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Abstract. We present in this paper a novel approach to learning that produces practical and
conceptual knowledge. The former aims at detecting changes or new behaviour in observations,
a trait of anomaly detection systems, and that practical knowledge can be updated based on an
Angluin-like property. The second one aims at enabling communication with an expert user by
producing a first-order logic model of the world observed.
This construction fills the gap in previous work by Achourioti and van Lanbalgem were inverse
systems of first-order logic models are employed to formalize Kant’s transcendental logic.
More precisely learning is modeled by algebraic morphisms on algebraic lattices. Composition
of morphisms is denoted by first-order terms interpreted as intensional tables or constraints on
tables. Data Exchange Systems (DXS) are set of terms describing databases storing information
about observations and observed constraints. Practical knowledge is a valuation of a DXS and the
associated skill is to decide whether a new event is conform to past events, a new behaviour or
an anomaly. When the decision is wrong, the DXS is updated according to whether an anomaly or
a new normal behaviour was wrongly assessed.

These DXS are enriched with sets of terms representing tables of interest or generic constraint,
resulting in cognitive states. A first-order model is constructed for each compact cognitive state
and contains the set of predicates that are sensible given the observations and the cognitive state.
We finally prove that these models form an inverse system of models whose limit is the starting
point of the formalisation of Kant’s Transcendental Logic.
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Résumé. We present in this paper a novel approach to learning that produces practical and
conceptual knowledge. The former aims at detecting changes or new behaviour in observations,
a trait of anomaly detection systems, and that practical knowledge can be updated based on an
Angluin-like property. The second one aims at enabling communication with an expert user by
producing a first-order logic model of the world observed.
This construction fills the gap in previous work by Achourioti and van Lanbalgem were inverse
systems of first-order logic models are employed to formalize Kant’s transcendental logic.
More precisely learning is modeled by algebraic morphisms on algebraic lattices. Composition
of morphisms is denoted by first-order terms interpreted as intensional tables or constraints on
tables. Data Exchange Systems (DXS) are set of terms describing databases storing information
about observations and observed constraints. Practical knowledge is a valuation of a DXS and the
associated skill is to decide whether a new event is conform to past events, a new behaviour or
an anomaly. When the decision is wrong, the DXS is updated according to whether an anomaly or
a new normal behaviour was wrongly assessed.

These DXS are enriched with sets of terms representing tables of interest or generic constraint,
resulting in cognitive states. A first-order model is constructed for each compact cognitive state
and contains the set of predicates that are sensible given the observations and the cognitive state.
We finally prove that these models form an inverse system of models whose limit is the starting
point of the formalisation of Kant’s Transcendental Logic.
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Y. Chevalier Theory Synthesis based on Experience

1 Introduction
Background andmotivations. Learning and knowledge are introduced along seem-
ingly independent approaches. In a symbolic setting, learning was first de-
fined [19] as improving a procedure guessing the membership of a word in a reg-
ular language. Angluin’s theory [8] focus on learning the language given mem-
bership examples and counter-examples. PAC learning [18] generalised further
the problem by assuming a probability of failing to learn, and when succeeding
in learning a possibility of error in answering queries.
The definition of practical knowledge in this paper stems from the need to

formalise an absence of knowledge, e.g., when analysing pseudo-random se-
quences. These are defined in [3] as sequences such no Turing Machine is able
to compute in polynomial time a meaningful prediction of the next bit given a
sequence of bits already produced. This approach is extended in computational
cryptography where having zero knowledge about an object represented with a
string s is modeled as having no couple of Turing Machine (TM) such that the
second one is able to determine whether the first one had s or a random string
on its input tape [32]. To introduce the vocabulary of this paper, an object is
formed by the first TM, and the second TM computes a representation. Absence
of knowledge is defined as the inability to compute any meaning representation.
As a contrapositive, knowing something is being able to compute a meaningful
representation.
More recently and more directly related to this paper it was proven [11] that

symbolic first-order logic techniques can be employed to model and decide com-
putational cryptography lack of knowledge by static equivalence [21]. In this
symbolic setting, agents’ knowledge about a term describing a sequence of mes-
sages is specified by a set of equations satisfied only by possible instances of
these messages. Under some additional hypotheses it is possible [35] to com-
pute from a generic term a set of tests that entirely determines membership in
the set.
Finally formal concept analysis (FCA) [6, 26] embeds objects and attributes

into a lattice to form concepts of similar objects with respect to their attributes.
The partial grouping of objects per similarity can bemodeled with a partial equiv-
alence relation that naturally leads to algebraic lattices [2]. Conceptual knowl-
edge is the extension of concepts to predicates of arbitrary arity, while classes
of indistinguishable object terms (according to the predicates at hand) form a
domain on which these predicates are interpreted.
Approach. In response to Empiricists such as Hume, Kant provided an answer to
the problem of causation based on the analysis of human thought process [14].
Though Frege’s formalisation of first-order logic [12] seemed to enlighten Kant’s
formalism, it was objected in [5] that this formalisation over-simplified Kant’s
work by reducing the act of the mind called cognition to deduction, a mere syn-
tactic manipulation. More recently, inverse systems of first-order logic models
were proposed [30] as a basis to formalise Kant’s analysis. A difficulty in any
tentative formalisation is that according to Kant logic is based on cognitions,
that these cognitions define a semantics, and that this semantics determines the
syntax, a departure from more modern descriptions of logic.
Beyond philosophy andmetaphysical considerations, puzzling out Kant’s anal-

ysis is interesting to the modern computer scientist as it promises a natural de-
scription of observations under the guidance of primitive categories which in
addition to causality encompass temporality and space. This approach is highly
relevant e.g., in anomaly detection in which a usable system must be able to
describe suspicious behaviour to network experts in a high-level language [25].
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Y. Chevalier Theory Synthesis based on Experience

This paper extends the proposal in [30] as follows. Cognitions are defined as
algebraic morphisms between algebraic lattices. Their compositions is denoted
with first-order terms whose interpretation in algebraic lattices is updated to
fit observations. A single comparison predicate is added to create an obser-
vation model. These terms are separated into object and representation terms.
Two subsets of presentation and object terms considered for further examination
determine respectively a set of predicates as conjunction over the observation
model and a domain as a set of partial equivalence classes of object terms wrt
these predicates. We prove these models form an inverse system of models.
Limitations. The construction presented in this paper coincides with the one
in [30] when the observation of the world is fixed. This can be explained by
the focus in [30] on the construction of a model in which the cognitions and the
logic can be characterised as geometric logic [29] . There are differences in our
construction wrt Kant’s model of cognition as presented in [5]: the choice of
remembering past observations rather than reconstructing them, and the lack
of focus on the temporal relation between events.
Organisation. The choice of algebraic lattices and morphisms to denote respec-
tively knowledge and learning is justified in Section Section 2, and the corre-
sponding aLAT! category is introduced with its salient properties. The learning
process is defined in Section Section 3. The target of this first learning process
is practical knowledge, introduced together with a limited formalisation of skills
in Section Section 4. It is proved that the skill can be improved through learn-
ing, an Angluin-like property. Section Section 5 introduces cognitive states and
Conceptual knowledge as first-order models on compact cognitive states before
being extended to all stable cognitive states in Section Section 6.
Future works are presented in Section Section 7.

2 Modeling Learning

2.1 Informal considerations

Per the Oxford dictionary, learning is the acquisition of knowledge or skills
through study, experience, or being taught.
Without going into the definitions of knowledge and skills it can be infered

that they increase through the three stated activities. Let d, d′ be datasets rep-
resenting observations of the world, and assume that d ⊆ d′. Then a learning
algorithm f applied on d′ should return a better result than when applied on d,
something we denote with f(d) v f(d′). We infer from this comparison that both
the input and output of the function must be posets and that f must be a mono-
tonic between these posets. Reasoning along the same lines, we conclude that
any learning function must be monotonic wrt studying (cognitions) and being
taught (user-given information).
Independently, Kant defines logic as the rules of discurse that enable the con-

struction of truth from observations. A central tenet in his analysis is the always
present possibility of reconciling different positions as long as they were estab-
lished through the proper rules. This reconciliation process is presented in [30]
through the unity of self that must be preserved during the establishment of any
proper theory of the world. Mathematically speaking, if both d, d′ are datasets
representing different observations of the world and f is a learning algorithm,
denoting t the amalgamation of the experiences and of their results we have
f(d t d′) = f(d) t f(d′). This implies inter-alia that the codomain of f is a join-
semilattice. It is then natural to also assume that if d⊥ represents the minimum
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Y. Chevalier Theory Synthesis based on Experience

experience, then f(d⊥) should also be the minimum value in the codomain of f .
Another postulate is that the theories properly constructed from experience

should converge towards an ideal description of the world. It was already noted
in [27] that this postulate implies the existence of a Stone duality [20] theorem
between the world as a model and the theory constructed. To construct a mean-
ingful theory one has to assume that the observed world is not random and thus
that not all sequences of events are possible. Thus the possible observations of
the world are bounded by a set d of possible sequences. Then for all sequences of
sets of observations (dn)n∈N that converges towards d, i.e., such that ∪n∈Ndn = d,
we should also have

⊔
n∈N f(dn) = f(d), even if the latter can only be asserted

to exist and not computed explicitely. This implies that the limits ∪n∈Ndn and⊔
n∈N f(dn) exist if (dn)n∈N is an increasing sequence of observations. Since both

the domain and codomains are lattices, this implies that they are actually com-
plete lattices, and that f is Scott-continuous.

2.2 Model for machine learning

We now present the formal setting, with well-known referencing definitions
and properties in [28].
Definitions. Let (P,v) be a poset. Given x ∈ P we denote ↓ x = {y ∈ P | y v x)}.
A subset X ⊆ P is an ideal whenever x ∈ X and y v x imply y ∈ X. The set of
ideals of P ordered by inclusion is denoted Idl(P ). It is well-known that since P
is a poset, Idl(P ) is a complete lattice: the infimum and supremum all subsets of
X ⊆ Idl(P ) are defined, and denoted respectively uX and tX.
An element x ∈ Idl(P ) is compact whenever for all sets X, x v tX implies

there exists a finite Y ⊆ X such that x v tY . Since Idl(P ) is a complete lattice
it is bounded complete: if x, y v z then x t y @ z. A subset X of P is directed
whenever for all x, y ∈ X, there exists z ∈ X such that x v z and y v z. It is well-
known that since P is a poset, the compact elements K(Idl(P )) of Idl(P ) are (up to
isomorphism) the elements of P . Given x ∈ Idl(P ) denote x ↓= K(Idl(P ))∩ ↓ x. It is
well-known that this set is directed, and that x = tx ↓ for all x ∈ Idl(P ): K(Idl(P ))
is a base of Idl(P ), thus Idl(P ) is an algebraic lattice.
Traces, Observations, and Object Domains. Let A be an alphabet of events. A
trace is a word in A∗. During the learning phase, a set of traces L is availabe for
learning. For u, v ∈ A∗ denoting u v v if u is a prefix of v, we note that whenever v
is observed and u v v then u also is observed. Thus the set of effectively observed
traces in the course of learning is ↓ L, that is the ideal defined by L, from now
on called an observation. Since (A∗,@) is a poset, Idl(A∗) is an algebraic lattice.
The compact ideals of Idl(A∗) are generated by finite subsets of A∗. We denote a
compact ideal I with Σni=1ui if {u1, . . . , un} is the intersection of all subsets S ⊆ A∗
such that ↓ S = I. Given an alphabet A Idl(A∗) is denoted TA and called the object
domain of A.
The aLAT! category. We consider in this paper domains which are algebraic
lattices. It is well-known they are always complete. The bottom (resp. top) of a
domain A is t∅ = ⊥A (resp. u∅ = >A). We consider morphisms between domains
that are:

• Continuous: f(tX) = tx∈Xf(x) for every X ⊆ A);

• Strict: If f : A→ B, then f(⊥A) = ⊥B.

A domain morphism mapping compact elements to compact elements is alge-
braic. A learning function is an algebraic morphism. The objects of the aLAT!

category are the domains and itsmorphisms are the strict continuousmorphisms.
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Y. Chevalier Theory Synthesis based on Experience

Example 1. Any finite lattice is a domain. Thus for example the usual boolean
lattice B = {0, 1} with 1 @ 0 is a domain. The Belnap four-valued lattice [23]
{U, T, F,C} (unknown, true, false, contradictory) with U @ T, F and T, F @ C is
also a domain. More generally any finite lattice, including concept lattice [26]
employed to classify data hierarchically, is a domain. Another generalisation of
Belnap’s four-valued lattice is to consider any unordered set S and equip it with
a top and a bottom element. The resulting ordered set S ∪ {>,⊥} is a domain.
Finally the set of subsets of N equiped with the union operation and the inclusion
ordering is a domain whose compact elements are the finite subsets of N.

Example 2. Let Dspr be the domain R+ ∪{+∞} equiped with xt y = min(x, y). The
minimum of that domain is +∞ and its top element is 0. The minimum is the only
compact element. Equiped with Dspr it is possible to memorize the record time
in a sequence of sprint races.

Lifting. It is convenient to define functions the alphabet A, or at least on finite
words. Such definitions, provided the codomain is a domain, can be canonically
extended into a morphism.

Definition 1. Let A be an alphabet, D be a domain, and f : A∗ → D be such that
for all u, v ∈ A∗, u v v implies f(u) v f(v). The lifting of f is denoted f̂ : TA → D
and is defined by:

f̂(u) =
⊔
v∈↓u

⊔
v = Σw∈Bw
w ∈ B

f(w)

The definition of hatf ensures that all limits commute with its application.

Proposition 1. Let A be an alphabet, D be a domain, and f : A∗ → D be such
that for all u, v ∈ A∗, u v v implies f(u) v f(v). Then f̂ ∈ [TA → D] is also algebraic.

2.3 Properties of the aLAT! category

It is well-known that the aLAT! category is cartesian closed. [6] In particular
its exponential is an algebraic lattice. The support of a function f : D → E is the
minimal subset S ⊆ D such that x /∈ S implies f(x) = ⊥E. It is well-known that the
compact elements of [D → E] are the functions with a finite support S such that
f(x) is compact for all x ∈ S.

Proposition 2. If D,E are objects in aLAT! then [D → E] also in aLAT!.

Proof. By Prop. 4.1.5 of [27]: algebraic lattices are continuous lattices.

Example 3. In particular a database table whose elements are in a domain and
indexed by keys in a domain can be encoded as a function between these do-
mains. To be admissible, the construction of a database must be an algebraic
morphism and thus map observations to finite tables.

In particular we use without further reference that the product q

n∈NDn is in
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aLAT! if Dn ∈ aLAT! for all n ∈ N..

2.4 Split functions

Observations are analysed in a loop involving first the discovery of proper-
ties of events, then the classification of events according to these properties.
This classification yields a denumerable set of classes that can be analysed in-
dependently. This possibility of finer-grained analysis justifies the introduction
of specific classification morphisms, the split functions.

Example 4. Continuing the sprint example, it is natural to classify the humans
running according to their speed, e.g., define athlete as someone able to run in
less than 12s.

This classification should be complete, i.e., encompass all the events seen so
far. It is also arbitrary, in the sense that assuming an object domain TS, a choice
function c is just any function S → N. The split function for cmaps each event e to
the c(e)th copy of S. It is denoted Splitc and maps an object u ∈ TS to an element
Splitc(u) = (un)n∈N ∈

q

n∈NTS. The notation (un)n∈N is defined on events and the
Splitc function is lifted to elements of TS with Prop. 1.

Proposition 3. Let TS be an object domain, and c be a choice function on S.
Then Splitc is algebraic.

Proof. First since aLAT! is cartesian closed
q

n∈NTS is in aLAT!. The Splitc mor-
phism is by construction strict and continuous, we have to prove it is algebraic.
The compact elements of its codomain are the sequences of finite support such
that all the values are compact. Let u = (un)n∈N ∈

q

n∈NTS = Splitc(v). If v is com-
pact then it is an observation, a finite set of traces, and thus there is only a finite
number of events occuring in v. Each event has one class, thus Splitc(v) is of finite
support. For all n ∈ N the value un is an observation and thus is compact. Thus
if v is compact then Splitc(v) is compact.

Example 5. The domain Dspr of Ex. 2 is a representation domain. A function
that extracts from each event its runner and run time can be lifted into an al-
gebraic morphism mapping an observation u to another observation u′. One can
compute a representation of u′–and therefore of u–with a table associating to
persons their record time. A representation containing the minimum value in
that table can then be computed. A piece of knowledge that can be extracted
from this representation of the observation u is that all humans run 100m in at
least that minimum value.

3 Learning
Given our primary interest on anomaly detection systemswe borrow from [34]

the naming conventions on filters and Data Exchange Systems. Summarily this
work on the resolution of simple Data Exchange (DX) problems to fill tables in a
database and on filters (to be understood as filters in dynamical system analysis,
not as the topological construction) to learn integrity contraints. This generalisa-
tion follows the approach to DX of [9] in which rules are modeled as morphisms
between objects that represent tables. In contrast with that work we are not
interested in learning complex diagrams, and focus on the values computed in
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Y. Chevalier Theory Synthesis based on Experience

acyclic diagrams with one source. Accordingly a database is modeled with a set
of terms, each term denoting either the composition of functions filling a table
(an object term) or a filter (a representation term).

3.1 Notations

We let D0, D1, . . . , Dn be objects in aLAT!. The domain D0 plays the particular
role of being an object domain which is the source of the observations. Some
of these are object domains, the other are called representation domains. We
consider a set F of algebraic morphisms f1, . . . , fm between these domains, with
f ∈ F of arity kf and:

f : Dαf (1) × · · · ×Dαf (kf ) → Dαf (0)

for a mapping αf : {0, . . . , kf} → {0, . . . , n}. We also let S be a set of ns split func-
tions

{
Splitci

}
1≤i≤ns

over objects domains Dαci
for αci ∈ {1, . . . , n}. A function is a

representationwhenever its codomain is a representation domain, and an object
function otherwise.
First-order signature. A sort τi is associated with each domain Di, for 0 ≤ i ≤ n.
The sorted first-order functional signature ΣF,S comprises

1. The set of function symbols f1, . . . , fm with sorts

f : ταf (1) × · · · × ταf (kf ) → ταf (0)

2. A unique constant "X":τ0 denoting the object domain under analysis;

3. For each Splitc : Dαc) →
q

n∈NDαc ∈ S and each n ∈ N, a function symbol
cn : ταc

→ ταc
.

The set of ground terms over ΣF,S is as usual the least set T(ΣF,S) such that:

• "X":τ0 ∈ T(Σ);

• if t1:τ1, . . . , tkf :τkf ∈ T(Σ) and f : ταf (1) × · · · × ταf (kf ) → ταf (0) then f(t1, . . . , tn):
ταf (0) ∈ T(Σ);

• If t : τ ∈ T(Σ), t 6= cn(t′) for some n ∈ N, then for all m ∈ N, cm(t) ∈ T(Σ).

The last rule prohibits the application of a split function on a class that is the
result of the application of the same split function. In most cases the specific
set of functions is not relevant to the analysis, and we denote simply Σ a sorted
first-order functional signature as defined above.
Positions and subterms. A position is a finite sequence of integers, with ε de-
noting the empty sequence. Positions in and subterms of a term t are defined
recursively as follows:

• t is a subterm of t at position ε;

• If f(t1, . . . , tn) is a subterm at position p in t, then each ti is a subterm at
position p · i in t.

Given a term t we denote Sub(t) its set of subterms.
Representation and object terms. The terms t : τ such that τ = αf (0) for a repre-
sentation function f are called (ground) representation terms. Otherwise they
are called (ground) object terms. Given a set of terms S we denote Repr(S) the
subset of representation terms in S.
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Interpretation of u ∈ D0. The interpretation of a function symbol f is denoted [[f]]
and is f . The interpretation of a term t over u ∈ D0 is denoted [[t]]u and defined
inductively on ground terms as expected: [["X"]]u = u

[[f(t1, . . . , tn)]]u = f([[t1]]u, . . . , [[tn]]u)
[[cn(t)]]u = Splitc([[t]]u)(n)

If t is a representation term we distinguish its interpretation on u by calling it a
value and denoting it Valu(t)). The codomain of Valu(t)) is denoted coDom(t).

3.2 Data Exchange Systems (DXS)

A DXS is a set of terms over a signature Σ = ΣF,S. with a few conditions that
we explicit in this section.

Definition 2. (Data Exchange System) Let Σ be a signature. A Σ-Data Exchange
System (Σ-DXS) is a non-empty set of ground terms S ⊆ T(Σ) such that:

• "X" ∈ S;

• Each term t ∈ S is the result of the application of a function in Σ on a finite
subset of S;

• If cn(t) ∈ S, then for all m ∈ N, cm(t) ∈ S.

We denote D(Σ) the set of Σ-Data Exchange Systems.

The initial DXS ⊥D(Σ) is {"X"}. Given two possible DXS S,S′ we denote S v S′

if S ⊆ S′ as sets. D(Σ) with a poset with the ordering @ and the join operation
∆
⊔

∆′ = ∆ ∪ ∆′. Let us prove it is a domain. First we note it has a maximal
element, T(Σ) and a minimal element, the initial DXS. Per definition they are a
closed subset of the powerset of the set of terms, and thus lattices. It remains
to prove they are algebraic.
Consider a cognition Addt that adds a term t to a DXS, or if t is one of the result

of a split function c on a term t, adds simultaneously all the possible results cn(t).
Let CΣ be the set of all these cognitions. The constraint on the addition of terms
in the definition of DXS, namely that before a term is added all its subterms
must be present, naturally orders the set CΣ with Addt ⊆ Addt′ whenever t (or
one of the cases if t denotes the application of a split function) is a subterm of t′.
Reusing the discussion on the construction of object domains, it is then natural
to consider the algebraic lattice LCΣ , or more simply LC if Σ is clear from the
context, of ideals of CΣ. Given that the elements of LC are exactly the allowed
constructions for DXS, we have the following proposition, which in turn entails
that D(Σ) is also an algebraic lattice.

Proposition 4. LCΣ is isomorphic (as a lattice) to D(Σ).

As a corollary the compact DXS are the images of finite sets of cognitions in
CΣ.
Since DXS are domains it is possible to define morphisms on DXS domains

to extend the signature with new morphisms or split functions obtained either
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through user-interaction (a case of teaching) or through the system’s own cog-
nitions.

Proposition 5. (Teaching) Let Σ,Σ′ be two representation signatures such that
Σ ⊆ Σ′. Then the identity injection: ι : D(Σ)→ D(Σ′) is an algebraic morphism.

The morphism on signatures (as denumerable sets of symbols) adding a new
function is clearly algebraic. It shall be noted that the construction presented so
far to define learning encompasses experience through the observations, study-
ing through the cognitions, and being taught through signature extensions. This
delineation is informal: On the one hand, concepts learned from a preliminary
analysis can lead to the addition of a new split function, and the detection of
a functional relation between terms can lead to the addition of a new function
to the signature without any interaction or “being taught”. On the other hand
the role of categories in Kant’s analysis, especially in relation with the table of
judgements, is one functions that hold together several objects to produce a
new one, and some of these categories are assumed to be innate. Functions in
the signatures are those categories that hold together the objects of perception
regardless of whether they are innate, taught, or infered by cognitions.

4 Practical Knowledge and Skills
Knowledge has already been defined many times in many different settings.

It seems nonetheless appropriate to add two new definitions. In this section
Practical Knowledge is the valuation of representation terms. The skill steming
from that knowledge is the ability to detect anomalies, a process called moni-
toring. In essence, algebraicity entails that the set of all possible observations
can be approximated by finite observations; Continuity then imply the conver-
gence of the valuation learned to that of the ideal representation. The system is
self-correctible when given labeled observations.

4.1 Practical Knowledge

First we prove that the valuation of terms in a domain is continuous as it is
the composition of continuous functions. Let Σ be a signature, S be a DXS in
D(Σ), D be a domain, u be an observation, and t be a term. These notations are
decorated reasonably, and D0 is the domain on which "X" is interpreted.

Lemma 1. The mapping u ∈ D0 7→ [[t]]u is an algebraic morphism.

Proof. By contradiction assume the set Ω of terms t such that the mapping u ∈
D0 7→ [[t]]u is not continuous is not empty. Let t be minimal for the well-founded
subterm relation in Ω. We must have t 6= "X". If t = f(t1, . . . , tn), then by minimality
of t the functions u 7→ [[ti]]u are continuous, and thus by function composition the
function u 7→ [[t]]u must be continuous as both morphisms and split functions are
continuous, a contradiction. Algebraic functions map compact to compact, thus
their finite compositions are algebraic.

In the following proposition, since the mapping to each coordinate is contin-
uous by Lemma 1, the mapping to the product of interpretations is continuous.
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Proposition 6.

ValS : D0 →

q

t∈Repr(T(Σ)) coDom(t)
u 7→

q

t∈Repr(T(Σ))dt with
dt =

{
Valu(t) if t ∈ S
⊥coDom(t) Otherwise

is a morphism. It is algebraic if S is compact.

Proof. We have already seen that the codomain q

t∈Repr(T(Σ))D(t) is in aLAT!. By
Lemma 1 the projections to each coordinate are continuous. Thus by the univer-
sal property of the product topology this function is continuous. Also it clearly
maps ε to the product of the minimal elements, which is the minimal element of
the product.
It remains to prove it is algebraic when S is compact. Assume this is the case

and let u ∈ D0 be an observation. Since u is compact it contains a finite number
of events. Since S is compact, it contains only a finite number of non-split terms,
and a finite number of splits (each of which adding a denumerable number of
terms). By Prop. 3 and since u is compact for each split only a finite number of
terms have a non-bottom valuation.
Thus if S is compact, all but finitely elements of the product have the ⊥ val-

uation, the remaining ones having a compact value since the interpretation of
each term is compact by Lemma 1.

The valuation is also continuous if the DXS changes with a fix world u.

Proposition 7.
Valu : D(Σ) →

q

t∈Repr(T(Σ)) coDom(t))

S 7→ ValSu

is a morphism. It is algebraic if u is compact.

Proof. "X" is not a representation term and thus Valu maps the bottom element
of D(Σ) to the bottom element of the product. Its continuity again is derived from
the fact that the mapping to each coordinate t is continuous as it can only change
once from ⊥D(t) to ValD(t)([[t]]u).
When u is compact, the fact that it maps compact DXS to compact elements

of the product is already proved in the proof of Prop 6.

A function continuous in each argument being continuous on the product, we
obtain the following theorem that characterizes our learning approach.

Theorem 1.
Val : D0 ×D(Σ) →

q

t∈Repr(T(Σ)) coDom(t))

(u, S) 7→

q

t∈Repr(T(Σ)) ValSu(t)

is algebraic and continuous.

Proof. Continuity stems from the continuity on each argument as in Proposi-
tions 6 and 7. Algebraicity also, remembering that the compact elements of a
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Y. Chevalier Theory Synthesis based on Experience

finite product are the products of compact elements and that the minimum of
the product is the pair of bottom elements.

We define practical knowledge after observing u and applying the cognitions
leading to S as ValSu . By Theorem 1 knowledge is exactly that which has been
learnt.

4.2 Skill: Anomaly Detection

In order to present the monitoring skill, it is adequate to introduce a few
notations. Let ulim ∈ D0 be the ideal that contains all possible observations that
contain no anomaly. It is assumed that learning is based on an observation u v
ulim . Assuming the signature is fixed, it is possible to define a limit valuation.

Definition 3. the limit valuation is ValRepr(T(Σ))
ulim

.

Example 6. In our running example, the table of runs would contain all the possi-
ble runs, past, present, and future, and theminimum time would be theminimum
amount of a time a human can run on 100m.

Since learning is continuous the valuation learnt after an observation u ap-
proximates the limit valuation and thus is a provisory estimate. Monitoring is
the act of checking that an observed world u, which is not necessary a possible
one, is within the limits learned.

Definition 4. A ground literal is an expression t v d where t ∈ T(Σ) is a repre-
sentation term, and d ∈ coDom(t).

Monitoring is a classification problem with two classes. Remembering that
1 v 0 an observation contains a new behaviour whenever one of the possible
representations is outside the bounds reached during learning.

Definition 5. (Monitor) Let Σ be a signature. Then for r ∈ q

t∈Repr(T(Σ))D(t), the
r-monitor is the mapping:

Mr : D0 → B
u 7→ tt∈Repr(T(Σ)) Valu(t) v rt

In the following lemma algebraicity is trivial as the two elements of B are
compact, and continuity follows from the continuity of the valuation function
(Lemma 1).

Lemma 2. Let Σ be a signature, and d be in coDom(t) for a representation term t.
Then the functionMt,d : u 7→ Valu(t) v d is algebraic. If furthermore d is compact
then the function: Mt,d

s : u 7→ Valu(t) @ d is continuous.

Proof. Only the last statement is not trivial. Assume u =
⊔
v∈V v where V contains

only compact elements. We have to prove that Valu(t) @ d =
⊔
v∈V Valv(t) @ d. By
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monotony of the valuation and 1 @ 0 this is true if Valu(t) @ d = 1. Let us now
assume this is not the case, and thus that Valu(t) @ d = 0 or equivalently that
d v Valu(t).
The functionw 7→ Valw(t) is continuous by Lemma 1 and thusValu(t) =

⊔
v∈↓u Valv(t).

Since this function is algebraic all the Valv(t) values are compact. By defini-
tion of compactness, and since algebraic lattices are bounded-complete, if d v
Valu(t) =

⊔
v∈V Valv(t) there exists v ∈ V such that d v Valv(t) and thus such that

Valv(t) @ d = 0.

Proposition 8. Let r ∈ q

t∈Repr(T(Σ)) coDom(t), andMr be the r-monitor. Then the
mapping u ∈ D0 7→ Mr(u) ∈ B is algebraic.

Note that in Proposition 8 the r-monitor is fixed. We leave to the reader that
reusing the notations of Prop. 8 the function: ψu : r 7→ Mr(u) is not continuous.
This fact is exploited in the next section.

Example 7. Assuming that after an observation u a minimum time for sprinting
on 100m by human is computed to be 9s58, and that an event of a run in 9s is
observed. The monitor function maps that event to 0, and it is thus considered
as anormal, to be treated depending on the context.

As this paper generalises the setting in [34] we refer to that paper for assess-
ing the effectiveness in practice of this approach for anomaly detection.

4.3 Improving skills

Recall any non-anomalous observation u should be smaller than ulim. Accord-
ingly a world u 6v ulim is an anomaly. An anomaly u isΣ-detectable ifM

Val
Repr(T(Σ))
ulim

(u) =

0. It is a r-false negative ifMr(u) = 1. Finally we say that u v ulim is a r-false posi-
tive ifMr(u) = 0, i.e., it lies in the gap between the learnt valuation and the limit
valuation.
Angluin-like [8] is synonymous with the possibility to converge to the right

solution whenever false positive and false negatives examples to a proposed so-
lution are given. The following theorem indicates that an Oracle can guide the
system in the convergence to the limit valuation. In the first case it is only stated
that a term exists. However we note that in settings in which [35] can be em-
ployed this computation automatable.

Theorem 2. (Angluin-like Machine Learning) Let Σ be a signature, and (u, S) ∈
D(Σ) be a DXS. Let r = ValRepr(S)

u be the result of the learning phase, and v ∈ D0

be a world.

1. if v is a detectable anomaly and a r-false negative, there exists S′ such that
S ⊆ S′ andM

Val
Repr(S′)
u

(v) = 0;

2. if v is a normal behavior and a r-false positive, there exists u′ such that u v u′
andM

Val
Repr(S)

u′
(v) = 1.

Proof. By the algebraicity and continuity of the monitor fonction. We prove the
first case, the second one can either be proved similarly or by taking u′ = u+ v.
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Since v is Σ-detectable, M
Val

Repr(T(Σ))
ulim

(v) = 0. Since it is a r-false negative,
M

Val
Repr(S)
u

(v) = 1. Since the function Val is algebraic continuous by Theorem 1,
by considering an increasing chain of compacts (u′, S′) above (u, S) and whose
supremum is (ulim,T(Σ)), there exists a compact DXS (u′, S′) such that u v u′,
S ⊆ S′, andM

Val
Repr(S′)
u′

(v) = 0. Since we take the supremum of the values on each
term, there exists a term t ∈ S′ such that Valv(t) 6v Valu′(t). Let us consider the
possibilities for t.
Since the valuation is increasing on each term, for all t ∈ S we have Valu(t) v

Valu′(t), and thus Valv(t) 6v Valu′(t) implies Valv(t) 6v Valu(t). Since v is a false
negative, we have for all t ∈ S that Valv(t) v Valu(t). Thus there exists t ∈ S′ \ S
such that Valv(t) 6v Valu′(t), and thus Valv(t) 6v Valu(t). Thus we haveM

Val
Repr(S′)
u

(v) =

0.

Conclusion on learning and monitoring. The continuity of the learning process
established in Theorem 1 implies the eventual convergence of the result of our
learning algorithm towards an ideal description of the system. Theorem 2 pre-
cises how to eliminate false positives–by learningmore traces–,and false negatives–
by adding new terms to the DXS.

5 Conceptual Knowledge in the Finite
Practical knowledge is useful for anomaly detection but does not address the

discursive part of logic as presented in [5], namely that the mental state built
through cognitions is the basis of discurse. While objects of perceptions and lan-
guage are shared reality, the practical knowledge is subjective. The unity of self
is the constraint that in particular names and relations in the shared language
should be given a semantics consistent with the shared reality of the objects
of perception. The concepts underlying this semanticisation are defined in this
section as predicates of experience and domain of experience. The conceptual
knowledge is the first-order model defined by these predicates and this domain.
Additional notations. Let X be a set of sorted variables denoted x, y, . . ., and dec-
orations thereof. A term t is a term in the signature T(Σ∪X ). The set of variables
occuring in t is Sub(t) ∩ X . A term t is a pure representation term if all functions
in the definition of t are representation functions.
Outline. A state is a couple (u, S) where u is an element of D0 and S is a DXS.
Concepts are introduced through new cognitions that enrich a cognition state.
These cognition states are states extended with a subset O ⊆ S of ground object
terms an observer is aware of when reasoning and a set R of pure representation
terms through which these objects are classified. A first-order model is built by
concept analysis on the object terms as objects and pure representation terms
as attribute.

5.1 Cognitive states

A literal of the form t v d where t is a pure representation term is called a
pure literal.

Definition 6. (Predicate) A predicate ϕ =
∧
t∈Tϕ

t v dt is a conjunction of pure
literals. Its arity is | ∪t∈Tϕ Var(t)|.
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The truth of a pure literal l in relation with an observation u is defined through
one or several substitutions θ such that lθ is ground and satisfied by u.

Definition 7. (Grounding) Let O be a set of object terms and t be a pure repre-
sentation term. A substitution θ O-grounds t if:{

coDom(θ) ⊆ O
tθ is ground

We denote GrO(t) the set of substitutions that O-grounds the term t.

Given a set of object terms O we denote Subst(O) the set of substitutions whose
codomain is included in O. As a matter of convenience this notion is extended to
literals and we denote GrO(t v d) the set GrO(t) when t is a pure representation
term.

Definition 8. (Support of a literal) Let O be a set of object terms and u ∈ D0. A
substitution θ (u,O)-supports a pure literal r v d if θ ∈ GrO(r v d) and Valu(rθ) v d.
We denote this fact with θ |=(u,O) l, and denote SuppOu (l) the subset of GrO(l) of
substitutions that (u,O)-supports the literal l.

Definition 9. (Cognitive State) A cognitive state is a tuple K = (u, S,O,R) such
that:

• u ∈ D0 and S is a DXS;

• O ⊆ S contains only object terms and for all o ∈ O we have [[o]]Su 6= ε;

• R is a set of pure representation terms;

Given two cognitive states K = (u, S,O,R) and K ′ = (u′, S′, O′, R′) we say that
K ′ is an extension K, and denote it K v K ′, if u v u′, S ⊆ S′, O ⊆ O′, and R ⊆ R′.
Given a family of cognitive states (Kf )f∈F the supremum of the family is de-

noted
⊔
f∈F Kf and is the cognitive state K = (u, S,O,R) where:

u = ∪f∈Fuf
S = ∪f∈FSf
R = ∪f∈FRf
O = ∪f∈FOf

By altering the construction in Sec. Section 3.2 it is clear that the set of cog-
nitive states is a domain, i.e., an algebraic lattice. The set of cognition functions
is extended with cognitions AddOt adding the term t to O (with Addt v AddOt to
ensure that only terms in S can be added, and AddRt to add pure representation
terms toR. As a consequence cognitive stateK = (u, S,O,R) is compactwhenever
u and S are compact, and O and R are finite.

5.2 Relational signature of a cognitive state

Given a cognitive state K = (u, S,O,R) and t ∈ R let GrK(t) ⊆ GrO(t) be the set
of substitutions θ such that tθ ∈ S. The set of substitutions defined in a cognitive
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state K is denoted Subst(K) and is the set ∪t∈R GrK(t). Given a substitution θ ∈
Subst(K), we letObsK(θ) be the set of observations that can bemade on the objects
in the image of θ:

ObsK(θ) = {t ∈ R | θ ∈ GrK(t)}

We extend this notation to sets of substitutions with:

ObsK(Θ) = ∩θ∈Θ ObsK(θ)

Example 8. Let K = (u, S,O,R) be a cognitive state, f : T → TD be a represen-
tation function, and eq : TD × TD → {0, 1} be an equality function, i.e., such that
eq(u, v) = 1 if and only if u = v. The representation term eq(f(x), f(y)) is a binary
predicate. Let Θ be the set of substitutions θ = {x 7→ t1, y 7→ t2} with t1, t2 ∈ O such
that eq(f(t1), f(t2)) = 1. By definition we have eq(f(x), f(y)) ∈ ObsK(Θ). Knowing
that the predicate must be reflexive, symmetric, and transitive can help in the
computation of Θ, and symmetrically the knowledge of a maximal set of substi-
tutions Θ leads to the learning from experience that the predicate is reflexive,
symmetric, and transitive. These cognitive aspects are out of the scope of this
paper, but the construction of rules from table contents given in [24] can be
employed.

Since the set ObsK(Θ) represents the common qualities of the objects related
by the substitutions in Θ predicates of experience as a subset A of particular
aspects of these common qualities.

Definition 10. (Predicate of Experience) Let K be a cognitive state, and Θ ⊆
Subst(K). The predicate of experience defined by Θ and A ⊆ ObsK(Θ) in K is
denoted ObjAK(Θ) and is the formula:

ObjAK(Θ) =

 1 If A = ∅∧
t∈A t v

⊔
θ∈Θ Valu(tθ)

Otherwise

Its arity is the cardinal of ∪t∈A Var(t). The set of predicates of experience of a set
of substitutions Θ is denoted ObjK(Θ).

We denoteObjE(K) the set of predicates of experienceObjAK(Θ) forΘ ⊆ Subst(K)
and A ⊆ ObsK(Θ). GrK is extended to literals, and to predicates with GrK(

∧
t∈T t v

dt) = ∩t∈T GrK(t). We give the usual semantics to the conjunction by defining the
support of ϕ =

∧
t∈T t v dt in K as ∩t∈T SuppOu (t v dt), and denote it SuppOu (ϕ). By

construction Θ ⊆ SuppOu (ϕ) for ϕ ∈ ObjK(Θ): a predicate defined by the examples
in Θ is satisfied by these examples. It is trivial that if θ ∈ SuppOu (Obj

ObsK(Θ)
K (Θ))

then θ ∈ SuppOu (ϕ) for all ϕ ∈ ObjK(Θ). That case is denoted θ ∈ SuppOu (ObjK(Θ)),
and extended to sets fo substitutions Θ′.
That a set of substitutions may entail the object formulas of another set of

substitutions yields a pre-order on these sets. In turns the pre-order yields an
equivalence relation between sets of substitutions.

Definition 11. (Specialisation) Let K be a cognitive state, and Θ,Θ′ ⊆ Subst(K).
We say that Θ′ specialises Θ, and denote Θ �K Θ′, if Θ′ ⊆ SuppOu (ObjK(Θ)).
The sets Θ,Θ′ ⊆ Subst(K) are K-equivalent, and we denote Θ ≡K Θ′, if Θ �K Θ′

and Θ′ �K Θ.
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The equivalence classes for≡K are (pre-order) isomorphic with the predicates
of experience on K.

Lemma 3. Let K = (u, S,O,R) be a cognitive state, and Θ,Θ′ ⊆ Subst(K) be such
that Θ ≡K Θ′. Then ObjK(Θ) = ObjK(Θ′).

Proof. LetΘ,Θ′ ⊆ Subst(K) be such thatΘ �K Θ′. It suffices to provesObj
ObsK(Θ)
K (Θ) =

Obj
ObsK(Θ′)
K (Θ′).
By definition Θ �K Θ′ implies ObsK(Θ′) ⊆ ObsK(Θ), and thus by double inclu-

sion Θ �K Θ′ implies ObsK(Θ) = ObsK(Θ′).
By definition of �K for each θ′ ∈ Θ′ we have u |= ObjK(Θ)θ′. For each r ∈

ObsK(Θ), u |= ObjK(Θ)θ′ implies Valu(rθ′) @
⊔
θ∈Θ Valu(rθ). Inversing the roles

of θ, θ′ we also get that for all r ∈ ObsK(Θ′), and all θ ∈ Θ we have Valu(rθ) @⊔
θ′∈Θ′ Valu(rθ′). Taken together these inequations yield for all r ∈ ObsK(Θ):⊔

θ∈Θ

Valu(rθ) =
⊔
θ′∈Θ′

Valu(rθ′)

Given the two preceding paragraphs and the definition ofObjK we have: ObjK(Θ) =
ObjK(Θ′).
Conversely, ObjK(Θ) = ObjK(Θ′) implies, together with the fact that by con-

struction u |= ObjK(Θ)θ′ for all θ′ ∈ Θ′, and symmetrically when reversing the
roles of Θ and Θ′, that Θ ≡K Θ′.

This tight coupling is employed to transfer the predicates of experience be-
tween cognitive states through the sets of substitutions and representations that
generate them.

5.3 Domain of a cognitive state

The construction of a domain from a cognitive state K = (u, S,O,R) proceeds
by considering the elements of O modulo an equivalence generated by ObjE(K).
This approach has two obstacles:

• A first modeling problem is whether it suffices to consider all comparisons
between terms in O in the image of the possible substitutions, or if all the re-
placement of one term by another in O have to be considered. Both choices
lead to an equivalence relation on O, the latter making it a congruence
on terms. Lemma 5 provides the proof of termination of the replacements
though to ease notations only the changes in the codomain of the substitu-
tions are considered outside of the corresponding paragraph, with hints for
the non-obvious adaptations;

• A second problem is that pairwise comparison of terms does not yield a
transitive relation as some terms may be missing in S. Instead of consid-
ering all intermediate cognition states as described by Kant, we introduce
the notion of stable state to indicate that all the needed replacements have
been performed.

Example 9. Importance of transitivity for proper reasoning. It can be determined
that a witch weights the same as a duck by considering successively that people
burn witches and wood, that wood and ducks float on water, and that the weight
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of an object determines whether it floats. The cognitive state on which this rea-
soning is sensible lacks transitivity as it is not determined whether people burn
ducks nor whether witches float. It is thus not stable, and additional experiences
(construction of new terms) are needed to make it stable. Out of the scope of
this paper, it would be also sensible to determine whether floating on water is a
good characterisation of witches as a special subset of humans.

Considering closure under replacements. The following lemma allows for the
transfer of a replacement on an instantiated term to a replacement on the sub-
stitution, and is used without references when considering ground instances of
pure representation terms.

Lemma 4. Let t be an object term, r be a pure representation, and θ be a sub-
stitution such that rθ is ground. Then if (rθ)|p = t and p ∈ Pos(r) then r|p is a
variable.

Proof. Since t is an object term the symbol at position ε in t denotes an object
morphism. Since r is a pure representation term, this symbol cannot occur in r.
Thus t can occur in rθ only at a position of a variable or below.

Definition 12. A set of ground termsO is replacement saturated if for all t, t1, t2 ∈
O and position p ∈ Pos(t), we have either t|p = t1 implies t[p ← t2] ∈ O or t|p = t2
implies t[p← t1] ∈ O.

The replacement saturation of a set of terms can be computed effectively and
is finite.

Lemma 5. Let K = (u, S,O,R) be a compact cognitive state. Then there exists
a finite and unique minimal set of ground term O′ such that O ⊆ O′ and O′ is
replacement saturated.

Proof. Let < be a simplification ordering [22] on terms. We consider the ground
term rewriting system T = {t→ t′ | t, t′ ∈ O and t′ < t}. The Knuth-Bendix comple-
tion of T always succeed (Corollary 6.2 in [10]) and yields a finite equivalent
term rewriting sytem T ′. Let O′ be the set of terms that contains O and such that
t ∈ O′ and t→T ′ t′ implies t′ ∈ O′. Since T ′ is always terminating this set if finite,
and it is replacement saturated by definition.

Proper construction of the domain. From now on we only consider the replace-
ment in the codomain of substitutions of one term with another term. This re-
placement may be partial. Given a substitution θ of support X, for Y ⊆ X and t, t′
terms we denote θ[t← t′]Y the substitution:

θ[t← t′]Y (x) =

{
θ(x) if x /∈ Y
t′ if x ∈ Y and θ(x) = t

The following definition can be adapted by furthermore assuming O is replace-
ment saturated and considering the orbits for the symmetric closure of the t→ t′

rewriting rule: the terms t and t′ are equivalent if and only if the valuation is
constant over the orbit of each representation term.
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Definition 13. (Pre-order and equivalence onO) LetK = (u, S,O,R) be a compact
cognitive state. Given t, t′ ∈ O we write t �oK t′ if for all θ ∈ Subst(K), for all
X ⊆ Dom(θ), and for all r ∈ R we have ValSu(rθ[t← t′]X) v ValSu(rθ).
We denote t ≡oK t′ the fact that t �oK t′ and t′ �oK t.

This closure by partial replacement may seem too stringent but is technically
necessary to prove transitivity in the following lemma.

Lemma 6. t �oK t′ is pre-order on O.

Proof. It is trivially reflexive. Assume t, t′, t′′ ∈ O be such that t �oK t′ and t′ �oK t′′.
Let θ ∈ Subst(K), X ⊆ coDom(θ), and r ∈ R. We remark that θ[t ← t′′]X = θ[t ←

t′′]X∩θ−1(t). It thus suffices to prove ValSu(rθ[t← t′′]X∩θ−1(t)) v ValSu(rθ).
By composition we have rθ[t← t′′]X∩θ−1(t) = rθ[t← t′]X∩θ−1(t)[t

′ ← t′′]X∩θ−1(t) and
conclude with the hypothesis and the transitivity of v.

Thus by Lemma 6 ≡oK is an equivalence relation on O. The behaviour of
this equivalence is problematic when considering the addition of representation
terms in S. Assume O = {t1, t2}, [[t1]]Su = [[t2]]Su and R = {f(x)}. If S contains only
one of f(t1), f(t2) we necessarily have t1 6≡oK t2 but if it contains either none or
both of them we have t1 ≡oK t2. Starting from an empty set O and adding succes-
sively t1 and t2 makes the equivalence classes not monotonic. Accordingly stable
cognitive states are those states such that S contains enough terms to properly
evaluate all replacements of one term in O with another when instantiating a
term in R.

Definition 14. (Stable cognitive state) A cognitive state K = (u, S,O,R) is stable
if for all r ∈ R we have SubstK(r) = SubstO(r).

The essence of the following proposition is that the equivalence class ≡oK on
O defines a finer equivalence than ≡K on P(Subst(K)) (the first part), but that it
is the coarsest equivalence on O that induces an equivalence finer than ≡K on
P(Subst(K)) (the second part).

Proposition 9. Let K be a stable cognitive state, and t, t′ ∈ O. If t ≡oK t′ then for
all Θ ⊆ Subst(K) and X ⊆ ∩θ∈Θ Dom(θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ}

Conversely if for all Θ ⊆ Subst(K) and X ⊆ Dom(Θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ, X ⊆ Dom(θ)})

then t ≡oK t′.

Proof. If t ≡oK t′ for all Θ ⊆ Subst(K) and X ⊆ ∩θ∈Θ Dom(θ) we have for all θ ∈ Θ
that θ ≡K θ[t ← t′]X by definition of ≡oK , and thus Θ ≡K Θ[t ← t′]X by definition of
≡K .
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Conversely assume that for all Θ ∈ Subst(K) and all X ⊆ ∩θ∈Θ Dom(θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ})

By Lemma 3 ObjK(Θ) = ObjK({θδt,t′ | θ ∈ Θ} ∩ Subst(K)) is equivalent to Θ ≡K
{θ[t← t′]X | θ ∈ Θ}.
In particular for all θ ∈ Θ and for all r ∈ R such that θ ∈ GrK(r) that ValSrθ[t←t′]X (v

) ValSu(rθ), and thus again by Definition 13 that t ≡oK t′.

Next lemma is a direct consequence of Definition 13 that is highlighted for
further reference.

Lemma 7. Let K = (u, S,O,R) be a compact stable state and t1, t2 ∈ O such that
t1 ≡oK t2. Then for all θ ∈ Subst(K), for all X ⊆ Dom(θ), and for all r ∈ ObsK(θ) we
have rθ = rθ[t1 ← t2]X .

Thus the truth value of predicates of experience can be defined on the equiv-
alence classes of ≡oK . This approach fails to take into account that there ex-
ists objects not in O. Accordingly given the domains D0, . . . , Dn let Others =
{otherD}D∈{D0,...,Dn} be a set of constants each interpreted in its labeling domain
as the bottom of that domain. Even if different terms in an equivalence class may
have different interpretation, Lemma 7 implies when considering predicates of
experience, the choice of the representative in indifferent. Thus these two sets
of constants together define a domain on which predicates of experience can be
evaluated.

Definition 15. (Domain of a cognitive state) Let K = (u, S,O,R) be a stable cog-
nitive state. The domain of K is the set O/ ≡oK ∪Others and is denoted Dom(K).

Valuation on Dom(K). We denote the valuation on Dom(K) with ValK and define:

ValK(a) =

{
⊥Di

If a ∈ Others of sort τi
Valu(t) for any t ∈ a otherwise

5.4 Conclusion

By Lemma 7 the valuation of an instantiation of a term r ∈ R never depends
on the term chosen in the equivalence class. This allows the extension of substi-
tutions to the domain of a cognitive state.

Definition 16. (Model a Compact Cognitive State) LetK = (u, S,O,R) be a stable
compact cognitive state. The model of K is denoted Mod(K) and is the tuple
(Dom(K),ObjE(K), |=K). Given P ∈ ObjE(K) of arity n we denote |=K P (a1, . . . , an)
iff θ = {xi 7→ ai}1≤i≤n ∈ SuppOu (R).

A preliminary of conceptual knowledge for a stable compact cognitive state
K is Mod(K).
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6 Conceptual Knowledge
To bridge the gap with [30] it suffices to construct an inverse system for con-

ceptual knowledge.

6.1 Analysis of Predicates of Experience

Let K = (u, S,O,R) be a stable compact cognitive state. Let P (x1, . . . , xn) be
a predicate of experience in ObjE(K). there exists an equivalence class ΘP ⊆
Subst(K) and A ⊆ ObsK(ΘP ) such that:

R(x1, . . . , xn) =
∧
r∈A

r v
⊔
θ∈ΘP

Valu(rθ)

with
⋃
r∈A Var(r) = {x1, . . . , xn}.

First assume Θ′P ⊆ Θ. Then for all r
⊔
θ∈Θ′P

Valu(rθ) v
⊔
θ∈ΘP

Valu(rθ), and thus
if ∧

r∈A
r v

⊔
θ∈Θ′P

Valu(rθ)

is satisfied by a substitution σ then∧
r∈A

r v
⊔
θ∈ΘP

Valu(rθ)

is also satisfied by σ. However we also note that by construction, if this substi-
tution σ is in Θ′P , it satisfies both formulas.
Second, assume now that R′ ⊆ R, and let A′ = A ∩ R′. Since the valuation of

each formula does not change, it is tautological that if a substitution σ satisfies:∧
r∈A

r v
⊔
θ∈ΘP

Valu(rθ)

it also satisfies: ∧
r∈A′

r v
⊔
θ∈ΘP

Valu(rθ)

Finally assume that K ′ = (u′, S′, O′, R′) is also a stable compact cognitive state
with u = u′ and K ′ v K, i.e., O′ ⊆ O and R′ ⊆ R.
By definition O′ ⊆ O implies Subst(K ′) ⊆ Subst(K). Let ΘP be an equivalence

class in Subst(K), let A ⊆ ObsK(ΘP ), and let:

P (x1, . . . , xn) =
∧
r∈A

r v
⊔
θ∈ΘP

Valu(rθ)

Define: 
ΘP ′ =

{
θ|Var(P ′) | θ ∈ ΘP

}
∩ Subst(K ′)

A′ = A ∩Obs′K(ΘP ′)
P ′(x1, . . . , xm) =

∧
r∈A′ r v

⊔
θ∈ΘP ′

Valu(rθ)

Two cases are possible:

• If ΘP ′ is empty, ObsK′(∅) = ∅, and thus A′ = ∅ andm = 0. Thus the conjunction
is always true, i.e., P ′ = 1. Any substitution satisfying P (x1, . . . , xn) also
satisfies 1;

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

19

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr


Y. Chevalier Theory Synthesis based on Experience

• Otherwise from the above discussion we have that any substitution θ ∈ ΘP ′

satisfies both P (x1, . . . , xn) and P ′(x1, . . . , xm). Thus again the image of any
substitution that satisfies P (x1, . . . , xn) satisfies P ′(x1, . . . , xm)

By construction P ′(x1, . . . , xm) is a predicate of experience of K ′. This reasoning
applies on all predicate of experience of K, and given that R′ ⊆ R and Subst(K ′) ⊆
Subst(K) one easily obtains ObjE(K ′) ⊆ ObjE(K). This case is generalised with
functions between any stable compact cognitive states K ′,K such that K ′ v K.

6.2 Projections of the Inverse System

Definition 17. (Predication Projection) Let K = (u, S, 0, R),K ′ = (u, S′, O′, R′) be
two stable compact cognitive states with K ′ v K. The predicate projection of K
into K ′ is denoted ψK′,K and is the function:

ψK′,K : ObjE(K) → ObjE(K ′)

ObjAK(Θ) 7→ ObjA
′

K (Θ′)

with: {
A′ = A ∩R′
Θ′ =

{
θ|Var(A′) | θ ∈ ΘP

}
∩ Subst(K ′)

The two first points of next lemma summarizes the discussion of the preceding
section. The last point is by construction.

Lemma 8. Let K = (u, S, 0, R),K ′ = (u, S′, O′, R′),K ′′ = (u, S′′, O′′, R′′) be stable
compact cognitive states with K ′′ v K ′ v K.

1. ψK′,K is surjective;

2. For all P ∈ ObjE(K) of arity n, for all a1, . . . , am ∈ O′ such that there exists
am+1, . . . , an in O with |=K P (a1, . . . , an), we have|=K′ ψK′,K(P )(a1, . . . , am).

3. ψK′′,K = ψK′′,K′ ◦ ψK′,K .

Next lemma enables a similar construction on the domain.

Lemma 9. Let K = (u, S, 0, R),K ′ = (u, S′, O′, R′) be two stable compact cognitive
states with K ′ v K, and t1, t2 ∈ O′ such that t1 ≡oK t2. Then t1 ≡oK′ t2

Proof. Trivial by Lemma 7 and R′ ⊆ R.

Thus if the intersection with O′ of an equivalence class a ∈ O/ ≡K is not empty,
it is a subset of a unique equivalence class a′ ∈ O′/ ≡K′ . Let hK′,K be provisionally
defined as the mapping a ∈ O/ ≡oK 7→ a′ ∈ O′/ ≡oK′ . Considering the image of
the equivalence class containing each t ∈ O′ ⊆ O shows that this mapping is
surjective. It is extended as follows to Dom(K):

• If a ∈ Others define hK′,K(a) = a;

• Otherwise if a∩O′ = ∅ and a is interpreted on the domain D define hK′,K(a) =
otherD.
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Definition 18. (Domain Projection) Let K = (u, S,O,R),K ′ = (u, S′, O′, R′) be two
stable compact cognitive states with K ′ v K. The domain projection of K into K ′
is denoted hK′,K and is the function:

hK′,K : Dom(K) → Dom(K ′)

hK′,K(a) =

 a If o ∈ Others
othersd If a /∈ Others and a ∩O′ = ∅
a′ Otherwise

with a′ the equivalence class in O′ containing a ∩O′.

Predicate and domain projections are related in the following lemma. The
first point is by construction, the second by Lemma 8.

Lemma 10. Let K = (u, S, 0, R),K ′ = (u, S′, O′, R′),K ′′ = (u, S′′, O′′, R′′) be stable
compact cognitive states with K ′′ v K ′ v K. Then the predicate and domain
projections of K into K ′ are surjective and

• hK′′,K = hK′′,K′ ◦ hK′,K ;

• For all a1, . . . , an ∈ Dom(K) and P (x1, . . . , xn) ∈ ObjE(K) one has |=K P (a1, . . . , an)
implies |=K′ ψK′,K(P )(hK′,K(a1), . . . , hK′,K(am)).

Lemma 8 and 10 directly prove Theorem 3. Let us first recall the definition
of inverse systems of models.

Definition 19. (Inverse System ofmodels) Let F be a directed poset, and {Mf = (Df ,Rf , |=f )}f∈F
be a family of first-order models. Then ((Mf )f∈F , (gf ′,f )f ′vf , (ϕf ′,f )f ′vf ) is an in-
verse system of models if:

• Coherence: gf ′,f : Df → Df ′ and ϕf,f ′ : Rf ′ → Rf are surjective mappings
satisfying: f ⊆ f ′ ⊆ f ′′ implies gf ′′,f = gf ′′,f ′ ◦ gf ′,f and ϕf ′′,f = ϕf ′′,f ′ ◦ ϕf ′,f ;

• Model homomorphism: for all P ∈ Rf there exists a subset mf ≤ n such that
|=f P (a1, . . . , an) implies |=f ′ ϕf ′,f (P )(gf ′,f (a1), . . . , gf ′,f (am′f ))

Given a stable cognitive state K = (u, S,O,R) let K ↓ be the set of stable com-
pact cognitive states K ′ = (u′, S′, O′, R′) such that K ′ v K and u′ = u. We have:

Theorem 3. Let K = (u, S,O,R) be a stable cognitive state. Then

((Mod(K ′))K′∈K↓, (hK′′,K′)K′′vK′∈K↓, (ψK′′,K′)K′′vK′∈K↓)

is an inverse system of models.

We deviate here from the treatment in [30] to prove that this inverse system
of models has a non-empty inverse limit. Given K ′′ v K ′ ∈ K ↓ define:

Definition 20. (Threads of an inverse system of models) Let F be a directed
poset and

M = ((Mf = (Df ,Rf , |=f ))f∈F , (gf ′,f )f ′vf , (ϕf ′,f )f ′vf )
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be an inverse system of models. Let ∆ ⊆

q

f∈FDf be the set of all ξ such that
f ≥ f ′ implies gf ′,f (ξ(f)) = ξ(f ′). Then ∆ is the set of threads ofM.

Definition 21. (Predicates of an inverse system of models) Let F be a directed
poset and

M = ((Mf = (Df ,Rf , |=f ))f∈F , (gf ′,f )f ′vf , (ϕf ′,f )f ′vf )

be an inverse system of models. Let P ⊆ q

f∈FRf be the set of all ρ such that
f ≥ f ′ implies ϕf ′,f (ρ(f)) = ρ(f ′). Then P is the set of predicates ofM.

Definition 22. (Inverse Limit of an Inverse System) Let F be a directed set and

M = ((Mf = (Df ,Rf , |=f ))f∈F , (gf ′,f )f ′vf , (ϕf ′,f )f ′vf )

be an inverse system of models. Let ∆ be the set of threads of M and P be its
set of predicates. Let M = (∆, P, |=M ) be a model where |=M ρ(ξ1, . . . , ξn) if for all
f ∈ F we have |=f ρ(f)(ξ1(f), . . . , ξmf

(f)) with mf ≤ n being the arity of ρ(f).
Then M is the inverse limit of the inverse systemM.

In [30] the proof of the equivalent theorem relies on Tychonoff’s Theorem and
contingent considerations on threads. It is better viewed as a generic domain
result. Indeed each mapping in ((Df )f∈F , (gf ′,f )f ′vf ) and ((Rf )f∈F , (ϕf ′,f )f ′vf ) is a
projection, and taking the lower adjoints of these defines two expanding systems
with the indicated limit by Theorem 3.3.7 in [28].

Theorem 4. Let F be a directed set andM = ((Mf = (Df ,Rf , |=f ))f∈F , (gf ′,f )f ′vf , (ϕf ′,f )f ′vf )
be an inverse system of models of inverse limit M = (∆, P, |=M ). Then M is not
empty.

The inverse limit as defined in Definition 22 is consistent with our definition
of models for stable compact cognitive states.

Lemma 11. LetK = (u, S,O,R) be a stable compact cognitive state. ThenModel(K)
is isomorphic with the inverse limit of:

(Mod(K ′))K′∈K↓, (hK′′,K′)K′′vK′∈K↓, (ψK′′,K′)K′′vK′∈K↓)

Proof. Since K is compact the projections define predicates and threads unam-
biguously: e.g., for every thread xi in the domain of the inverse limit one has
ξ(K ′) = hK′,K(ξ(K)). The model homomorphism property of inverse system en-
tails that the interpretation of the limit in the inverse system is the same as that
in Mod(K).

Lemma 11 allows the proper definition of conceptual knowledge for all stable
cognitive states.

Definition 23. (Conceptual Knowledge) The conceptual knowledge in a stable
cognitive stateK is denotedMod(K) and is the inverse limit of the inverse system
of models:

(Mod(K ′))K′∈K↓, (hK′′,K′)K′′vK′∈K↓, (ψK′′,K′)K′′vK′∈K↓)

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

22

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr


Y. Chevalier Theory Synthesis based on Experience

6.3 Transcendental model

Remembering that ulim ∈ D0 contains all the possible observations of a sys-
tem, it is possible to define the model for transcendental logic given the possible
observations and cognitions.

Definition 24. (Transcendental Model) Let D0 be an object domain, ulim ∈ D0

be the ideal containing on all possible observations, Σ be a signature of mor-
phisms available for reasoning, and X be a denumerable set of variables. Then
themodel for transcendental logic on (ulim ,Σ) is the inverse limit of theK-inverse
system of models with K = (ulim ,T(Σ),T(Σ) \ Repr(T(Σ)), R), with R the set pure
representation terms in T(Σ ∪ X ).

Building on [30] this model is of practical interest, as the observed system can
be partially specified with universally quantified implications between positive
formulas, called geometric rules. In particular it was observed in [16] that de-
duction systems commonly employed for the symbolic analysis of cryptographic
protocols, and in particular in static equivalence analysis, are examples of such
theories.

7 Conclusion
The aim of this paper was to solve two challenges. A first one is to fill the gap

in the formalisation of transcendental logic in [30] to precise how cognitions are
achieved from experiences and cognitions, which is achieved in Definition 24.
Having a first complete formalisation at hand to understand Kant’s work opens
the possibilities (i) of more concrete discussions on how to alter (or reject) that
model to describe more precisely Kant’s analysis of humans’ thought process; (ii)
of given a proper semantics to a natural language with names presented through
examples; and (iii) interpreting the table of judgements of [14] as morphisms
operating on different aspects a cognitive state. In particular the analysis of the
relations between observations is not explored in this paper.
A second one was to provide a formal framework for anomaly detection in

the context of intrusion detection systems. Until further work proves otherwise,
modeling learning with morphisms on domains prevents the usage of most com-
mon Machine Learning algorithm. Despite this limitation, this setting is still
applicable to at least some anomaly detection problems as it formalises [34]. In
these cases we believe that it fills partially the gap described in [25] between
what ML algorithms provide and what is actually needed for anomaly detection,
and in particular the main recommendation of understanding what the system
does.
We provide more details with references to the corresponding section of [25].
Based on the practical knowledge synthesis, (III-A) outlier detection can be

achieved at least in some cases [34], and the (B) high cost of error can be ad-
dressed over time by Theorem 2. Conceptual knowledge is only the first step
towards reducing the (III-C) semantic gap. Further work is needed to align the
profusely created predicates of experiences with human-understandable con-
cepts. In particular we believe that addition of object and representation terms
in the cognitive state is driven by this process.
As it is a first-order model it is trivial to add rules (implications between geo-

metric given the results of [30]) describing either normal behaviours or possible
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attack scenarios. A missing part is the relation between these rules and the ap-
plication of morphisms to check their validity. It is notable that dynamic proofs
in [31] add facts to construct a model. When building a theory of a system, these
facts have to be checked, i.e., the terms and predicates of experience have to be
constructed.
It fits the demands in IV-D-2) on result understanding as follows: Being com-

plete lattice morphisms our learning algorithms all have an upper adjoint that
provides a minimal explanation (as the meet of all viewed observations that lead
to the current state) for each computed value. Ultimately the composition of
these explanations provides an observation that explains the decision.
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A Example application: Detection of Network Proto-
cols

A.1 Detection of purely parallel processes

While process mining [1] usually focuses on the discovery of workflow graphs
encoding conditionals and loops, the detection of synchronisation between mes-
sages is more often, as e.g., in the case of a protocol, a sequential activity without
holes: Messages a and b in an order are always followed by messages c and d,
etc. In the case of the CAN Bus these sequences occur in two contexts. In a
MFM protocol execution that starts with an initial message, replied to with an
ack, and followed by a sequence of messages with a counter. Or in the case of
a proper design of the CAN Bus in which such synchronisation is introduced to
avoid collisions between messages. These are examples of purely parallel pro-
cesses [13] that are built with sequential and parallel composition only, i.e., with
no non-deterministic choice.
Let S be a DXS. A subset Sc ⊆ S of terms which are applications of split func-

tions on "X" is called a pre-classification. If it is maximal then it is the classifica-
tion of the DXS. If the codomain of "X" is the set of possible CAN frames, then
the codomain of each t in the classification Sc is also the set of CAN frames. We
assume that all the events in the log are distinct e.g., by adding a time of cap-
ture. To simplify notations we denote e ∈ u if the event e occurs at some position
in the word u, and |u| the length of the word u.
Algorithm. Let S be a DXS with a classification set Sc. A representation function
nb_occ is applied on each t ∈ Sc to count the number of occurrences of messages
in the interpretation of the term t. The state of the network after seeing a trace
u is represented by a boolean square matrixPSc

(u) indexed by terms in Sc and
defined inductively on traces with:

PuSc
(t, t′) =


1 If u = ε
P vSc

(t, t′) ∧ (nb_occ(t′) 6= nb_occ(t′)
PuSc

(t, t′) Otherwise

When analyzing a log Σu∈Uu we let

PΣu∈Uu
Sc

= Σu∈UP
u
Sc

be the coordinate-wise conjunctions of the matrice PuSc
for u ∈ U . Ordering the

matrice with the extension on all coordinates of the ordering on booleans, one
easily checks that the conjunction being the sup of boolean values, this function
is monotonic and algebraic and thus can be extended by continuity to infinite
words.
In the following definition, the semi-colon denotes sequential composition, a

set of term denotes a parallel composition of these terms, and the while true do
denotes an unbounded iteration of the process.

Definition 25. (Purely Parallel Process—PPP Let S be a DXSwith a classification
set Sc. An iterated purely parallel process is a process of thewhile true do (A1; . . . ;An)
where A1, . . . , An is a partition of a subset of Sc.

A PPP P = while true do (A1; . . . ;An) is unambiguous on trace u = (ei)1≤i≤N if
furthermore for all 1 ≤ i ≤ N if ei occurs in [[t]]u and intput′ for t, t′ ∈ ∪ni=1Ai then
t = t′.
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Lemma 12. Assume the purely parallel process P = while true do (A1; . . . ;An) is
executed on the network, that the trace u is observed, and that P is unambiguous
for u. Then for all 1 ≤ i < j ≤ n and for all t′ ∈ Ai, t ∈ Aj we have:

|[[t′]]u| = |[[t]]u| or |[[t′]]u| = |[[t]]u|+ 1

Proof. We first prove the following statement that is satisfied by the less con-
strained process:

P = while true do (∪ni=1Ai)

Claim. For every trace u there exists Lu, Hu, and Eu such that:

• Lu, Hu is a partition of ∪ni=1Ai and Lu 6=;

• Eu ⊆ ∪ni=1Ai is the subset of the terms of the process that have not been
observed in the current iteration of the process;

• The following equalities are satisfied:
∀t, t′ ∈ Lu, |[[t]]u| = |[[t′]]u| (A)
∀t, t′ ∈ Hu, |[[t]]u| = |[[t′]]u| (B)
∀t ∈ Lu,∀t′ ∈ Hu, |[[t]]u|+ 1 = |[[t′]]u| (C)
Eu = Lu (D)

Proof of the claim. By induction on the length of the trace u.

• If u = ε let Hε = ∅ and Lε = Eε = ∪ni=1Ai. Since Hu = ∅ the equations (C)
and (D) are trivially satisfied. The interpretation is strict so the equation
(A) is satisfied (and the length is equal to 0). The equation (D) is satisfied
by definition.

• Assume the claim stands for a trace u and consider the trace u · e.

– If e /∈ ∪ni=1 ∪t∈Ai
[[t]]u·e, i.e., the observed event e is not associated with

a term in the process, then setting Lu·e = Lu, Hu·e = Hu, and Eu·e = Eu
satifies the constraints of the claim;

– Otherwise there exists t ∈ ∪ni=1Ai such that e ∈ [[t]]u·e. Since the process is
unambiguous the term t has not been observed in the current iteration
of the loop, and thus t ∈ Eu. By induction this implies t ∈ Lu. One then
easily checks that the equalities are all satisfied by setting:
∗ If Lu = {t}: Lu·e = Eu·e = ∪ni=1Ai and Hu·e = ∅;
∗ Otherwise Lu·e = Lu \ {t}, Eu·e = Lu·e, and Hu·e = Hu ∪ {t};

Claim. For any trace u, there exists 1 ≤ it ≤ n such that Hu ⊆ ∪iti=1Ai, Lu ⊆ ∪ni=itAi,
and if Eu 6= Eu·e there exists t ∈ Lu ∩Ait such that e ∈ [[t]]u.

The proof is a copy of the one of the first claim, but it has been separated for
clarity. One has to observe that to respect the sequentiality of the process, when
t ∈ Eu ∩Aj is chosen we must have Eu ∩ ∪j−1

i=1Ai = ∅.
The Lemma follows from the two claims by case analysis on the repartition of

t, t′ in Hu and Lu using the second claim to transform it into a case analysis on
the indice.
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Proposition 10. Let S be a DXS with a classification set Sc, and u be a trace.
Assume the purely parallel process P = while true do (A1; . . . ;An) is executed on
the network, and that P is unambiguous for u. Then for every t ∈ Ai, t′ ∈ Aj with
i > j we have PuSc

(t, t′) = 1.

The other direction cannot be proven as a purely parallel process can be found
by coincidence when there are few iterations of the loop.
We present in Fig. 1 examples of the analysis result on a Model 3 CAN Bus

log [33] representing 418s of execution and 879682 frames.

(a) The star PPP is the most common one
on the Tesla Model 3: Two sets of ids
separated by a single node. This PPP is
iterated 4181 times in the log.

(b) A degeneracy of the star PPP is to
have one of the set of nodes which is
empty. This PPP is also iterated 4181
times in the log.

Figure 1: Examples of purely parallel processes found on a Tesla Model 3 log. In
total 29 CAN frames id were isolated, 32 were discovered in a request-response
process, and 126 involved were in a star process either proper as in Fig. 1a or
degenerate as in Fig. 1b.

A.2 Discovering Protocol Instances

Setting.. A protocol is a program running among multiple participants in a net-
work and observed through the messages exchanged by these participants. It
is specified with a set of roles that are programs and the execution of a role is
a process called an actor. In addition to the control rules defined in the role
an actor is playing, the actor has a local memory that is updated while running
the protocol. We note that as in [36] under this definition a multi-step attack in
which an adversary communicates with different actors on the network is also a
protocol.
As in [17] each role ismodeledwith anExtended Finite StateMachine (EFSM),

a finite state automaton enriched with rules updating the state of an actor play-
ing that role. This automaton is deterministic in the sense that an actor playing a
role and receiving a message can either reject that message as non-conforming
with the protocol specification and leaves its state unchanged, or change its state
according to the rules set in the rule in exactly one possible way. Thus to each
state of the automaton we associate a couple of functions (g, p) where g returns
whether a message received in the current participant’s state is acceptable, and
p that performs the update of the memory and of the automaton state. A group
of actors playing the roles defined in the protocol and communicating one with
another is called a session.
More formally let X be a finite set of sorted variables, R be a finite set of
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constants (the roles), Q be a finite state of automaton states, and E be the set
of the possibly observed events (the messages). A memory state is a ground
substitution of domain X. We denote M the set of possible memory states. A
state is a couple (q, σ) ∈ Q ×M. A guard is a function Q ×M × E → B. A post-
transition is a function Q ×M× E → Q×M× E. If p is a transition function and
f(q,m, e)) = (q′,m′, e′) then upon receiving the message e, the actor with a state
(q,m) updates it to (q′,m′) and sends the message e′.
An EFSM E is a set of tuples {(q, gq, fq)}q∈Qr⊆Q where gq is a guard and fq is

a post-transition function. A protocol P is a finite set of tuples {(r, ιr, Er)}r∈R
where each Er is an EFSM, ιr ∈ Q is the initial state of the role r, and if r 6= r′

then Qr ∩Qr′ = ∅. The bin role contains one state Qb = {ιb}, and one rule (ιb, gb, fb)
where the guard gb is always true and fb does nothing.
Algorithm.. Again we build a representation of the system inductively on a trace
u. Let P = {(r, ιr, Er)}r∈R be a protocol. Participants are identified uniquely and
are assumed to always or never play a role of the protocol. Depending on the
network type they can be identified by a socket address or in the case of the CAN
bus by the id of the frame. Actors are participants playing a role in the protocol.
We first build a derived object simulating the network after observing a trace u
Our representation of the network is based on an internal state Au of potential
actors with their state. Accordingly we let:

A(ε) = {(ιp,r,mp,r, Ep,r)}(p,r)∈P×R

assuming initially every participant may play a role in the protocol.
Inductively the internal state of the function is defined as follows:

• If there exists (qp,r,mp,r, Ep,r) ∈ A(u), a transition (qp,r, gqp,r , fqp,r ) ∈ Ep,r, and
an event e′ ∈ u such that:{

gqp,r (e′,mp,r) = 1
fqp,r (e′, qp,r,mp,r) = (e, q′p,r,m

′
p,r)

Then:
A(u · e) = (A(u) \ {(qp,r,mp,r, Ep,r)})

∪
{

(q′p,r,m
′
p,r, Ep,r)

}
• Otherwise the participant has sent a message that is not conformant with
the protocol specification, and thus per our assumption never is an actor,
in any role, of that protocol:

A(u · e) = A(u) \ {(qp,r,mp,r, Ep,r) ∈ A(u) | r ∈ R}

The representation of the network after observing the trace u is the subset of
participants p such that there exists an EFSM indexed by p in A(u). We order
these sets with A v B if and only if B ⊆ A. The top element is the emptyset
and the bottom element is the set of all participants, and the join A t B of two
sets is their intersection. This domain clearly is a representation domain. The
computation of A(u) is extended to worlds with A(Σu∈Uu) =

⊔
u∈U A(u), and is

clearly continuous. Though it possible for a participant to play different roles
concurrently and be correctly detected, playing concurrently the same role may
(as in the case of a server in [17]) make the participant appear as not playing
along the rules of the protocols. The benefit of this simplification is the low
computational and memory cost in practice.
Our implementation of the Multi-Frame Message protocol [15] has correctly

detected on the Tesla Model 3 log the similar CAN-TP [4] protocol according to
owners’ common findings [7].
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