomenclature

Abbreviations

A/C Aircraft

DoE Design of Experiments

DSE Design Space Exploration

IQs Interesting Quantities

SM Surrogate Model

Acronyms

AE Auto-Encoder

CNN Convolutional Neural Network

FCNN Fully Connected Neural Network

LSTM Long Short-Term Memory

PCA Principal Component Analysis

POD Proper Orthogonal Decomposition

Symbols

xi vector of system parameters for the i-th DoE sample

Yi multivariate time series and dynamical response for the i-th DoE sample

zi vector of the reduced manifold space

NT number of time steps

Nx number of system parameters

Ny number of IQs time series

Nz dimension of the latent space

2



1. Introduction

The interweave between computer simulations, experimental data, and data-

driven methods is now one of the building blocks of the modern engineering.

Data-driven models expressing the behaviour of a complex system are the foun-

dation of Surrogate Models (SMs) [1]. Surrogate modelling aims at providing

a simple, fast and robust engineering instrument able to emulate the input-5

output relation of high-fidelity models, and thus it offers an efficient alternative

to costly processes as computational simulations or test campaigns. Indeed,

multi-departmental physical models lack the flexibility activities in which the

testing of different parallel scenarios is desired. Consequently, SMs can accel-

erate early-design engineering tasks such as design optimization [2, 3], design10

space exploration [4, 5], uncertainty analysis [6] and sensitivity analysis [7, 8].

Design Space Exploration (DSE) based on SMs can play a relevant role in the

design phase of the aircraft development life-cycle. In the airframe loads sizing

context, DSE based on SMs allows quickly addressing changes in loads envelope

with respect to considered changes of the design space. The methodology pre-15

sented in this paper has been developed in the context of a need to accelerate

the loads calculations in a set of given business scenarios. In particular: (i)

early design phase to understand the impact of the different design parameters

on the behaviour of the loads distributions; (ii) understand the potential loads

exceedances due to design changes between the different maturity gates of the20

A/C design phase. There is no application foreseen outside of this context, at

least for the time being. It could be possible to think of other use cases, as detec-

tion of flight mechanics simulation anomalies or airfoil aerodynamics prediction

[9, 10] in high-dimesionality, depending on the type of initial parameters that

are changed, whether they are pure design parameters or of any other nature.25

The data-driven SM is not supposed to completely replace the physical mod-

els for the aircraft sizing, but rather it represents a tool to support decision-

making in early-design phase. In this framework, using data-driven SMs guaran-

tees adequate speed in terms of lead time, early optimum design and uncertainty

3



management, which are top priorities in aerospace industry [11, 12].30

Despite the increasingly widespread use of data-driven SMs, a key problem

rarely covered relates to the cases where inputs and outputs of a system are

high dimensional objects [13, 14, 15], and of different nature [16, 17]: building

a surrogate model of a highly parametrized nonlinear dynamical system, as the

ground loads simulation model of a flexible aircraft, still remains an open ques-35

tion.

In this paper, SMs are designed to estimate the deterministic function f which

maps the system parameters x to the parameter-dependent response Y, i.e.

f : RNx → RNy×NT , where Nx represents the number of input parameters, Ny

the number of output variables, and NT the number of time steps. The time-40

series Y reflects the dynamic response of the system, whose behaviour over time

depends on an initial state defined by a set of the design parameters x (Fig.1).

Thus, the SM should be able to predict a multivariate time-series Y ∈ RNy×NT ,

from a vector of constant scalar values x ∈ RNx . Using data-driven techniques

to estimate the temporal evolution of a dynamical system, either from different45

initial conditions [18] or system parameters [19] has become an important topic

in the last years, as demonstrated by several studies in fluid mechanics applica-

tions [8, 18, 20, 21, 22, 23, 24, 25].

Classical data-driven techniques [26] can be severely affected by high-dimensionality

in two ways: directly, with a huge number of training samples, and indirectly50

by an increasing number of predictions that must be performed, leading to the

well-known curse of dimensionality [27] issue.

Dimensionality reduction techniques are often applied to alleviate the problem

of the high-dimensionality of the system by mapping the original problem space

to a suitable lower dimensional space. This transformation is employed to con-55

struct the SM directly in the reduced space, where the input-output mapping

can be easier to learn, thereby providing a more accurate surrogate model.

The combination of linear reduction methods such as Principal Component

Analysis (PCA) [28], also known as Proper Orthogonal Decomposition (POD)

[29], with data-driven machine learning models has resulted in relevant ap-60
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Figure 1: Surrogate modelling for computational efficient estimation of aircraft loads for

dynamic landing.

proaches for surrogate modelling of large-scale dynamical systems. This ap-

proach shows its limitation when dealing with nonlinear problems, since PCA

relies on learning linear projections as transformation of the data. To alleviate

the linearity constraints, unsupervised learning techniques, such as Kernel-PCA

[30, 31], IsoMap [32] or diffusion maps algorithm [33] are considered as nonlinear65

dimensionality reduction methods. However, besides the ”pre-image” problem,

they are often not capable of outperforming PCA [34, 35].

A more recent solution is represented by Auto-Encoders (AEs) [36]. An AE

is a multi-layered neural network, whose ”bottleneck” configuration forces to

identify the essential attributes of the input data, leading to an embedded rep-70

resentation in a lower-dimensional space called ”latent space”. The attractive

properties of AEs are: (i) the reduction mapping is learned jointly with the

inverse mapping; (ii) as data dimensionality is reduced by multiple nonlinear

transformation, AEs are able to describe the underlying nonlinear structure of

the data. Convolution AEs [37, 20] have been proven to be efficient in surrogate75

modelling applications dealing with high dimensional and spatially distributed

data, e.g. spatially discretized partial differential-equation models, typical of
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fluid mechanics applications. Even if Convolutional Neural Networks (CNNs)

are efficient for predicting time series [38, 39], they are not able to get both

short and long temporal correlations in situation where spatial neighbouring80

information is poor, because they treat time series as static objects. ”Long

short-term memory” (LSTM) [40] layers for the AE architecture have been

selected for this study after a careful investigation. LSTM network is a system-

identification based method, capable of capturing short-long time-delayed effects

[9] and thus dependency across time sequences, which are automatically mem-85

orized and embedded in the model. The same effect could be accomplished

by a deep feedforward multi-layer network but that would require collecting

the input vector across time and increasing the network size to look at long se-

quences, making its use harder or even intractable. Moreover, the characteristics

of our 1D time-series data does not justify the implementation of ConvLSTM90

[41]. Indeed, (i) they do not present properties of fluid flow simulations, or

2D image-like format simulations, where high-order spatial modes can be easily

captured; (ii) although ConvLSTM filter sharing operation can capture spa-

tiotemporal patterns, determining the right kernel dimension and the stride

step of convolutional operation is not a straightforward task, even tougher in an95

autoencoder setting where the configuration of the layers must be adjusted by

hand. Furthermore, using ConvLSTM would increase the number of parameters

proportionally to the filter window size with respect to LSTM, and finally would

require a pre-study to find the optimal size of sub-sequences to being processed

by ConvLSTM. Instead, short and long term temporal dependencies, which are100

widely present in the dynamic landing simulations, are automatically learnt

by LSTM network with relative effort on tuning the hyper-parameters. The

proposed methodology reflects the will of the authors to provide an enhanced

surrogate model for dynamic loads calculation. In aircraft loads modeling, POD

or PCA assisted surrogate modeling [42, 43] and Singular Value Decomposition105

(SVD) with Gaussian Process Regressor [44, 45] have been widely used to create

approximate models of time-varying load envelopes, showing interesting results

for uncertainty analysis. However the use of linear, ’variance-based’, dimension-
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ality reduction techniques is deficient with respect to the capability to identify

non-linear temporal dependencies of correlated loads. Furthermore, the strategy110

’one regressor-one coefficient’ to build locals models seems infeasible in a high-

dimensional context. Instead, a unique surrogate model would better capture

the global inter-correlations among multiple variables, essential for the predic-

tion of 1D and 2D envelopes.

In this paper a two-step learning strategy is proposed to tackle the shortcomings115

of previous data-driven techniques for loads prediction and fill the applicability

gap with methods implemented in fluid mechanics applications.

A Recurrent Neural Network AutoEncoder based on LSTM neurons is adopted

to extract the temporal features of a dynamic system response, encoding them

in a reduced manifold. A Fully Connected Neural Network (FCNN), known120

to be an universal approximator [46] and to scale well with a large number

of training samples, is then trained to map the input parameters space to the

lower-dimensional representation of the original space, i.e. its latent represen-

tation. This dual-step approach intrinsically produces more sources of error

(two mapping errors and error propagation), compared to a singular model125

strategy. Nevertheless, dimensionality reduction may provide a more accurate

model that has a lower error than a single-step surrogate approach, considering

the facilitated mapping relation between inputs and low-dimensional outputs

representation [4]. The combination of LSTM neurons and AE bottleneck ar-

chitecture allows capturing the inter and intra dimensional nonlinear temporal130

correlations of the multivariate time-series. This information is embedded in

a lower-dimensional space and used for the construction of the SM, allowing

for an easier training task and consequently providing better interpolation and

generalization capabilities.

The contributions of this work are three-fold:135

• A novel strategy to build a SM that combines LSTM-AE and FCNN to

predict a high-dimensional temporal correlated multivariate time-series

conditioned by an exogenous set of constant parameters.
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• Make a bridge between the studies on data-driven surrogate models for

fluid mechanics application and data-driven methodologies used for the140

estimation of correlated loads envelopes.

• To the best of our knowledge, this is the first work on adopting purely

deep learning techniques to predict dynamic aircraft correlated loads in a

large-scale industrial simulator context.

This paper is organized as follows. Section 2 reviews the literature related to sur-145

rogate modelling and their application combined with data-driven dimensional-

ity reduction techniques (Section 2.2). The section continues with a theoretical

background on LSTM autoencoders (Section 2.3). In Section 3, the problem

setting is introduced and the proposed approach described. The experiments

and the discussion of the results are presented in Section 4. Finally, Section 5150

concludes the paper with a brief summary and future research extensions.

2. Background

Our work is built upon previous models based on dimensionality reduction

techniques for surrogate modelling purposes. In this section, data-driven sur-

rogate modelling techniques are briefly introduced. Then a review is given on155

the use of hybrid PCA-based neural network model, as well as surrogate mod-

elling based on AutoEncoders application. Finally, a theoretical background on

LSTM autoencoder is provided, supporting the choice of using such approach

in this research.

2.1. Surrogate Modelling160

Surrogate modelling techniques aim at approximating the function relating a

set of independent input parameters to a set of parameters-dependent variables,

by exploiting the information within a dataset. The so-build SM is supposed

to learn and interpret the existing high-fidelity solutions for predicting the re-

sponse of the system for a new, previously unobserved input, in an agile and fast165

way. Data-driven surrogate modelling [47] does not need to explicitly formulate
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the physics mathematically, but rather it learns physical information only from

data gathered from previous high-fidelity experiments.

Traditional data-driven surrogate methods are powerful and flexible tools to

quickly investigate several points in the design space. Polynomial chaos ex-170

pansion regression [48, 49], Gaussian process regression (GPR) [50, 51] and

fully-connected neural networks (FCNNs) [52, 53] have been widely used in

aerodynamics [54, 55] and aircraft loads estimation [56, 57, 58]. These methods

are characterized by versatility, low evaluation cost and easy handling. How-

ever, their learning task suffers the high-dimensionality of the problems for both175

the size of the training samples and the number of variables to predict. For ex-

ample, in the case of Gaussian Process, computing the inverse of the covariance

becomes challenging when the dataset is too large. This limits the maximum

number of training points that the method can handle, which in turn limits the

accuracy that can be achieved when many training points are available [13, 59].180

2.2. Dimensionality reduction and Surrogate Models

Classical data-driven models can suffer from the high-dimensionality of the

learning problem, where the dimensionality refers to the number of the overall

values of a single system observation to be processed by the model. Learning

about interdependencies of system state between input and output space rep-185

resents itself a difficult task. Considering the temporal dimension makes the

learning problem even harder: the input-output mapping capability is impacted

by the increasing number (by a factor NT ) of the overall values (e.g., temporal

observations of physical quantities), and by the temporal dependencies among

variables. To solve this problem, dimensionality reduction techniques [34] have190

been applied to produce lower dimensional data containing sufficient informa-

tion to enable an easier learning task, leading thus to a more accurate surrogate.

In the next section, prior research on surrogate models build with a PCA (or

POD)-based approach and its non-linear derivatives is reviewed. Then, the

use of convolutional autoencoder-based dimensionality reduction for surrogate195

modelling is investigated. This review, in addition to providing the reader with
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a background on the use of dimensionality reduction for surrogate modelling,

highlights also the disadvantages in using the mentioned techniques for our case

of study.

2.2.1. Hybrid PCA-based model200

A widespread family of approaches relies on the projection of data in a

reduced subspace spanned by a set of orthonormal basis vectors and the corre-

sponding modal coefficients. Particularly, such approach consists in training the

machine learning model to map the input parameters to the reduced coordinates

associated to the truncated basis functions capturing a certain amount of vari-205

ance (energy) from data. In [8], a data-driven surrogate modelling framework

was developed to emulate spatio-temporal gaseous and spray fields using Gaus-

sian Process techniques over the POD-reduced numerical simulation data. In

[60, 61] the authors propose a non-intrusive reduced basis method, where a GPR

is used to approximate the POD projection coefficients. For the prediction of210

steady turbulent aerodynamic fields, local reduced-order models have been built

for each input parameter subspaces using POD coupled with GPR [7]. In [44], a

singular regressor is used for each column of the reduced matrix containing the

left singular vectors resulting from the application of Singular Value Decompo-

sition (SVD) to the time histories of the observable outputs. Similarly, in [62]215

Kriging-based surrogate models for each specific sensor are performed over the

Power Spectrum Density diagrams of the time-varying signals.

The mapping between the input parameters and the basis expansion coeffi-

cients (or generalized coordinates) is also estimated with FCNNs. In [63], the

authors determine efficient approximations of the trajectories belonging to a220

single quantity of interest in the time domain, by mapping the parameter do-

main to the POD basis coefficients with artificial neural networks. The same

methodology is developed in [64], where multi-layer perceptrons are employed to

accurately approximate the coefficients of the reduced model for parametrized

steady-state partial differential equations (PDEs). Thanks to their capability225

of spanning low-dimensional nonlinear manifolds, kernel-PCA have been used
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in place of the more classical POD to project the high-fidelity snapshots and

retain the coordinates for the following mapping task using Neural Networks

[65] or Kriging-based regression [15]. The authors in [4] show that nonlinear

dimensionality-reduction-based surrogate models can reduce surrogate error in230

sufficiently nonlinear data spaces compared to PCA-based models.

Finally to sum up, convex nonlinear dimensionality reduction techniques [35]

could be applied in our application, as they are capable to capture the non-

linearities of the data and potentially more efficient than linear methods as

PCA. Indeed, they can allow a reduction of the number of modes that must be235

retained to reach a given accuracy in the reduced approximation [65]. However

autoencoders appear more efficient for structured data (e.g. images, sequences)

as we can incorporate prior knowledge of the data into the model by choosing the

appropriate nature of the layer: for example, convolutional and recurrent layers

are efficient in learning complex patterns from images and sequential data re-240

spectively. Secondly, the deep neural network architecture allows autoencoder

to learn complex non-linearities with less data points compared to the afore-

mentioned convex nonlinear dimensionality reduction [66, 67]. These reasons

motivated the choice of autoencoders as dimensionality reduction technique.

2.2.2. AE-based surrogate models245

Recently, models based on deep neural networks have demonstrated an out-

standing performance on learning the dynamics from lower-dimensional rep-

resentations. Satisfactory results have been accomplished with Convolutional

Autoencoder (CAE) in the framework of emulating the spatio-temporal field

governed by nonlinear PDEs [21, 22]. Here, the CAE can be considered as a250

nonlinear generalization of POD, with the aim at finding a reduced space to

learn the dynamics from. For example, different combinations of a CAE with

other machine learning algorithms were used to show the capability of AE to

provide a low-dimensional model for probabilistic and deterministic predictions

[37]. Similarly, CAE successfully mapped high-dimensional flow fields into a255

low-dimensional latent space [21, 22, 23].
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An explicit relationship between input parameters and the solution over time

of spatially distributed parametrized time-dependent PDEs is considered in

[20, 24, 25]. The authors construct the reduced nonlinear manifold through

a CAE and model the reduced dynamics (mapping input parameters to latent260

variables) by employing Artificial Neural Networks (ANNs).

These studies have been applied directly on structured data. However, practical

experimental measurements or numerical simulations often rely on unstructured

grids or non uniform sensor placements. One of the biggest challenge in this

framework is that most data driven models require a uniform and regularly ar-265

ranged feature matrix for each data sample, and thus their use becomes challeng-

ing for this kind of data. Several techniques [68, 69, 70, 71] have been studied

to mitigate this issue, enabling the use of classic CNN also for autoencoder-

based dimensionality reduction strategy when dealing with ’unstructured’ data.

The described works in this section relies on the application of CAE: convolu-270

tional layers have been shown to be effective for extracting representative spatial

features and thus tailored for applications where dynamical systems are charac-

terized by a state that can be represented as spatially distributed data (strong

analogy with images). However, CNNs capture only the spatial dependencies

which are present within the fixed-size window. Thanks to their flow control275

gates-based recurrent architecture (see Sect.2.3), LSTMs are coherently bet-

ter to model a dynamical system and skilful at capturing short and long-term

non-linear temporal correlations.

2.3. Notions of LSTM & LSTM-Autoencoder

2.3.1. Long Short-Term Memory Neural Network280

Long Short-Term Memory network is a particular variation of recurrent neu-

ral network, proposed to solve the stability gradient issues of traditional RNN

[72] in handling long-range temporal dependencies. LSTM network is capable of

learning linear/nonlinear temporal dependencies within sequential data, by us-

ing a recurrent mechanism and gates-based architecture. A deep LSTM neural285

network is composed by multiple LSTM layers which contain a series of LSTM
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cells. As illustrated in Fig.2, a LSTM cell consists of 4 interacting elements: the

cell state and three gates, namely the forget gate, the input gate and the output

gate which control the flow of information used to update the cell state. The

input gate controls the flow of input information into the cell state, whereas290

the forget gate regularizes the amount of information of the last cell state to be

forgotten; their interaction updates the new memory of the cell state. Finally

the output gate determines a part of the updated cell state to be propagated to

the network.

Forget Gate

Input Gate

Output Gate

Figure 2: LSTM cell architecture of the j -th layer (index j blurred not to overwhelm the

figure).

The j th layer of the LSTM neural network receives as input a sequence of vec-295

tors xj = {x1
j ,x2

j , . . . ,xt
j , . . . } where xt

j ∈ Rm represents a m-dimensional

vector at time-instance t with m equals to the output dimension of the previous

layer. Denoting within the j th layer of the LSTM network, the input state to

the LSTM cell as xt
j , the forget gate as ft

j , the input gate as it
j , the output

gate as ot
j , the cell state memory as Ct

j , and the hidden state output as ht
j

300

at the time-step t, the forward pass equation of an LSTM cell can be described

as follows:
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ft
j = σ(Wf

j · [ht−1
j ,xt

j ] + bf
j) (1)

it
j = σ(Wi

j · [ht−1
j ,xt

j ] + bi
j) (2)

C̃j
t = tanh(Wc

j [ht−1
j ,xt

j ] + bc
j) (3)

ot
j = σ(Wo

j · [ht−1
j ,xt

j ] + bo
j) (4)

Ct
j = ft

j �Ct−1
j + it

j � C̃j
t (5)

ht
j = ot

j � tanh(Ct
j) (6)

where the different W−
j denotes the weight matrix corresponding to the inputs

of the different gates, b−
j represents the corresponding bias vectors, Ct

j de-

notes a vector of candidate values for the cell state, σ is the sigmoid function,305

tanh is the hyperbolic tangent function and
⊙

the Hadamard product. This

architecture permits knowledge persistence over subsequent time-steps, retain-

ing both long and short-term temporal patterns. Thus, the dynamical temporal

behaviour of the LSTM cell makes it suitable for modelling sequential data, as

showed in financial market applications [73], audio detection [74] and machine310

diagnosis [75, 76]. The capacity of learning sequential, non-linear time-varying

patterns motivates the employment of deep LSTM neural network to model

complex time-varying systems. The outcomes in [77, 78, 79, 80] shows that

LSTM network is a promising, reliable approach for modelling physical dynam-

ical systems.315

2.3.2. LSTM-Autoencoder

The autoencoder is a (deep) neural network architecture capable of dis-

covering relevant features of the input data in order to deliver a compressed

representation. High-dimensional data can be converted to low-dimensional

codes by training a bottleneck encoding-decoding multilayer neural network to320

reconstruct the input data, working better than PCA as a tool to reduce dimen-

sionality [81]. Briefly, the encoder learns a compressed or latent representation

of the input, whereas the decoder tries to reconstruct the input data from the
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Figure 3: An illustration of a LSTM-AE network.

compressed representation. LSTM-autoencoder (Fig.3) has been successfully

implemented to extract features from multivariate time-series [82, 83]. This325

architecture relies on the fact that LSTM network is more capable to learn im-

plicit temporal patterns over sequential data compared to feed-forward neural

networks. Auto-Encoders are used to successfully extract important features

and learn the high nonlinearities of data, whereas LSTMs are effective at cap-

turing temporal dependencies in sequential data. This ability makes it suitable330

for modelling time-series data, for tasks as time-series forecasting [84], anomaly

detection [85] and sensors signal analysis [86].

Inspired by this, a LSTM-autoencoder is proposed to extract relevant spatio-

temporal features from high-dimensional multivariate time-series data and learn

a low-dimensional representation to build the surrogate model.335

3. Proposed Approach

Let f denote a matrix-valued function on Ω, a subset of the space RNx

(Nx ∈ N). For a data-driven estimation of f , a set of n observations Sn :=

{(xi,Yi = f(xi)), i ∈ [1;n]} is exploited, where xi = (xi1, ..., x
i
Nx

)T represents

the input parameters and Yi = (yi
1, ...,y

i
Ny

)T is the corresponding solution of340

the high-fidelity model, with ∀ k ∈ [1, ..., Ny], yi
k = (yik,1, ..., y

i
k,j , ..., y

i
k,NT

) a

time-ordered sequence recorded for NT time steps, describing the observable

physical parameters that evolve with time. Using Sn, a surrogate model f̂ is
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designed to approximate f : RNx → RNy×NT .

The proposed approach relies on the application of a dimensionality reduction345

technique on high-dimensional output Yi, where the high-dimensionality refers

to the number of predictions that must be performed (Ny ×NT ).

The accuracy of a surrogate model is based on the amount of information learned

during the training concerning the relationship between the inputs and the

outputs. When the system to approximate is nonlinear and characterized by350

high-dimensionality, a nonlinear dimensionality reduction technique is desired

to unveil a simplified relationship between the inputs and the low-dimensional

representation of the original outputs, hence facilitating the mapping task. This

means that the governing function f is approximated by using the reduced out-

put representation defined by the latent vector zi = (zi1, ....z
i
Nz

)T , with Nz355

equals to the dimension of the lower-dimensional space.

An approach based on the dimensionality reduction capabilities of an LSTM-AE

is developed to alleviate the burden of high-dimensionality and enable a easier

classical surrogate modelling problem, i.e. approximating a vector-valued func-

tion through a FCNN. Autoencoders are used to successfully extract relevant360

features from data, reducing the dimensionality of the problem [87]. LSTMs are

able to learn the temporal dependencies of a sequence of values [88]. Combin-

ing them together, the LSTM-AE extracts and encodes the temporal correla-

tions and the intrinsic non-linearities of the multivariate time-series data in a

lower-dimensional space. The conceived approach enables to learn a surrogate365

function ĝ : RNx → RNz of the original problem f : RNx → RNy×NT , with

Nz � (Ny ×NT ).

Specifically, the process of the SM construction can be divided into two stages,

namely offline and online. In the offline stage the model is trained upon the

dataset Sn, obtained by performing a ”Design of Experiment” (DoE): n com-370

binations of the design parameters are generated and given in input to the

real-model which outputs the corresponding solutions. In our approach the of-

fline stage consists on two successive steps as illustrated in Fig. 4. Firstly, the

LSTM-AE is trained over the n solutions Yi in order to obtain their latent rep-
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resentations zi via the encoding function annotated fred, and jointly training375

the re-construction function frec. Then, a FCNN is trained to learn the function

ĝ which relates the input parameter space to the low-dimensional representa-

tion of the physical space. The supervised learning is performed by using the

pair samples Un := {(xi, zi), i ∈ [1;n]}, where the set of zi is extracted from

the previous step. The following equations summarize the activities performed380

during the offline stage:

zi = fred(yi) fred : RNy×NT → RNz (7)

ẑi = ĝ(xi) ĝ : RNx → RNz (8)

Data Collection

Step 1: Training LSTM-AE for Dimensionality Reduction

Figure 4: The ”offline” process. The training phase of the proposed model consists of two

networks: a LSTM-AE and a FCNN.

In the online stage (Fig. 5) the functions learned in the previous stage are uti-

lized to obtain the surrogate solution corresponding to an unseen input vector,

as described by Eq.(9).385
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Ŷi = frec(ĝ(xi)) frec : RNz → RNy×NT (9)

For a new set of parameters xnew
i , the previously trained FCNN is employed

to obtain the latent representation of the solution znewi . Then, the pre-trained

decoder of the LSTM-AE maps the encoded representation znewi into the origi-

nal space, delivering the surrogate model solution Ŷnew
i associated to the input

xnew
i . In essence, the methodology enables the prediction of a high-dimensional

Parameter Space Latent Space Solution Space

Figure 5: The ”online” process. For a new point in the design phase we use the previously

trained neural network to emulate the simulator output.

390

multivariate time-series initially conditioned by an exogenous vector of constant

real-valued parameters. By exploiting the capabilities of LSTM-AE to capture

and encode the relevant dynamical features of a multivariate time-series into

lower-dimensional manifold, the high-dimensional original learning problem is

transformed into a smaller and easier task, enhancing better interpolation and395

generalization capabilities.

4. Empirical Study

This section presents the numerical experiments obtained by implementing

our approach on two distinct parameter-dependent dynamical systems. Firstly,400

the applicability and the potential of our method is investigated on an academic
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case: the LSTM-AE model is compared to a hybrid-POD (or PCA) model [63]

for a simple unforced linear mass-spring-damper system. Then, the efficiency of

the proposed method is assessed on the industrial aircraft landing simulations,

whose dynamical behaviour is described by a high-dimensional nonlinear prob-405

lem. The intuition behind the conceived method for this kind of problem is eval-

uated by comparing it with two main competing methodologies: hybrid-POD

Neural Network [63] and 1DCAE-FCNN proposed in [25]. The experiments are

performed using the Tensorflow library [89].

4.1. Toy Problem: Mass-Spring-Damper System410

This problem was crafted to highlight the performance benefit of using

LSTM-AE-based model approach in contrast to POD-based model, when deal-

ing with multivariate-time series dimensionality reduction. Let us consider the

state space representation of the first-order ODE representing the mass-spring-

damper system:415 
ẋ1(t) = x2(t)

ẋ2(t) = − k
mx1(t)− c

mx2(t)

x1(0) = x0 x2(0) = v0

(10)

The system parameters, namely the body mass m, the damping c, and the

stiffness k, govern the dynamical response of the system, in terms of frequency

and amplitude of the sinusoidal waveform. Here, the task was to build a SM able

to replicate the response over time of the displacement x1(t) and its derivative

x2(t) for any set of system parameters inside a defined region of the design420

space.

4.1.1. Experimental Setup

Two indipendent investigations were carried out for this application. Firstly,

we performed a comparison analysis between our methodology and the hybrid-

POD Neural Network model [63]. For this study, three different design of exper-425

iments (DoE) are realized to investigate the benefits of using deep autoencoder

compared to POD reduction techniques, respectively with n = 1000, n = 3000
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and n = 6000 samples selected using a Latin Hypercube Sampling (LHS) [90]

with space filling criterion in the parameter space defined by the following

ranges: m := [100− 900](kg), c := [0− 900](Ns/m), k := [1000− 91000](N/m).430

The parameter ranges are chosen in order to obtain waveforms very different

from one other and thus discover the learning capabilities of the surrogate model.

The corresponding dynamic response has been generated by using an ODE inte-

grator from Scipy library [91], NT = 200 time steps and step size ∆t = 0.05. The

initial conditions x0, v0 are kept constant across the complete process. Thus, the435

learning problem is defined by NT = 200, Ny = 2 and Nx = 3. Here, NT = 200

was chosen as trade-off between getting a wide range of damping dynamics and

computational training cost.

In order to ensure the quality of the analysis, the size of the reduced manifold

is the same for the two models. This implies that the number of POD basis440

vectors retained is equal to the latent space dimension Nz. Then, the input-

to-latent mapping FCNN is trained for both approaches maintaining the same

neural network architecture and hyperparameters for the ADAM [92] optimizer.

The second investigation regards the dependence of the surrogate model per-

formance on NT . Iso-architecture LSTM-AE autoencoders and FCNN mapping445

were trained for the dataset with n = 3000 samples with three different lengths

of the corresponding temporal behaviour: NT = 50, NT = 100 and NT = 200,

respectively. The scope of this analysis consists on assessing how and if LSTM-

AE based surrogate model is affected by NT in terms of learning capabilities and

training stability. Two problems were addressed: at the first place, it is wanted450

to find out if the length of the sequence impacts the strength of LSTM-AE in

encoding useful information from the time-series and in providing correct out-

puts in a context where training and testing time series share the same length;

secondly, the investigation is aimed at analyzing how the number of time steps

selected for training influences LSTM-AE based surrogate model prediction ca-455

pabilities on delivering different sequence lengths in testing phase.
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4.1.2. Numerical Results

In this section, the results of the experimental analysis upon the mass-spring-

damper system are presented and discussed.

Comparison between LSTM-AE based and POD based surrogate models. The460

two methodologies were compared using a 10-fold cross-validation strategy by

analysing the average score of the following error indicator:

εavg =
1

n

n∑
i=1

‖Y i − Ŷ i‖
‖Y i‖

(11)

where Y i and Ŷ i are respectively the solution of the i -th computer experi-

ment obtained by the true model (ODE integrator) and the surrogate model

(POD or LSTM-AE based). Fig. 6 shows the outcomes of the analysis: the465

three figures show the εavg average score with respect to the dimension of the

reduced manifold, with regard to reconstruction error and final surrogate pre-

diction error. The SM based on LSTM-AE dimensionality reduction registers

better performance than the hybrid POD-NN for all the three DoE, using the

same FCNN mapping network. Firstly, the increase of the dataset size is ben-470

eficial for the LSTM-AE as it improves the reconstruction and the surrogate

prediction, behaviour not observed using POD operation. Secondly, it can be

also remarked that even increasing the number of the POD basis vectors to 48,

thus with an higher number of weights, the score obtained by using the strategy

LSTM-AE FCNN with a much smaller compression ratio cr = Nz

(Ny×Nx) is not475

achieved. For the sake of completeness, the number of parameters in POD and

the trainable weights in LSTM-AE are showed in Table 1. By checking out the

black and blue lines of Fig 6 and the relationship with the entries of Table 1,

it is possible to remark that POD method needs a larger amount of weights to

achieve the same score than LSTM-AE. The reason for better reconstruction of480

LSTM-AE with the same number of weights, for n = 3000 and n = 6000 dataset,

resides on the capability of the latent variables to contain robust information

from data than that explained by the orthogonal basis obtained by the linear

method. This characteristic is achieved by the complex operation in the LSTM
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Table 1: POD and LSTM-AE latent space dimensions and weights the dimensionality re-

duction task. The number of parameters of LSTM-AE increases in the direction of manifold

space dimension (MSD). The POD components retained are such that the number of weights

of POD model and LSTM-AE are equivalent.

Manifold dimension and Model weights

Number of weights 2618 2770 3274 4498 7810 12274 17890

LSTM-AE MSD 2 3 6 12 24 36 48

POD components (') 6 7 8 11 20 31 45

cell, both for the use of non-linear activation functions in an AE framework,485

as reported in [93, 94], and the gates-based mechanism which capture robust

temporal patterns in data. On the contrary, reconstruction error with POD

is lower in the case of n = 1000 with a manifold dimension greater than 36:

this could explained by the lack of enough data for the deep learning model.

Nevertheless, the performance of the overall surrogate model based on LSTM490

is always better for the three cases. The reasons for this result are related to

the following points: (i) the data distribution in the non-linear manifold allows

the FCNN to find more robust patterns between input parameters and latent

space; (ii) the decoder is more robust to possible errors in mapping the reduced

dimension coefficients used to return to the original space, as the autoencoder495

provides better interpolation capabilities in the reduced manifold space.

Figure 6 suggests another interesting cue: one would expect a decreasing trend

of the LSTM-AE reconstruction error in the direction of the manifold space

dimension. However, this is not particularly true in this case as changing the

manifold space size leads to a substantial modification of the number of weights.500

The ±1.96σ interval over the LSTM-AE reconstruction 10-fold cross-validated

mean error indicates that under a certain dimension of the latent space, and thus

below a certain number of trainable parameters, the trainings of the LSTM-AEs

are highly noisy and quite unstable. It has been already demonstrated that the

performance of an autoencoder depends on the number of tunable weights [95].505
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In this case, LSTM-AE appears to be very sensible to the amount of trainable

parameters in terms of weights updates and in the stability towards loss con-

vergence for the reconstruction error.

In conclusion, even for a linear system, as the one presented in Eq.(10), the

hybrid POD-NN model needs a large amount of basis function to achieve a510

prediction score similar to that we remark for the AE-based model. This re-

sult leads to assume that the number of coefficients defining the linear reduced

manifold would be considerably larger in relation to those of the nonlinear man-

ifold for building the reduced-order model. This could represent a significant

problem for more complex systems, with higher number of input parameters515

and time-series outputs. Indeed, having more variables to predict, the mapping

FCNN would struggle in approximating the function lying the input parameters

xi to low-dimensional representation zi, consequently increasing the difficulty

to reconstruct the solution in the original space.
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Figure 6: Cross validation mean error Indicator (y-axis) vs Dimension of the reduced manifold

(x-axis) for the three design of experiments for the Mass-Spring-Damper problem.

The influence of NT on LSTM-AE based surrogate model performance. The520

investigation about the dependence of NT on LSTM-AE based surrogate model

performance is summarized in Figure 7 in the form of dot plot. The cross grid-

based evaluation allows to characterize the influence of NT used for training

when a prediction of a time series, for an equal or different number of time

steps, is demanded during the test phase. In detail, each point represents the525

mean validation set error which derives by averaging the results from different
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0.2 0.4 0.6 0.8

Train with Nt=50

Train with Nt=100

Train with Nt=200
Testing for Nt=50

Testing for Nt=100

Testing for Nt=200

Surrogate Model Error

Figure 7: Dot plot showing the influence of NT in LSTM-AE based surrogate model. For

each choice of NT for model training (y-axis), three different temporal window prediction

have been analyzed. The x-axis refers to the error indicator of Eq.11.

latent space dimension models. The results show that (i) by increasing the

number of time steps of the sequence in test phase, the error increases due to

error propagation caused by the recursive mechanism of the prediction; (ii) at

iso-NT in testing, it is preferable training the model with longer sequences as530

the LSTM is able to retain more information and indeed to improve prediction

capability.

4.2. Industrial Case: Dynamic Landing Loads Simulation

During landing phase, the aircraft is exposed to a short-duration impulsive

impact that results in a dynamic response of the airframe and of the landing535

gear. The observable physical quantities, arising from the interaction between

the aircraft and the ground, represent forces, moments and accelerations evolv-

ing over time (Interesting Quantities -IQs). Critical IQs largely determine the

size of both the airframe and landing gear structures. This means that the loads

arising at touchdown have to be determined accurately for the structure to be540

adequately dimensioned. The adequacy of large transport category airplane to
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the flight is regulated by the airworthiness authorities (EASA CS 25 and FAR

25). The aircraft is required to comply with the directives for a set of design

conditions. Some of the design conditions require to take into account the dy-

namics of the aircraft. For the dynamic landing load conditions (CS 25.473, CS545

25.479, CS 25.481), a full time history of the touch down has to be computed.

A complex process is set-up to represent the static and possibly dynamic re-

sponse of the aircraft to compute and validate dynamic landing loads. In this

framework, the aircraft is subjected to applied external loads, accounting also

for distributed inertia, aerodynamic and structural forces and moments. The550

ground loads model for dynamic simulations consists of two coupled models: a

flexible aircraft, defined by a Finite Element Model (FEM) and a Mass Model

modal representation; and the landing-gear model, defined by its kinematic, the

inertial model and the dynamic flexibility (in terms of normal modes). The over-

all model presents high non-linearities which arise from the landing gear model.555

The equations describing the response of the shock absorber introduce nonlinear

terms: exponential stroke-force relation, square-dependent damping force, inter-

nal friction (step functions) and stroke limiters are source of high non-linearities

and a linearisation is not possible. Here the dynamic simulation is carried out

using a symmetric aircraft model with a symmetric configuration, without any560

control law system implemented. Such a configuration, in addition to arbitrary

CS25 requirements that aim to cover all possible asymmetry coming either from

the landing conditions or from the aircraft itself, satisfies the requirements for

airframe and landing gear structural design. Nonetheless, it is worth drawing

attention also to aircraft landing operational service where the aircraft is asym-565

metrically loaded, either coming from inherent properties of the airplane, or

external conditions resulting in roll, slideslip and yaw rates or as a consequence

of a system failure. Indeed, in the absence of a sophisticated fly-by-wire control

systems, airplanes with non-aerodynamic asymmetric loads require a safe flight

boundary analysis on the basis of the available lateral flight control authority570

[96]. This issue has been pointed out by the authors in [97, 98] who based them-

selves on general rotational analysis [99] to define a methodology to determine
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the supplement to the safe flight boundaries of symmetrically loaded airplanes

for asymmetric load situations within terminal flight phases. Such situations are

investigated with rational calculations for in-service event analysis but are not575

covered by the dynamic landing simulator used here. The aircraft landing loads

depend on a set of design parameters, related both to landing gear and aircraft

models. Exploring the neighbourhood of a defined design, i.e. investigating how

the IQs are impacted by the multivariate percentage variations of design param-

eters, is time-consuming with traditional process (construction and assemblage580

of mass model, airframe and landing gear FEMs; Computer Aided Engineering

(CAE) Nastran-based simulations and post-processing). This leads to the need

for a Surrogate Model which allows a fast exploration of the parameters design

space, maintaining a satisfying level of accuracy. A data-driven model can cap-

ture non-linear relationships of varying multiple inputs at the same time rather585

than performing an investigation on the effects of varying the parameters one at

a time with the high-fidelity process. In this analysis, the inputs of the overall

simulation process to emulate via our SM (see Fig.8) is represented by a set of

constant values containing information about the two aforementioned submod-

els, i.e. aircraft flight state, the landing gear model and the mass distribution590

along the fuselage and the wings. The simulation outputs the IQs for all the

sections of the different aircraft components. The goal is to predict the IQs for

new (i.e. unseen during training phase) landing gear configurations and fuselage

mass distributions combined with unchanged critical flight cases.

It is worth highlighting two crucial points when predicting the multivariate595

time-series representing the aircraft response. The sizing of the aircraft is ex-

tremely dependent on the maximum loads computed during the simulation: the

so-called 1D envelope is calculated by finding the maximum (and minimum)

peaks over all the time series and configurations. However, it is not sufficient to

compute these values because it is essential to take into account the temporal600

correlations between different IQs - Correlated Loads - as the principal stresses

depend upon 2D or 3D loads. Thus, the SM should be able to accurately predict

the maximum peaks and the temporal dynamic response of all the IQs.
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Figure 8: From a high-fidelity computationally expensive process to an agile and flexible

process enabled by surrogate modelling.

4.2.1. Experimental Setup

The input of our model is a real-valued vector xi, composed by Nx = 26605

design parameters. These parameters refer to the pitching angle, the dynamic

pressure, the aerodynamic center, the shock absorber characteristics of the land-

ing gear, the center of gravity, the momenta of inertia for the three axes and

finally 3 parameters define the mass distribution. Thus, each xi defines a differ-

ent load case. For each load case, the simulation model is run and automatically610

solved: the outcome is the dynamic aircraft response described by a multivari-

ate time-series composed by Ny = 711 IQs with NT = 101 time steps. Here,

NT = 101 corresponds to 1 second of simulation: it is within this time-frame

that the dynamics of the landing takes place and the peaks appear, according

to the design parameters. As the objective is to learn and predict, besides the615

dynamics, also where the peaks in the temporal axis occur within this tempo-

ral window, modifying NT would conceal information during the training and

would not allow to spot the peaks in testing. For these reasons NT = 101 has

been fixed for both training and testing. The dataset is composed by 42282
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pairs (xi,Yi) and was split into 60% for training, 20% for validation and 20%620

for the final test. The split has been performed randomly, ensuring that the

statistical distributions for the three datasets are consistent within each other.

The validation set is used to provide an unbiased evaluation of a model fit on

the training dataset while tuning model hyperparameters; as a result of this

phase, the final model is retained, and its performance is assessed in the test625

set by means of defined metrics. The load cases to build the dataset are set

up as follows: 38 critical flight points are selected, according to the most sig-

nificant landing scenarios on the aircraft design loads. These critical points are

retained and combined with several combinations of landing-gear parameters

and mass-fuselage distributions. A Latin Hypercube Sampling (LHS) strategy630

was adopted for designing 1001 combinations of the 8 landing gear parameters,

obtained as percentage variation of the given reference values. Then, the mass

fuselage distributions for the 20 most critical mass cases (out of 38) are varied

with a randomized shape function, under the condition to maintain the total

mass and the center of gravity constant. The resulting 8916 new mass distri-635

butions are randomly combined with the above 1001 landing gear combinations

and the critical flight cases to generate the dataset.

For the training task, a standard scaling is performed for the input parameters

data Sxn = {xi, i ∈ [1;n]}. A standard scaling is applied also the solution data

Syn = {Yi, i ∈ [1;n]}, where each IQ yi
k is scaled using the mean and the stan-640

dard deviation computed over all load cases and over all the time step for all

the IQs.

The architecture of our LSTM-AE and the learning parameters are selected as

the result of a grid search procedure. The same strategy is adopted to select

the best FCNN configuration. Table 2 describe the final LSTM-AE and FCNN645

architectures retained. Both networks are trained for 5000 epochs with batch

size equal to 128 and using the ADAM optimizer with learning rate equal to

1e−3, to minimize the mean squared error (MSE) loss objective.

Moreover, an early stopping strategy [100] is employed in both trainings to avoid

overfitting. Several LSTM-Autoencoders are trained with different latent space650
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Table 2: LSTM-AE & FCNN Neural Networks Architecture with NT = 101, Ny = 711,

Nx = 26, Nz = 150 and n equals to the batch size.

Component Encoder Decoder FCNN

Layers

Input(n,NT ,Ny) RepeatVector(NT ) Input(n,Nx)

LSTM(n,NT ,640) LSTM(n,NT ,256) Dense(n,256)

LSTM(n,NT ,256) LSTM(n,NT ,640) Dense(n,256)

LSTM(n,1,Nz) TimeDistr.(n,NT ,Ny) Dense(n,256)

Dense(n,Nz)

dimension, maintaining the same encoder and decoder structures, to find the

architecture yielding the best SM accuracy. Fig. 9 illustrates the RMSE valida-

tion error behaviour with respect to the dimension of the latent space, compared

to POD dimensionality reduction method. Also in this case, the error does not

decrease increasing the dimension of the latent space. However, in contrast to655

the previous application, the zig-zag like behaviour does not appear because the

relative ’delta’ of weights between the models is small, given the considerable

number of LSTM-AE trainable weights. The minimum reconstruction error for

the LSTM-AE and FCNN mapping, and for the overall SM model are obtained

for a latent space dimension equal to 150. The valley like behaviour confirms the660

influence of the amount of model weights on the learning process: the model

with latent space dimension equals to 150 represents the optimal network in

terms of weight optimization, achieving the lowest reconstruction error. The

results show that even if POD reconstruction is better than LSTM-AE for man-

ifold size equals to 250, the overall surrogate performance using the same FCNN665

is lower: the reason for such behaviour is related to what has been argued in

Sec. 4.1.2, i.e. the activation functions mechanism of the LSTM cell allows to

encode robust information, consequently ensuring strong reconstruction capabil-

ities and enhancing the FCNN mapping. This point is emphasized by analyzing

the performance of LSTM-AE and POD at iso number of weights. The differ-670

ent manifold sized LSTM-AE models have the same number of weights than

POD model when for the latter the number of components retained is within
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the range [104− 114]: comparing the errors of the entire blue line and the black

line in that range, a better performance in reconstruction of LSTM-AE can be

remarked.
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Figure 9: RMSE vs Dimension of latent space for POD and LSTM-AE methods. The values

refer to the number of parameters for the dimensionality reduction model.
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4.2.2. Numerical Results

The metric in Eq.(11) is adopted to evaluate the performance of LSTM-AE.

Moreover, as explained at the end of Sec.4.2, the maximum and minimum peaks

of each IQ take on great importance for the preliminary design of 1D and 2D

envelopes: the model should accurately predict not only the peak values, but680

mainly predict them in the exact time step they take place in order to take into

account the correlated loads [101] prediction. For this, the following expressions

are employed as additive metrics to assess the capability of the model :

MAPE+ = 100× 1

nNy

n∑
i=1

Ny∑
j=1

∣∣∣∣∣Y
t=tmax
ij − Ỹ t=tmax

ij

Y t=tmax
ij + α

∣∣∣∣∣ (12)

MAPE− = 100× 1

nNy

n∑
i=1

Ny∑
j=1

∣∣∣∣∣Y
t=tmin
ij − Ỹ t=tmin

ij

Y t=tmin
ij + α

∣∣∣∣∣ (13)

The scores measure, for each Ny-th IQ and for each n-th load validation case,

the difference between the true peak value (maximum and minimum peaks de-685
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fined respectively by Y t=tmax
ij and Y t=tmin

ij ) and the value predicted by the SM at

the time step the peak takes place. The recurrent autoencoder based surrogate

model predictions are compared to the random-search optimized hybrid POD-

FCNN, and to the 1D-CAE FCNN architecture. The results are summarized

in Table 3. Analyzing the results, it can be remarked that extracting enough

Table 3: Scores achieved by LSTM-AE, 1D-CAE ad hybrid POD-NN SM on the industrial

dataset (the lower the value, the better the SM performs). RMSE refers to the best error on

the scaled validation set during the hyperparameter tuning phase. The final model is assessed

using the metrics computed on test set. For each the dimensionality reduction models (LSTM-

AE, POD and CNN1D-AE), the dimension of the reduced space and the number of weights

are showed.

Model Val. error Metrics

RMSE εavg MAPE+ MAPE−

LSTM-AE [z=150] FCNN

(7.792.687 weights)
0.0582 0.0066 7.72% 8.8%

1D-CAE [z=150] FCNN

(7.103.157 weights)
0.07863 0.0112 18.52% 25.11%

Hybrid PD-NN [z=150] FCNN

(10.771.650 weights)
0.07698 0.0096 11.17% 16.41%

1D-CAE [z=150] FCNN

(16.092.765 weights)
0.07697 0.0116 16.48% 20.15%

Hybrid POD-NN [z=250] FCNN

(17.952.750 weights)
0.0712 0.0080 11.88% 14.59%

690

POD modes to preserve the energy content of the multivariate time-series data

is more powerful than exploiting local-low level features through convolutional

layers that lead to a nonlinear reduced manifold, despite having larger number

of weights than the LSTM-AE. On the other hand, capturing and encoding

the temporal correlations via LSTM cells is much more effective for this kind695

of problem, both for predicting the multivariate time series and for accurately

estimating the peaks. Fig. 10 illustrates how accurate LSTM-AE FCNN is with

respect to the other models. LSTM-AE FCNN solution is the one which better

predicts the amplitude of the oscillation peaks and the behaviour of the wave-

form over time. In all the figures of this section the y-axis, the name of the load700
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cases and components sections are blurred due to confidentiality.

Figure 10: Comparison of the exact solution vs SMs predictions of the same IQ for two

validation load cases. Prediction with LSTM-AE based surrogate model presents a lower

residual error.

In the following, only hybrid-POD SM is accounted as main benchmark to as-

sess our model, as it is more accurate than 1D-CAE based model. Fig. 11 com-

pares the prediction of LSTM-AE and hybrid-POD SMs for three IQs: fuselage

(Fig.11a), left wing (Fig.11c) and main landing gear (Fig.11b). The MSE his-705

tograms are computed considering all the load cases not included in the training

set: LSTM-AE based model produces more accurate predictions, as the right-

skewed distribution statistics (mean and mode) are shifted towards lower values

with respect to the PCA-based model ones; moreover it can be highlighted that

the largest MSE value is much lower in the LSTM-AE based model case (in710

some case more than 50% error reduction). The outcomes showed for these

examples are generalizable to all the other IQs.

The ability of the LSTM-AE FCNN to predict both the sequence trend and to

spot the maximum peaks in a more efficient way than hybrid-POD model is

highlighted in Fig. 12, Fig. 14 and with the 2D envelope in Fig 13. As previ-715

ously explained (see Sec.4.2), 2D envelopes have a great interest for airframe

stress design. Thus, besides an accurate 1D envelope prediction, for which our

SM could have been trained simply for vector-valued outputs (only the peaks of

the time-series), it is necessary also consider the temporal correlation between

different IQs.720
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LSTM-AE based Model Prediction POD-based Model Prediction

(a) Vertical Force Forward Fuselage Section

LSTM-AE based Model Prediction POD-based Model Prediction

(b) Main Landing Gear Bending Moment

LSTM-AE based Model Prediction POD-based Model Prediction

(c) Vertical Force Outer Wing Section

Figure 11: An example of comparison between LSTM-AE based SM vs PCA-based SM pre-

dictions: time-series for Best, Average and Worst MSE errors load cases.
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LSTM-AE based Model Prediction

POD-based Model Prediction

Figure 12: Peaks prediction of vertical force in one fuselage section for the 99% load cases

within the validation set. The plot on the right represents the IQ time-series for the critical

load case. The red point value is used to compute the 1D envelope.

Figure 13: Hybrid-POD FCNN vs LSTM-AE FCNN in predicting 2D envelope. 2D envelope

for lateral vs vertical forces for the same fuselage station; blue dots represent the truth values,

the green ones are predicted by the SM. The solid blue and green lines define the envelope

along the complete validation dataset
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Figure 14: Hybrid-POD FCNN larger peak errors and discrepancy in time lead to inaccurate

2D envelope.

Indeed, the accuracy of a 2D envelope prediction is not only dependent by

the peak values but also by the temporal behaviour of the two IQs. Fig. 12

compares the minimum peak predictions for a singular IQ. It can be observed

that the critical load case (red point), i.e. the minimum value attained by the IQ

over all the load cases considered, is predicted with an error less than 1% only725

by the LSTM-AE SM. The same result has been registered for almost all the

other IQs. This is a crucial outcome because in order for the predictions to be

used by the engineers for sizing the aircraft with the so-called 1D envelope, the

error cannot exceed 1% for the most critical load cases. Moreover, the inability

of the SM to exactly predict the peaks deeply affects the accuracy of the 2D730

envelope estimate (Fig. 13): the problem is not only related to the peak value

itself but also at the time it occurs. In the hybrid-POD model for example, the

discrepancy between blue and green solid lines is due to both the inability to
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capture the temporal correlation (see Fig.14) and to predict the exact value of

the peaks.735

5. Conclusion and Future Work

An end-to-end methodology based on an LSTM-autoencoder coupled with a

FCNN has been conceived for surrogate modeling of design parameter-dependent

dynamic landing correlated loads to predict 1D and 2D load envelopes for struc-

tural design. The methodology has been validated by comparing it to alternative740

techniques on two different problems: the one degree of freedom linear mass-

spring-damper system and the high-dimensional nonlinear problem representing

the ground loads simulation of a flexible aircraft. The experiments show that

the LSTM-AE dimensionality-reduction-based model outperforms both classi-

cal method (POD) and non-linear feed-forward networks (CNN1D-AE) when745

non-linear time-lag dependencies are present on data. The reasons of better

performance are definitely related to the recurrent gates-based mechanism of

LSTM which allows to automatically capture temporal dependencies. Indeed,

even using convolutional layers coupled with non-linear activation functions, al-

ready acknowledged to be better than POD operation, with a larger number of750

trainable weights do not lead to comparable prediction performance than that

delivered by LSTM-based AE.

The presented results on the two dynamical systems verify the applicability of

the model to any task where the dynamic response conditioned on an exogenous

set of constant parameters has to be predicted, mainly in a high-dimensional755

context. This work could be extended to efficiently quantify the effects of un-

certainty in the system parameters and randomness in network modeling. It

could be possible to combine the deep learning model with bayesian inference

(Bayesian Neural Network - BNN) to estimate the uncertainty related to the

network prediction [102], critical in this kind of context, where errors could lead760

to an over/under design of structure. As well as for BNN, it would be interest-

ing to investigate variational inference within the autoencoder framework (VAE)
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[103] to improve generative capabilities. Other suggestions for future work relies

on improving the generalization ability of the algorithm via physics embedding

[104], improving interpolation in autoencoders [105], exploring alternative data765

encoding methods to estimate the intrinsic dimension of a complex system from

data and on loss function modification to better capture the presence of critical

load peaks.
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