
HAL Id: hal-03829757
https://ut3-toulouseinp.hal.science/hal-03829757v1

Submitted on 25 Oct 2022 (v1), last revised 23 Jan 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theory Synthesis based on Experience
Yannick Chevalier

To cite this version:
Yannick Chevalier. Theory Synthesis based on Experience. [Research Report] IRIT/RR–2022–08–FR,
IRIT - Institut de Recherche en Informatique de Toulouse. 2022. �hal-03829757v1�

https://ut3-toulouseinp.hal.science/hal-03829757v1
https://hal.archives-ouvertes.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

Theory Synthesis based on Experience

Yannick Chevalier*
IRIT, Toulouse University, CNRS, INP, UT3, Toulouse, France

Yannick.Chevalier@irit.fr
* contact author

October 3rd, 2022

Technical report No. IRIT/RR–2022–08–FR
(version 1)

https://www.irit.fr/
https://en.univ-toulouse.fr/
mailto:Yannick.Chevalier@irit.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

Theory Synthesis based on
Experience

Yannick Chevalier*
IRIT, Toulouse University, CNRS, INP, UT3, Toulouse, France

Yannick.Chevalier@irit.fr
* contact author

October 3rd, 2022

Abstract. We present in this report a novel approach to learning that results in a first-order logic
model. The construction proceeds in two steps.
In the first step we interpret first-order function symbols as strict Scott-continuous functions over
algebraic domains, a category that encompasses among others sets of traces and sets of sets.
First-order terms are composition of functions, and a “flight envelope” of the system is constructed
through the construction of new terms and the recording of the maximal values encountered for
the terms during the analysis of a set of traces. We prove that this approach has an Angluin-like
property for learning wrt false positives and negatives. This approach is also practical and was
applied in previous works to construct efficient intrusion detection systems.
In the second step we consider an ordered set of cognitive states. Each cognitive state is a repre-
sentation model equiped with a set of ground object terms denoting the facts on which reasoning
is based and a set of representation terms denoting the tests performed on these object terms.
Under an additional condition of stability we construct for each cognitive state a set of predicates
over a constructed domain such that elements of the domains are the equivalence classes of the
object terms relative to the predicates while predicates are defined by sets of object terms. We
prove that the ordered set of models derived from the cognitive states forms an inverse system of
first-order logic model.

This construction fills the gap in previous work by Achourioti and van Lanbalgem were inverse
systems of first-order logic models are employed to formalize Kant’s approach to reasoning in the
Critique of the Pure Reason.

Keywords: Algebraic domains ; Geometric Logic ; Knowledge Representation; Learning

Technical report No. IRIT/RR–2022–08–FR
(version 1)

https://www.irit.fr/
https://en.univ-toulouse.fr/
mailto:Yannick.Chevalier@irit.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

Synthèse de Théories basée sur
l’Expérience

Yannick Chevalier*
IRIT, Université de Toulouse, CNRS, INP, UT3, Toulouse, France

Yannick.Chevalier@irit.fr
* contact author

3 octobre 2022

Résumé. Ce document constitue la documentation du style LATEX IRIT à utiliser pour les rapports
techniques ou les rapports de recherche. Il explique notamment les différentes options de la classe
de document et leur impact sur son rendu final.

Il requiert un numéro qui vous sera fourni par le service de documentation de l’IRIT (écrire à
serdoc@irit.fr).

Mots-clés : documentation, LATEX, IRIT.

Rapport technique No IRIT/RR–2022–08–FR
(version 1)

https://www.irit.fr/
https://www.univ-toulouse.fr/
mailto:Yannick.Chevalier@irit.fr
https://www.irit.fr/
mailto:serdoc@irit.fr

Y. Chevalier Theory Synthesis based on Experience

1 Introduction
Context. This report is the first step of an attempt to formalize algorithmic ap-
proaches to machine learning, and to describe in what sense learning leads to
the construction of logic theories to describe the outside world. We postulate
that the world is only accessible through, and thus can be modeled as, a se-
quential observation of events or the sharing of such sequences. For the sake
of simplicity we thus assume that the outside world is a (possibly infinite) set of
(possibly infinite) sequences of events (each of a possibly infinite kind).

Let us first circumscribe the problem and note that two unrelated traditions
have arrived to a similar conclusion. Computer scientists have recognised the
critical role of geometric logic to construct logical representations of programs
based on their semantics [18] (see also [13,21] for a gentler introduction to the
topic). In the philosophical approach, [22] presented a setting in which the defi-
nition of a logic from experience is achieved based on the novel analysis of Kant’s
Critique of the Pure Reason [10] in [3]. The evolution of knowledge through cog-
nitions is captured as an inverse system of models. The formulas whose truth
is preserved through inverse morphisms are called objectively valid, and those
that are true in the inverse limit of the inverse system of models are the tran-
scendental formulas. [22] proved that geometric logic formulas are objectively
valid. This presentation of learning through cognitions is extremely attractive
but the inverse system of models relied upon is taken as granted. We present in
this report the construction one such inverse system of models.
Organisation.. We present in Section 2 our model of ML algorithms and intro-
duce the ALG⊥! category. We introduce sets of traces of events, basic definitions
and prove that the basic transformations are continuous in Section 3. and prove
that the construction of new objects and representations, as well as the addition
of new algorithms to the signature is continuous. We introduce in Section 4 a
first-order functional signature to represent these functions, and prove that the
addition of new terms to better represent the world observed is continuous. We
prove in Section 5 that the valuation of a set of representations is continuous,
and that this continuity leads to an Angluin-like property to guide changes when
there are false positives (the monitor is over-constrained) and false negatives
(the monitor is too lax). We present in Section 6 the relation between this con-
struction and the more general notion of knowledge that was built in the recent
decades from a more modern reading of Kant’s Critique, resulting in notions
of knowledge based on inverse systems of models, and we present how the ini-
tial construction is extended in the rest of this report with these philosophical
considerations. Cognitive states are introduced in Section 7 and we construct
for each stable cognitive state a first-order logic model representing the predi-
cates, domain elements, and their interpretation in that state. Finally we prove
in Section 8 that when considering a family of ordered stable cognitive states,
the first-order logic models of these cognitive states forms an inverse system of
models.

2 Modeling Learning

2.1 Informal considerations

Per the Oxford dictionary, learning is the acquisition of knowledge or skills
through study, experience, or being taught.

Without going into the definitions of knowledge and skills it can be infered

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

1

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

that these things increase through the three stated activities. Let d, d′ be datasets
representing observations of the world, and assume that d ⊆ d′. Then a learn-
ing algorithm f applied on d′ should return a better result than when applied
on d, something we denote with f(d) ⊑ f(d′). If the possible inputs are par-
tially ordered–e.g. with set inclusion–and Df is the set of the values that can
be returned by f we infer that Df must be partially ordered, and that f must
be monotonic wrt to the input data. Reasoning along the same lines, we con-
clude that the result of learning must be monotonic wrt cognitions–inferences
that are drawn from the currently computed value–and teachings–user-given in-
formation. Also, assuming the value returned denotes knowledge and that the
function is unbiased, the value f(∅) should be the least element of Df .

Monotonicity and strictness are not sufficient as e.g. a function returning the
number of events in an observation is monotonic and strict with the usual order-
ing on N. A proper learning function shall converge towards a value representing
the best possible knowledge of the system given any dataset. Assume that the
observations are bounded by a set d of infinite possible observations. Then for
all sets of worlds (dn)n∈N that converges towards d, i.e. such that ∪n∈Ndn = d, we
shall also have

⊔
n∈N f(dn) = f(d), even if the latter can only be asserted to exist

and not computed explicitely. Since f maps a partially ordered set (poset) to an-
other poset, this condition means that f is Scott-continuous, and the assumption
that d is the upper bound of a set of finite (compact) observations indicates that
the domain of f must be algebraic.

2.2 Model for machine learning

Domains that have certain properties are the objects of a category and we
are interested in the functions between these objects, the morphisms.
Domains. A poset is a partially ordered set (P,⊑). It is pointed if it has a minimal
element. A subset X ⊆ P is directed whenever two elements x, y ∈ X have a least
upper bound, denoted x ⊔ y, in X. This notation is extended to set of elements,
and

⊔
X is the least upper bound of the elements in the set X. A poset is a chain-

complete partial order (cpo) if every directed set has a least upper bound. An
element x of a cpo P is compact whenever, for all directed subset X ⊆ P we have
x ⊑

⊔
X implies there exists y ∈ X such that x ⊑ y. Compactness is useful for

the trivial consequence of the definition that if x is compact and x = ⊔y∈Xy then
x ∈ X. Given an element x we denote ↓ x the set of compact elements y ⊑ x.
Morphisms. Themorphisms between directed-complete cpo are the Scott-continuous
functions, i.e. the monotonic functions f : A → B such that for every directed
subset X ⊆ A we have

⊔
x∈X f(x) = f(

⊔
x∈X x). Furthermore if f(⊥A) = ⊥B and f

maps compact elements of A to compact elements of B we say that f is strict.
The ALG⊥! category. Let D be a pointed dcpo and d ∈ D. A domain D is algebraic
if for all d ∈ D we have d = ⊔x∈d↓x. The objects of the ALG⊥! category are pointed
algebraic domains and its morphisms are the strict continuous functions.

Example 1. The usual boolean lattice B = {0, 1} is an algebraic domain. We chose
in the rest of this paper to order it with 1 ⊑ 0. The Belnap four-valued lattice [15]
{U, T, F,C} (unknown, true, false, contradictory) with U ⊏ T, F and T, F ⊑ C is also
an algebraic domain. Any finite concept lattice [17] employed to classify hier-
archically data is an algebraic domain. Given our definitions, any lattice where
arbitrary joins are defined and which is algebraic is a representation domain.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

2

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

3 Properties of the ALG⊥! Category
We first define worlds as sets of traces in Sec. Section 3.1, and prove that

they are objects in the ALG⊥! category in Sec. Section 3.2. We use the fact that
the set of morphims between two objects of ALG⊥! is also an object in ALG⊥!
to introduce in Sec. Section 3.3 split functions that allow case-based and time-
based reasoning. Representation functions that determine the characteristics of
objects are introduced as a special case of morphisms in Sec. Section 3.4, and
extended into World domain morphisms to allow for a more uniform treatment
in the rest of this paper.

3.1 World Domains

We represent a sequence of events with words over an alphabet denoting the
possible values of records in that table. As usual word concatenation is denoted
with a dot, and the empty word is denoted ϵ. Given an alphabet A, we denote
respectively A∗ and Aω the sets of finite and infinite words over A.

Any observable trace is a word in A∗, while words in Aω represent the obser-
vations of infinite executions of a system. A system may be observed multiple
times. Accordingly we define a world as a set of traces. We assume that learning
is performed on a finite set of finite words. In contrast the actual possible traces
of a system are infinite words and usually are in infinite numbers, e.g. in order
to take into consideration random events.

The words of A∗ ∪ Aω are ordered with the prefix order u ⊑ v iff u is a prefix
of v. We let + denote the union of sets of words, with the additional rule that for
two words u and v, u+v = v whenever u ⊑ v, and with again the neutral element ϵ
denoting a sum with just an empty word. From now on we assume every sum is
written in a normal form, i.e. if u = Σv∈B⊆A∗∪Aωv then for v, v′ ∈ B, we have v ⊑ v′

implies v = v′. This leads to our definition of worlds.

Definition 1. (World) Given an alphabet A we let TA be the set of sums of words
of A⋆ ∪Aω in normal form, and call it the world domain of A.

3.2 Properties of World Domains

The following statements are trivial butmay help the reader getting acquainted
with these definitions.

Lemma 1. The compact elements of a world domain are the finite sums of finite
words.

Proof. By definition if u is a finite sum of finite words then u ∈↓ u, and it is then
trivial that u = ⊔v∈↓uv. Conversely an infinite word is the lub of its set of finite
prefixes, and an infinite sum is the lub of the set of its distinct words.

In the rest of this paper we call a compact element of a world domain an ob-
servation. A direct consequence of Lemma 1 is that world domains are algebraic.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

3

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Lemma 2. Let TA be a world domain on A. For every element u ∈ TA we have
u = ⊔v∈↓uv.

Proof. Assume u is not compact for the statement is otherwise trivial. If u is an
infinite word then ↓ u is the set of finite prefixes of u. By definition of infinite
words we then have u = ⊔v∈↓uv.

Finally if u is an infinite sum of words, say u = Σa∈I⊆A∗∪Aωa, then by the two
former cases we have u =

⊔
a∈I⊆A∗∪Aω

⊔
v∈↓u v and thus u ⊑↓ u. The other direction

is trivial, and thus u =
⊔
↓ u.

World domains have a minimal element ϵ and thus are pointed. The following
proposition is a directy consequence of Lemmas 2 and 1 for the object part, and
of the definition of strict for the morphism part.

Proposition 1. World domains are object of the ALG⊥! category, and strict func-
tions on world domains are morphisms of that category.

We refer to [19], Sections 3.2 and 3.3 for the detailed results and their proofs.
In the case of infinite products, the compact elements are those for which all but
finitely coordinates have a bottom value, and the non-bottom values are compact.
The part on morphisms is Prop. 4.2.4 of the same reference.

Proposition 2. The ALG⊥! category is closed for limits and colimits. In partic-
ular infinite products of objects in ALG⊥! is also in ALG⊥!. If D,E are objects in
ALG⊥! then the domain of morphisms [D → E] is also in ALG⊥!.

3.3 Split functions

Observations are analysed in a loop involving first the discovery of proper-
ties of events, then the classification of events according to these properties.
Each class can then again be analysed and further classified, thereby providing
a hierarchy of classes each with its own properties. While event manipulations
and properties discovery are performed by generic morphisms, classification is
the mapping of a world domain to a product of a denumerable number of copies
of itself, each containing the events in a given class. Beyond classifying events
based on their properties they can also be classified according to their time of oc-
curence, e.g. to analyze the evolution of the different messages in a given class.
Again each occurence can be stored in its own class so that time- or occurence-
dependent characteristics can be observed.

A split function maps a world u ∈ TS to an element ū ∈ TN
S = Πn∈NTS. As TN

S is
also the set of mappings from N→ TS, we denote ū(n) the events in u that are in
the class indexed by n. It is clear that if u is compact, ū(n) ̸= ε only for a finite
number of coordinates.
Definition. Let TA be a world domain. A mapping c : TA → N is a choice function
on TA. Given a choice function c, the split function for c is denoted Splitc and is

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

4

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

defined over compact elements as:

Splitc : TA → (N→ TA)
d 7→ {n 7→ πn(d)}

where :
πn : TA → TA

u 7→


ϵ if u = ϵ
πn(u

′) · a if u = u′ · a and c(u) = n
πn(u

′) if u = u′ · a and c(u) ̸= n
πn(v1) + πn(v2) if u = v1 + v2

More generally for u ∈ TS we define

Splitc(u) =
⊔

v∈↓u

Splitc(v)

The split functions are continuous and strict.

Proposition 3. Let TA be a world domain, and c be a choice function on TA. The
split function for c is strict and continuous, and {(N→ TA)} is an object of ALG⊥!.

Proof. We construct (N→ TA) as a limit of the functions on the finite prefixes of N.
By Prop. 2 this limit is still in ALG⊥!. Looking at the construction in the proof, its
basis is the set of elements whose value at every coordinate is ⊥, but for a finite
number of coordinates for which it is a compact world. The Splitc function clearly
maps compact elements to compact elements, and ϵ to the bottom element (n 7→
ϵ). Thus it defines a unique strict and continuous mapping.

3.4 Representations

The elementary brick of learning is the construction of a representation of ob-
servations. We do not put any restriction on the what representations are, and
they may be numbers, subsets of R, formulas, etc. By assumption we only im-
pose that the representation is computed by a strict continuous function between
pointed algebraic domains. In practice representations are ordered according
to their generality, i.e. a ⊑ b if a is a particular case of b. The bottom repre-
sents a value so specific as to be impossible to achieve, while when it exists the
top element represents an always true generalisation. In order to simplify the
notations in the rest of this paper, we note that if TS is a world domain, any
morphism f : TS → E computing a representation of TS can be turned into a
morphism f̂ : TS → TE as follows:

• The function f is first extended on traces with:

f̂(u) =

{
ε if u = ε

f̂(v) · f(a) if u = v · a

• The extension on world as set of traces is defined with:

f̂(Σa∈A⊆S∗∪Sωa) = Σa∈A⊆S∗∪Sω f̂(a)

The following lemma is trivial, but the fact that no hypothesis is needed on f
actually shows that this construction is lacking.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

5

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Lemma 3. Let TS be a world domain and E be any object of ALG⊥!. For any
function f : TS → E, the function f̂ : TS → TE defined above is a morphism in
ALG⊥!.

Reusing the denotations of Lemma 3 we say that f̂ : TS → TE is a representa-
tion function if f is an ALG⊥! morphism, and that TE in that case is a representa-
tion domain. A world domain which is not a representation domain is called on
object domain. The value is the least upper bound of all values in the traces in
the image.

Example 2. Any world domain whose alphabet is an algebraic domain as in Ex. 1
is a representation domain.

Definition 2. (Valuation) Let TB be a representation domain. The valuation on
TB is the function:

ValB : TB → B
ϵ 7→ ⊥

u1 · . . . · un 7→
⊔

1≤i≤n ui

u+ v 7→ ValB(u)
⊔

B ValB(v)

Since the x, y 7→ x⊔y function is always continuous on a domain, the valuation
function is always continuous.
Note. While no technical requirements on B is needed for the rest of this paper,
we found that in naturally occuring cases the domain B in Def. 2 has a maximum
element ⊤B which is compact. The former allows for the generalisation of a
constraint f(x) ⊑ d into an always true constraint f(x) ⊑ ⊤B. The compacity of
an element d allows one to consider besides f(x) ⊑ d the constraints f(x) ⊏ d.
In particular when ⊤B denotes the absence of useful representation, f(x) ⊏ ⊤B

indicates that a useful representation has been found.

4 Continuity of the Learning Process
This presentation is the generalisation of [25] that relies on the resolution of

simple Data Exchange (DX) problems to fill tables in a database and on filters to
learn integrity contraints. This generalisation follows the approach to DX of [5]
in which rules are modeled as morphisms between objects that represent tables.
Accordingly a database is modeled with a set of terms, each term denoting ei-
ther the composition of functions filling a table (an object term) or a filter (a
representation term). Beyond the update of the value of terms when presented
with new observations, a second aspect of learning consists in computing more
representations on existing tables and more tables for further analysis.

4.1 Notations

We let D0, D1, . . . , Dn be world domains, and we consider a set F of strict con-
tinuous f1, . . . , fm between these domains, i.e.:

f : Dαf1 × · · · ×Dαf (kf) → Dαf (0)

for a mapping αf : {0, . . . , kf} → {1, . . . , n}. We also let S be a set of split functions{
Splitc,i

}
1≤i≤ns

over the world domains Dαc(i) for αc : {1, . . . , ns} → {1, . . . , n}

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

6

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

First-order signature. To each domain Di we associate a sort τi. The first-order
sorted functional signature ΣF,S comprises

1. The set of function symbols f1, . . . , fm with sorts

f : ταf (1) × · · · × ταf (kf) → τσf (0)

2. A constant "X":τ0 denoting the world domain under analysis;

3. For each Splitc,i : Dαc(i) → Dαc(i) ∈ S and each n ∈ N, a function symbol
cn : ταc(i) → ταc(i).

The set of ground terms over ΣF,S is as usual the least set T(ΣF,S) such that:

• "X":τ0 ∈ T(Σ);

• if t1:τ1, . . . , tkf
:τkf

∈ T(Σ) and f : σf (1) × · · · × σf (kf) → σf (0) then f(t1, . . . , tn):
σf (0) ∈ T(Σ);

• If t : τ ∈ T(Σ), t ̸= cn(t′) for some n ∈ N, then for all m ∈ N, cm(t) ∈ T(Σ).

The last rule prohibits the application of a split function on a class that is the
result of the application of the same split function. In most cases the specific set
of continuous functions and split functions is not relevant to the analysis, and
we shall denote simply Σ a first-order signature as defined above. We shall also
denote T0 the world domain over which the variable "X" is interpreted.
Positions and subterms. A position is a finite sequence of integers, with ϵ de-
noting the empty sequence. Positions in and subterms of a term t are defined
recursively as follows:

• t is a subterm of t at position ϵ;

• If f(t1, . . . , tn) is a subterm at position p in t, then each ti is a subterm at
position p · i in t.

Given a term t we denote Sub(t) its set of subterms.
Representation and object terms. The set F of available morphisms can be par-
titioned into two sets Fr of representation functions and Fo = F \ Fr of object
functions. The terms t : τ such that τ = αf (0) for a representation function f are
called (ground) representation terms. Otherwise they are called (ground) object
terms. Given a set of terms S we denote Repr(S) the subset of S of representation
terms.
Interpretation over a world u ∈ D0. The interpretation of a function symbol f is
denoted [[f]] and is f . The interpretation of a term t over an observation u ∈ T0 is
denoted [[t]]u and defined inductively as expected: [["X"]]u = u

[[f(t1, . . . , tn)]]u = f([[t1]]u, . . . , [[tn]]u)
[[cn(t)]]u = Splitc([[t]]u)(n)

This interpretation is extended by continuity to worlds in D0. If t is a representa-
tion term we denote coDom(t) the alphabet of the codomain of the interpretation
of t, i.e. if t = f(t1, . . . , tn) and [[f]] : D1 × . . . × Dn → D0 = TA then coDom(t) = A.
Finally, if t is a representation term of codomain TB, its value on u is ValB([[t]]u)
and is denoted more simply Valu(t).

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

7

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

4.2 Data Exchange Systems (DXS)

A DXS is a set of terms over a signature Σ = ΣF,S. with a few conditions that
we explicit in this section.

Definition 3. (Data Exchange System) Let Σ be a signature. A Σ-Data Exchange
System (Σ-DXS) is a non-empty set of terms S ⊆ T(Σ) such that:

• for each term t′ ∈ S and each t′ ∈ Sub(t) we have t′ ∈ S;

• If cn(t) ∈ S, then for all m ∈ N, cm(t) ∈ S.

We denote D(Σ) the set of Σ-Data Exchange Systems.

The initial DXS, i.e. ⊥D(Σ) is {"X"}. Given two possible DXS S,S′ we denote
S ⊑ S′ if S ⊆ S′ as sets. D(Σ) with the ordering ⊏ and ∆

⊔
∆′ = ∆ ∪∆′ is a domain

with a maximal element, T(Σ) and a minimal element, the initial state.

Lemma 4. D(Σ) is an object in DCPO⊥!.

Proof. It clearly has a bottom element, so it suffices to prove it is a DCPO.
Assume there exists a signature Σ and a directed set X ⊆ D(Σ) such that

⊔S∈XS /∈ D(Σ) Since DXS are bounded, there exists a minimal element (for inclu-
sion) SX ∈ D(Σ) such that ⊔S∈XS ⊑ SX . By contradiction assume that SX ̸= ⊔S∈XS,
and thus that SX \ ⊔S∈XS = S′ ̸= ∅. Since the subterm ordering on terms is well-
founded, S′ has a minimal element t for the subterm relation. Two cases are
possible:

• If t = f(t1, . . . , tn) then by minimality all t1, . . . , tn are in SX and ⊔S∈XS. By
minimality of SX there is no term t′ ∈ SX such that t ∈ Sub(t′). Thus SX \ {t}
is also a state, which contradicts the minimality of SX ;

• If t = cn(t′), the same reasoning applies, but with SX \ {cn(t′)}n∈N.

We now proceed to prove the algebraicity of the DXS domains. Since the
split function adds an infinite number of terms we have to differentiate between
finite and compact DXS, with the intention to define the latter as the result of a
finite number of function applications. First they are redefined as (continuous)
functions on D(Σ): For each ground term t = f(t1, . . . , tn) we define the function:

Addt : D(Σ)→ D(Σ)

S 7→
{

S ∪ {t} if {t1, . . . , tn} ⊆ S
S otherwise

Similarly, given a term t and a choice function c the application of a function Splitc
on a term t is extended to DXS with:

Splitc,t : D(Σ)→ D(Σ)

S 7→
{

S ∪ {cn(t) |n ∈ N} if t ∈ S
S otherwise

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

8

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

We let I(Σ) be the denumerable set of functions Addt and Splitc,t for all ground
terms t ∈ T(Σ) and split function c. All these functions are by definitionmonotonous
on compact elements, and extended by continuity on all DXS. An element S ∈
D(Σ) is finitely reachable if there exists a finite composition fn ◦ . . . ◦ f1 of func-
tions in I(Σ) such that S = (fn ◦ . . . ◦ f1)("X"). It is reachable if a finite or infinite
such composition exists. The proof of algebraicity proceeds first by verifying that
every element in ALG⊥! is reachable and then by proving that every reachable
element is the least upper bound of a set of finitely reachable elements.

Lemma 5. Every S ∈ D(Σ) is reachable.

Proof. Let S ∈ D(Σ). Let X be the set of reachable S′ ∈ D(Σ) such that S′ ⊑ S. For
i ∈ {1, 2}, if Si is reachable by a composition Fi, then S1 ∪ S2 is reachable by the
composition in which functions of F1 and F2 are alternatively chosen. Thus the
set X is directed. Let RS = ⊔S′′∈XS′′. We clearly have RS ⊆ S.

By contradiction assume S\RS ̸= ∅, and let t be in this difference. By induction
on terms, there exists a finite composition that reaches a state containing Sub(t)
from the initial state. By the above paragraph, this implies t ∈ RS, a contradic-
tion.

Lemma 6. A DXS S ∈ D(Σ) is compact iff it is finitely reachable.

Proof. If S is finitely reachable then it is trivially compact. For the if part, if it
is not finitely reachable, it is still reachable by Lemma 5, and thus is the sup of
a strictly increasing chain of the states reached after a finite number of function
composition, but equal to none of these states, and thus is not compact.

Proposition 4. D(Σ) is an object in ALG⊥!

Proof. We already know it is inDCPO⊥! by Lemma 4. By Lemma 5 every element
is reachable. Given a state S let F be a function composition such that S = F ("X").
If F is finite, S is compact. Otherwise, finite prefixes construct a sequence of
compact elements (by Lemma 6) whose sup is S. Since every element of D(Σ) is
either a compact or the sup of compact elements below it, D(Σ) is algebraic.

To continue our exploration of the ALG⊥! category, we note that the construc-
tion of DXS can be formulated as a morphism between two objects of that cate-
gory.

Proposition 5. The function

µ : TI(Σ) → D

u 7→


{"X"} if u = ϵ

a(σ′) if
{

u = u′ · a
µ(u′) = σ′

µ(u′) ∪ µ(v′) if u = u′ + v′

is continuous and strict.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

9

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

On a philosophical note, while Prop. 5 has a low technical content, but it
can be reformulated “Data Exchange Systems are representations of the possi-
ble observations”. It also implies a possible introspection mechanism since DXS
can recursively be reasoned upon by other DXS, thereby laying the ground for
a hierarchy of analyses of a system. We present two such examples in Sec. Ap-
pendix B.1 in the appendix.

Proposition 6. Let Σ,Σ′ be two representation signatures such that Σ ⊆ Σ′. Then
the identity injection: ι : D(Σ)→ D(Σ′) is an ALG⊥! morphism.

Thus a user can “teach” the system by giving it new functions, e.g. based on
the analysis of the results with a prior set of functions.

5 Learning and Monitoring
This section presents how the system can learn from the analyzed world. The

valuation of a DXS is introduced and shown to be continuous wrt both world and
DXS in Sec. Section 5.1. A system monitor is constructed from this valuation in
Sec. Section 5.2, and an ideal representation of the system is defined. It is also
proved that the continuity properties and the algebraicity imply the convergence
of the valuation learned to that ideal representation, and that the monitoring
process itself is continuous. This latter property is employed in Sec. Section 5.3
to prove that the system presented enjoys an Angluin-like learning process, and
thus that it is possible to decide whether to learn more traces of the network or
add terms to the DXS in case of false positives or false negatives.

5.1 Continuity of the Valuation

First we prove that the valuation of terms in a domain is continuous as it is
the composition of continuous functions.

Lemma 7. For all terms t the mapping u ∈ TS 7→ ValD(t)([[t]]u) is an ALG⊥! mor-
phism.

Proof. Given its definition as a least upper bound the ValD(t) is continuous. It thus
suffices to prove that the interpretation is continuous. By contradiction assume
the set Ω of terms t such that the mapping u ∈ TS 7→ [[t]]u is not continuous is not
empty. Let t be minimal for the well-founded subterm relation in Ω. We must
have t ̸= "X". If t = f(t1, . . . , tn), then by minimality of t the functions u 7→ [[ti]]u
are continuous, and thus by function composition the function u 7→ [[t]]u must be
continuous, a contradiction.

We assume the product topology on the Cartesian products of domains, which
is consistent with their construction as limits of expanding sequences (see [19],
Theorem 3.3.7). In the following proposition, since the mapping to each coordi-
nate is continuous by Lemma 7, the mapping to the product of interpretations is
continuous.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

10

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Proposition 7. Let Σ be a signature, and S ∈ D(Σ). Denote D(t) denote the
codomain of Val_(t). Then the function:

ValS : T0 → Πt∈Repr(T(Σ))D(t))
u 7→ Πt∈Repr(T(Σ))dt with

dt =

{
ValD(t)([[t]]u) if t ∈ S
⊥D(t) Otherwise

is continuous. Furthermore if S is compact then it is strict.

Proof. We already know by Lemma 7 its projection to each coordinate is con-
tinuous. Thus by the universal property of the product topology this function is
continuous. Also it clearly maps ϵ to the product of the minimal elements, which
is the minimal element of the product.

Let us prove that it is strict when S is compact. Let u be an observation in T0.
Since u is compact it contains a finite number of events. Since S is compact, it is
finitely reachable and thus contains only a finite number of non-split terms, and
a finite number of splits (each of which adding a denumerable number of terms).
By Prop. 3 and since u is compact for each split only a finite number of terms
have a non-bottom valuation.

Thus if S is compact, all but finitely elements of the product have the ⊥ valua-
tion, the remaining having a compact value. It is well known that these elements
are the compact elements of the product.

In order to simplify notation, we denote elements of a product d = Πa∈Ada.
The valuation is also continuous if the DXS changes with a fix world u.

Proposition 8. Let Σ be a signature. Denote D(t) denote the codomain of Val_(t).
Then the function:

Valu : D(Σ) → Πt∈Repr(T(Σ))D(t))

S 7→ ValSu

is continuous. Furthermore if u is compact then it is strict.

Proof. We remark that "X" is not a representation term and thus Valu maps the
bottom element ofD(Σ) to the bottom element of the product. Its continuity again
is derived from the fact that the mapping to each coordinate t is continuous as
it can only change once from ⊥D(t) to ValD(t)([[t]]u).

When u is compact, that fact that it maps compact DXS to compact elements
of the product is already proved in the proof of Prop 7.

A function continuous in each argument being continuous on the product, we
obtain the following theorem that characterizes our learning approach.

Theorem 1. Let Σ be a signature, and denoteD(t) denote the codomain ofVal_(t).
Then the function:

Val : D(Σ) → Πt∈Repr(T(Σ))D(t))

(u, S) 7→ Πt∈Repr(T(Σ)) Val
S
u(t)

is strict and continuous.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

11

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Proof. Continuity stems from the continuity on each argument as in Proposi-
tions 7 and 8. Strictness also, remembering that the compact elements of a
finite product are the products of compact elements.

5.2 Monitoring

First, a trivial remark already used in the preceding proofs. Given a signature
Σwe have T(Σ) ∈ D(Σ) and thus, by the algebraicity of the latter, T(Σ) =

⊔
S∈↓T(Σ) S.

In practical terms, Proposition 8 implies that the perfect representation of a
world u can be acquired by examining all terms in the limit of the representa-
tions that are computed on compact elements. Second, it is natural to assume
that not all world in T0 are possible, but instead that only a subset of T0 can be
observed even if we could extend each trace to infinity. Let ulim ∈ T0 be the world
corresponding to that subset.

These two remarks lead to the definition of a limit element in Πt∈Repr(T(Σ))D(t)
which is the top among the reachable elements.

Definition 4. (Limit valuation) Let Σ be a signature, and assume that all possible
worlds of a system are bounded by ulim ∈ T0. Then the limit valuation (of that
system) is ValRepr(T(Σ))

ulim
.

This valuation on all possible representation terms give a “flight envelope”
to the system, in the sense that any behaviour outside of this envelope is an
anomaly. We define monitoring as the act of checking that a world u is within
the limits learned.

Definition 5. (Ground Literal) Let Σ be a signature. A ground literal is an ex-
pression t ⊑ d where t ∈ T(Σ) is a representation term, and d ∈ coDom(t).

A monitor is a conjunction of literals. It is convenient to order boolean values
representing truth 1 and falsehood 0with 1 ⊏ 0, thereby obtaining a finite domain
B in ALG⊥!.

Definition 6. (Monitor) Let Σ be a signature and D(t) denote the codomain of
Val_(()t) for a representation term t. Then for r ∈ Πt∈Repr(T(Σ))D(t), the r-monitor
is the mapping:

Mr : T0 → B
u 7→ ⊔t∈Repr(T(Σ)) Valu(t) ⊑ rt

In the following lemma strictness is trivial as the two elements of B are com-
pact, and continuity follows from the continuity of the valuation function (Lemma 7).

Lemma 8. Let Σ be a signature, and d be in coDom(t) for a representation term
t. Then the functionMt,d : u 7→ Valu(t) ⊑ d is strict and continuous. If furthermore
d is compact then the function: Mt,d

s : u 7→ Valu(t) ⊏ d is continuous.

Proof. Only the last statement is not trivial. Assume u =
⊔

v∈V v where V contains

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

12

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

only compact elements. We have to prove that Valu(t) ⊏ d =
⊔

v∈V Valv(t) ⊏ d. By
monotony of the valuation and 1 ⊏ 0 this is true if Valu(t) ⊏ d = 1. Let us now
assume this is not the case, and thus that Valu(t) ⊏ d = 0 or equivalently that
d ⊑ Valu(t).

The functionw 7→ Valw(t) is continuous by Lemma 7 and thusValu(t) =
⊔

v∈↓u Valv(t).
Since this function maps compact elements to compact elements all the Valv(t)
values are compact. By definition of compactness if d ⊑ Valu(t) =

⊔
v∈V Valv(t)

there exists v ∈ V such that d ⊑ Valv(t) and thus such that Valv(t) ⊏ d = 0.

The proof of the following proposition is trivial since the value on each co-
ordinate of the product is either 0 or 1. Thus the set of values occurring in the
coordinates is directed, and thus its supremum is again 0 if it occurs at least
once, or 1. It is thus an infinite conjunction.

Proposition 9. Let Σ be a signature and D(t) denote the codomain of Val_(()t)
for a representation term t. Let r ∈ Πt∈Repr(T(Σ))D(t), and Mr be the r-monitor.
Then the mapping u ∈ T0 7→ Mr(u) ∈ B is strict and continuous.

Note that in Proposition 9 the r-monitor is fixed. We leave to the reader that
reusing the notations of Prop. 9 the function: (u, r) 7→ Mr(u) is not continuous.
This fact is exploited in the next section.

5.3 Angluin-like Learning

Recall that we let ulim denote a world that is the least upper bound of all the
possible worlds. A world u ̸⊑ ulim is an anomaly. An anomaly u is Σ-detectable if
M

Val
Repr(T(Σ))
ulim

(u) = 0. It is a r-false negative ifMr(u) = 1. Finally we say that u ⊑ ulim

is a r-false positive ifMr(u) = 0.
Angluin-like [4] denotes the possibility to converge to the right solution when-

ever false positive and false negatives to a proposed solution are given. We do
not address in the following Theorem the computation of the set S′ as it depends
on enriching the functional signature with a theory using which one can compute
representations that can differentiate two terms when they exist.

Theorem 2. (Angluin-like Machine Learning) Let Σ be a signature, and (u, S) ∈
D(Σ) be a DXS. Let r = ValRepr(S)

u be the result of the learning phase, and v ∈ T0

be a world.

1. if v is a detectable anomaly and a r-false negative, there exists S′ such that
S ⊆ S′ andM

Val
Repr(S′)
u

(v) = 0;

2. if v is a normal behavior and a r-false positive, there exists u′ such that u ⊑ u′

andM
Val

Repr(S)

u′
(v) = 1.

Proof. By strict continuity of the monitor fonction. We prove the first case, the
second one can either be proved similarly or by taking u′ = u+ v.

Since v is Σ-detectable, M
Val

Repr(T(Σ))
ulim

(v) = 0. Since it is a r-false negative,
M

Val
Repr(S)
u

(v) = 1. Since the function Val is strict continuous by Theorem 1, by

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

13

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

considering an increasing chain of compacts (u′, S′) above (u, S) and whose supre-
mum is (ulim,T(Σ)), there exists a compact DXS (u′, S′) such that u ⊑ u′, S ⊆ S′, and
M

Val
Repr(S′)
u′

(v) = 0. Since we take the supremum of the values on each term, there
exists a term t ∈ S′ such that Valv(t) ̸⊑ Valu′(t). Let us consider the possibilities
for t.

Since the valuation is increasing on each term, for all t ∈ S we have Valu(t) ⊑
Valu′(t), and thus Valv(t) ̸⊑ Valu′(t) implies Valv(t) ̸⊑ Valu(t). Since v is a false
negative, we have for all t ∈ S that Valv(t) ⊑ Valu(t). Thus there exists t ∈ S′ \ S
such that Valv(t) ̸⊑ Valu′(t), and thus Valv(t) ̸⊑ Valu(t). Thus we haveMVal

Repr(S′)
u

(v) =

0.

Conclusion on learning and monitoring. The continuity of the learning process
established in Theorem 1 implies the eventual convergence of the result of our
learning algorithm towards an ideal description of the system. Theorem 2 is
more precise in the sense that we know how to eliminate false positives–by learn-
ing more traces–and false negatives–by adding new terms to the DXS.

6 Relation with the Notion of Knowledge
We break from the tradition of taking machine learning inspiration from bio-

logical systems and turn instead to philosophy. Since Frege’s initial formalisation
of first-order logic, it has been the common view that Kant’s approach to logic in
CPR merely consists of–and for some authors at best–syntactical and grammati-
cal distinctions. However interest in this logic has been raised in recent decades,
starting with Longuenesse [3] reinterpretation of Kant’s work. In [22], inverse
systems of models have been proposed to formalize Kant’s transcendental logic
given its relation with models built from experience according to Kant. In par-
ticular the authors concluded that transcendental formulas should be expressed
in geometric logic [20].

However no practical construction of such a system is provided. Furthermore
it is assumed that predicates do not evolve with experience, only the domain
does, thoughwe can observe that often birds are defined as good-looking animals
that flywhile bugs are defined as ugly, hairy animals that fly before penguins and
bats are considered. We close this gap in the rest of this report. Furthermore
we argue that inverse systems of models assume a fixed experience, a limitation
that cognitive states do not have.

6.1 Relation with Previous Formalisation

We advise the reader to start with [22] for a correct presentation, and provide
here only a flawed summary. There are three different kinds of objects amenable
to reasoning. The objects of appearance are those that are constructed from our
perceptions of the world, and are accessible to reasoning through the “manifold”
(multiplicity and arrangement) of their representations. The objects of experi-
ence are constructed from objects of appearance through cognitions. Both these
objects may evolve as new experiences and new deductions are made. Finally,
the transcendental objects can be a priori such as the functions in the signa-
ture or some schema guiding the construction of DXS, or they can be formed as
an idealization of the objects of experience that does not need to be rooted in
experience but needs to always hold. To take an example from [23], seeing or
hearing a droplet is an object of appearance, the droplet object of experience

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

14

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

is formed from these droplets experienced by considering their common quali-
ties observed. The transcendental object droplet is devised by imagining all the
possible experiences involving a droplet.

Beyond that summary, a characteristic of Kant’s approach to reasoning is that
these constructions go in both directions: transcendental objects inform on the
possible objects of experiences, transcendental objects and objects of experience
guide the construction of objects of appearance to associate perceptions with the
known transcendental objects or the objects of experience, and possibly modify
the latter.

The main result of [22] is the definition of the relation between objects of
experience and transcendental objects, and the constraints on the transcenden-
tal logic steming from that construction. Namely, the invariance is expressed
by modeling transcendental objects as threads of an inverse system of models.
Each thread intersect each “state of the mind” with an object of experience. A
logic then is provided to reason on these transcendental objects.
Our approach.. In this report, the perceptions are the logs, while the object
terms represent the objects of appearance. Representation terms constructed
on an object term t are themanifold of representations of t, while literals are the
judgements on that object. Cognitions as presented in [22] encompass without
being limited to the construction of objects of appearance, of representations for
these objects, and the forming of judgements from these representations, and
thus the construction of a DXS is the result of cognitions.

Let (u, S) be a representation state. To build objects of experience, this state
is enriched with a set R of non-ground representation terms and a subset O ⊆ S
of ground object terms. Adding terms to R and O is another form of cognition,
just as reasoning on the cognitive state (u, S,O,R) introduced below to construct
objects of experiences.

We propose two constructions in the rest of this section. In Sec. Section 6.2
objects of experience are constructed as unary predicates defined by represen-
tation terms and instantiated by object terms. In Sec. Section 7 they are defined
by predicates composed of pure representation terms. The latter is employed in
the rest of this report to construct an inverse system of first-order models, while
the former is mostly relevant to our discussion on future works.

6.2 Learning Objects from Experience

We consider now a denumerable set X of variables indexed by a sort and an
integer, and denote T(Σ,X) the set of well-sorted terms with variables in X over
the signature Σ. The set of variables occuring in t is denoted Var(()t). A term
t ∈ T (Σ,X) is abstract if "X" /∈ Sub(t). Let t, t′ be two ground terms. If there exists
a term t′′ such that Var(t′′) = {x} and t′′ {x← t′} = t we say that the abstraction of
t′ in t is defined, and denote t′′ with Abs(t, t′)

Definition 7. (Pertinence relation) A ground representation term t pertains to
a ground object term t′ ∈ Sub(t), and we denote Pert(t) = t′, if t′ is maximal for the
subterm relation such that the abstraction of t′ in t is defined.

Proposition 10. For every ground representation term t, there exists a unique
term t′ such that Pert(t) = t′.

Proof. Let Ω ⊆ Sub(t) be the set of object terms t′ such that Abs(t, t′) is defined.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

15

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Since t is ground, we have "X" ∈ Sub(t), and thus "X" ∈ Ω which then is not
empty. Thus it has a non-empty subset ∂Ω of maximal elements. Assume now
that ∂Ω contains two distinct elements t1, t2. By maximality we can have neither
t1 ∈ Sub(t2) nor t2 ∈ Sub(t1). Let t′′ = Abs(t, t2). Since t = t′′ {x← t2} we have
Sub(t) = Sub(t′′) {x← t2} ∪ Sub(t2). Since t1 /∈ Sub(t2) we have t1 ∈ Sub(t′′) {x← t2}.
Since t2 /∈ Sub(t1) we have t1 ∈ Sub(t′′). Since t1 is ground we have "X" ∈ Sub(t1),
and thus "X" ∈ Sub(t′′). Thus t′′ is not abstract, which contradicts the assumption
t2 ∈ Ω.

Definition 8. (Manifold of represention of an object term) Let S be a DXS, and
t ∈ T(Σ) be a ground object term. Themanifold of representations of t is denoted
ManS(t) and is the set {t′ ∈ Repr(S) | Pert t′ = t}.

If t /∈ S, since DXS are closed for the subterm relation we haveManS(t) = ∅. The
manifold of representations of an object term t defines an object of experience
that gathers the judgements on t.

Definition 9. (Learned Object of Experience) Let λ = (u, S) be a representation
state, and t be a ground object term. The object of experience learned from t in
(u, S) is denoted Learnλ(t) and is:

Learnλ(t) =


1 If ManS(t) = ∅∧

t′∈ManS(t) Abs(t′, t) ⊑ Valu(t
′)

Otherwise

A particular is to consider for representation terms the actions (verbs) appli-
cable on an object (noun). This approach was introduced in [16] for the similar
task of learning concepts (objects of experience) from a corpus. Following that
comparison the learned objects of experience are concepts.

7 Construction of First-Order Logic Models
Given a representation state λ = (u, S) the set of objects of experience that can

be learned in λ from any term t can be easily computed, but results only in unary
predicates in the sense of formulas that have only one variable. Thus they only
capture the intrisic properties of objects whereas typically objects are defined
also in terms of their relations with other objects [8]. This section introduces a
construction in which predicates can be constructed without limit on their arity
(in Sec. Section 7.1), followed by the construction of a domain to interpret these
predicates.

7.1 Construction of the relational signature

A literal of the form t ⊑ d where t is a pure representation term is called a
pure literal.

Definition 10. (Predicate) A predicate φ =
∧

t∈Tφ
t ⊑ dt is a conjunction of pure

literals. Its arity is | ∪t∈Tφ
Var(t)|.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

16

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Since "X" is an object constant, pure literals are necessarily abstract terms.
The truth of a pure literal l in relation with a log u is defined through one or
several substitutions σ such that lσ is ground and satisfied by u.

Definition 11. (Grounding) Let O be a set of object terms and t be a pure rep-
resentation term. A substitution θ O-grounds t if:{

coDom(θ) ⊆ O
tθ is ground

We denote GrO(t) the set of substitutions that O-grounds the term t.

Given a set of object terms O we denote Subst(O) the set of substitutions whose
codomain is included in O. As a matter of convenience this notion is extended to
literals and we denote GrO(t ⊑ d) the set GrO(t) when t is a pure representation
term.

Definition 12. (Support of a literal) Let O be a set of object terms and u ∈ T0

be a log. A substitution σ (u,O)-supports a pure literal l = r ⊑ d if σ ∈ GrO(l) and
Valu(rσ) ⊑ d. We denote this fact with σ |=(u,O) l, and denote SuppOu (l) the subset
of GrO(l) of substitutions that (u,O)-supports the literal l.

In a representation state the DXS only reflects the observations of a system
through the different processing steps performed on its log. We introduce cog-
nitive states to model the reasoning steps that can be based on a representation
state, e.g. to recognize that two object terms are instances of the same formula
or are related through an observation.

Definition 13. (Cognitive State) A cognitive state is a tuple K = (u, S,O,R) such
that:

• (u, S) is a DXS;

• O ⊆ ObjP (S) and for all o ∈ O we have [[o]]Su ̸= ε;

• R is a set of pure representation terms such that for t, t′ ∈ R we have Var(t)∩
Var(t′) = ∅;

Given a cognitive state K = (u, S,O,R) and t ∈ R we denote GrK(t) the set of
substitutions θ such that Var(t) ⊆ Dom(θ) ⊆ Var(R), coDom(θ) ⊆ O, and tσ ∈ S The
set of substitutions defined in a cognitive state K is denoted Subst(K) and is the
set ∪t∈R GrK(t). Given a substitution θ ∈ Subst(K), we let ObsK(θ) be the set of
observations that can be made on the objects in the image of θ:

ObsK(θ) = {t | θ ∈ GrK(t)}

We extend this notation to sets of substitutions with:

ObsK(Θ) = ∩θ∈Θ ObsK(θ)

Example 3. Let K = (u, S,O,R) be a cognitive state, f : T → TD be a represen-
tation function, and eq : TD × TD → {0, 1} be an equality function, i.e. such that

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

17

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

eq(u, v) = 1 if and only if u = v. The representation term eq(f(x), f(y)) is a binary
predicate. Let Θ be the set of substitutions θ = {x 7→ t1, y 7→ t2} with t1, t2 ∈ O such
that eq(f(t1), f(t2)) = 1. By definition we have eq(f(x), f(y)) ∈ ObsK(Θ). Knowing
that the predicate must be reflexive, symmetric, and transitive can help in the
computation of Θ, and symmetrically the knowledge of a maximal set of substi-
tutions Θ leads to the learning from experience that the predicate is reflexive,
symmetric, and transitive. Since this report only aims at establishing a sound
semantics, these aspects are out of its scope.

Since the set ObsK(Θ) represents the common qualities of the objects related
by the substitutions in Θ it defines a predicate of experience.

Definition 14. (Predicate of Experience) Let K be a cognitive state, and Θ ⊆
Subst(K). The predicate of experience defined by Θ in K is denoted ObjK(Θ) and
is the formula:

ObjK(Θ) =


1 If ObsK(Θ) = ∅∧

t∈ObsK(Θ) t ⊑
⊔

θ∈Θ Valu(tθ)

Otherwise
Its arity is the cardinal of ∪t∈ObsK(Θ) Var(t).

Def. 14 can be refined by assuming that some of the variables are existentially
quantified to model ontologies [8], but this would lead to additional complexity
in this report. We denote ObjE(K) the set of predicates of experience ObjK(Θ) for
Θ ⊆ Subst(K). As in the case of GrO, GrK is extended to literals, and to predicates
with GrK(

∧
t∈T t ⊑ dt) = ∩t∈T GrK(t). We give the usual semantics to the conjunc-

tion by defining the support of φ =
∧

t∈T t ⊑ dt in K as ∩t∈T SuppOu (t ⊑ dt), and
denote it SuppOu (φ). By construction Θ ⊆ SuppOu (ObjK(Θ)): the predicate defined
by the examples in Θ is satisfied by these examples.

That a set of substitutions may entail the object formula of another set of
substitutions yields a pre-order on these sets. In turns the pre-order yields an
equivalence relation between sets of substitutions.

Definition 15. (Specialisation) Let K be a cognitive state, and Θ,Θ′ ⊆ Subst(K).
We say that Θ′ specialises Θ, and denote Θ ⪯K Θ′, if Θ′ ⊆ SuppOu (ObjK(Θ)).

The sets Θ,Θ′ ⊆ Subst(K) are K-equivalent, and we denote Θ ≡K Θ′, if Θ ⪯K Θ′

and Θ′ ⪯K Θ.

The equivalence classes for≡K are (pre-order) isomorphic with the predicates
of experience on K.

Lemma 9. Let K = (u, S,O,R) be a cognitive state, and Θ,Θ′ ⊆ Subst(K) be such
that Θ ≡K Θ′. Then ObjK(Θ) = ObjK(Θ′).

Proof. Let Θ,Θ′ ⊆ Subst(K) be such that Θ ⪯K Θ′.
By definition Θ ⪯K Θ′ implies ObsK(Θ′) ⊆ ObsK(Θ), and thus by double inclu-

sion Θ ⪯K Θ′ implies ObsK(Θ) = ObsK(Θ′).
By definition of ⪯K we have for each θ′ ∈ Θ′ that u |= ObjK(Θ)θ′. For each

r ∈ ObsK(Θ), u |= ObjK(Θ)θ′ implies Valu(rθ
′) ⊏

⊔
θ∈Θ Valu(rθ). Inversing the roles

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

18

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

of θ, θ′ we also get that for all r ∈ ObsK(Θ′), and all θ ∈ Θ we have Valu(rθ) ⊏⊔
θ′∈Θ′ Valu(rθ

′). Taken together these inequations yield for all r ∈ ObsK(Θ):⊔
θ∈Θ

Valu(rθ) =
⊔

θ′∈Θ′

Valu(rθ
′)

Given the two preceding paragraphs and the definition of ObjK we have:
ObjK(Θ) = ObjK(Θ′)

Conversely, ObjK(Θ) = ObjK(Θ′) implies, together with the fact that by con-
struction u |= ObjK(Θ)θ′ for all θ′ ∈ Θ′, and symmetrically when reversing the
roles of Θ and Θ′, that Θ ≡K Θ′.

This tight coupling is employed to transfer the predicates of experience of a
cognitive state to those of another through the sets of substitutions that generate
them.

7.1.1 Construction of the domain
The construction of a domain from a cognitive state K = (u, S,O,R) proceeds

by considering the elements of O modulo an equivalence generated by ObjE(K).
This approach has two obstacles:

• A first modeling problem is whether it suffices to consider all comparisons
between terms in O in the image of the possible substitutions, or if all the re-
placement of one term by another in O have to be considered. Both choices
lead to an equivalence relation on O, the latter making it a congruence on
terms. In this report we consider the former as it makes the exposition sim-
pler. The former is non-trivial, but can be computed as a consequence of
the termination of the Knuth-Bendix procedure on ground term rewriting
systems [6]. It has been left out of this report out of space constraints;

• A second problem is that pairwise comparison of terms does not yield a
transitive relation as some terms may be missing in S.

Considering closure under replacements. The following lemma allows for the
transfer of a replacement on an instantiated term to a replacement on the sub-
stitution, and is used without references when considering ground instances of
pure representation terms.

Lemma 10. Let t be an object term, r be a pure representation, and θ be a
substitution such that rθ is ground. Then if (rθ)|p = t and p ∈ Pos(r) then r|p is a
variable.

Proof. Since t is an object term the symbol at position ϵ in t is in Fo. Since r is a
pure representation term, this symbol cannot occur in r. Thus t can occur in rθ
only at a position of a variable or below.

Definition 16. A set of ground termsO is replacement saturated if for all t, t1, t2 ∈
O and position p ∈ Pos(t), we have either t|p = t1 implies t[p ← t2] ∈ O or t|p = t2
implies t[p← t1] ∈ O.

The replacement saturation of a set of terms can be computed effectively and
is finite.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

19

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Lemma 11. Let K = (u, S,O,R) be a compact cognitive state. Then there exists a
finite and minimal set of ground term O′ such that O ⊆ O′ and O′ is replacement
saturated.

Proof. Let < be a simplification ordering [14] on terms. We consider the ground
term rewriting system T = {t→ t′ | t, t′ ∈ O and t′ < t}. The Knuth-Bendix comple-
tion of T always succeed (Corollary 6.2 in [6]) and yields a finite equivalent term
rewriting sytem T ′. Let O′ be the minimal set of terms that contains O and such
that t ∈ O′ and t →T ′

t′ implies t′ ∈ O. Since T ′ is always terminating this set if
finite, and it is replacement saturated by definition.

To address the second problem we introduce variations of a substitution in
which a term in its image is replaced by another term. Given a substitution θ of
domain X, for Y ⊆ X and t, t′ terms we denote θ[t← t′]Y the substitution:

θ[t← t′]Y (x) =

{
θ(x) if x /∈ Y
t′ if x ∈ Y and θ(x) = t

Construction of the domain. We discussed earlier about the two choices when
trying to compare two terms. The following definition assumes only the replace-
ment in substitutions and not within terms. It can be adapted by furthermore
assuming O is replacement saturated and considering the orbits for the symmet-
ric closure of the t → t′ rewriting rule: the terms t and t′ are equivalent if and
only if the valuation is constant over the orbit of each representation term.

Definition 17. (Pre-order and equivalence onO) LetK = (u, S,O,R) be a compact
cognitive state. Given t, t′ ∈ O we write t ⪯o

K t′ if for all θ ∈ Subst(K), for all
X ⊆ Dom(θ), and for all r ∈ R we have ValSu(rθ[t← t′]X) ⊑ ValSu(rθ).

We denote t ≡o
K t′ the fact that t ⪯o

K t′ and t′ ⪯o
K t.

The closure by partial replacement may seem too stringent but is technically
necessary to prove transitivity in the following lemma, which justifies the nota-
tions employes.

Lemma 12. t ⪯o
K t′ is pre-order on O.

Proof. It is trivially reflexive. Assume t, t′, t′′ ∈ O be such that t ⪯o
K t′ and t′ ⪯o

K t′′.
Let θ ∈ Subst(K), X ⊆ coDom(θ), and r ∈ R. We remark that θ[t ← t′′]X = θ[t ←

t′′]X∩θ−1(t). It thus suffices to prove ValSu(rθ[t← t′′]X∩θ−1(t)) ⊑ ValSu(rθ).
By composition we have rθ[t← t′′]X∩θ−1(t) = rθ[t← t′]X∩θ−1(t)[t

′ ← t′′]X∩θ−1(t) and
conclude with the hypothesis and the transitivity of ⊑.

Lemma 12 imply that ≡o
K is an equivalence relation on O.

The behaviour of this equivalence is problematic when considering the addi-
tion of representation terms in S. Assume O = {t1, t2}, [[t1]]Su = [[t2]]

S
u and R = {f(x)}.

If S contains only one of f(t1), f(t2) we necessarily have t1 ̸≡o
K t2 but if it con-

tains either none or both of them we have t1 ≡o
K t2. Starting from an empty set

O and adding successively t1 and t2 makes the equivalence classes are thus not

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

20

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

monotonic. Accordingly stable cognitive states are those states such that S con-
tains enough terms to properly evaluate all replacements of one term in O with
another.

Definition 18. (Stable cognitive state) A cognitive state K = (u, S,O,R) is stable
if Subst(K) contains all the substitutions grounding a term in R and whose co-
domain is included inO.

The essence of the following proposition is that the equivalence class ≡o
K on

O defines a finer equivalence than ≡K on P(Subst(K)) (the first part), but that it
is the coarsest equivalence on O that induces an equivalence finer than ≡K on
P(Subst(K)) (the second part).

Proposition 11. Let K be a stable cognitive state, and t, t′ ∈ O. If t ≡o
K t′ then

for all Θ ⊆ Subst(K) and X ⊆ ∩θ∈Θ Dom(θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ}

Conversely if for all Θ ⊆ Subst(K) and X ⊆ Dom(Θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ, X ⊆ Dom(θ)})

then t ≡o
K t′.

Proof. If t ≡o
K t′ for all Θ ⊆ Subst(K) and X ⊆ ∩θ∈Θ Dom(θ) we have for all θ ∈ Θ

that θ ≡K θ[t ← t′]X by definition of ≡o
K , and thus Θ ≡K Θ[t ← t′]X by definition of

≡K .
Conversely assume that for all Θ ∈ Subst(K) and all X ⊆ ∩θ∈Θ Dom(θ) we have

ObjK(Θ) = ObjK({θ[t← t′]X | θ ∈ Θ})

By Lemma 9 ObjK(Θ) = ObjK({θδt,t′ | θ ∈ Θ} ∩ Subst(K)) is equivalent to Θ ≡K

{θ[t← t′]X | θ ∈ Θ}.
In particular for all θ ∈ Θ and for all r ∈ R such that θ ∈ GrK(r) that ValSrθ[t←t′]X (⊑

)ValSu(rθ), and thus again by Definition 17 that t ≡o
K t′.

Let K = (u, S,O,R) be a stable cognitive state. By Prop. 11 for all φ ∈ ObjE(K)
of domain x1, . . . , xn and all t1, . . . , tn, t′1, . . . , t′n ∈ O then if for all 1 ≤ i ≤ n we have
ti ≡o

K t′i then u |= φ {xi 7→ ti}1≤i≤n if and only if u |= φ {xi 7→ t′i}1≤i≤n, and thus the
valuation of the predicates on experiences of K is well-defined on the O/ ≡o

K .
This justifies the definition of the ≡o

K equivalence classes as the domain of K.

Definition 19. (Domain defined by a cognitive state) Let K = (u, S,O,R) be a
stable cognitive state. The domain of K is the set O/ ≡o

K .

Though there are no function symbols in the constructed models, we note that
given two different constants c, c′, there exists a predicate p and a substitution
θ such that exactly one of u |= pθ and u |= pθ[c ← c′] is valid. Conversely, if p, p′
are two different predicates there exists a substitution θ such that exactly one of
u |= pθ and u |= p′θ is valid.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

21

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Domain of cognitive states.. Given two cognitive states K = (u, S,O,R) and K ′ =
(u′, S′, O′, R′) we say that K ′ is an extension K, and denote it K ⊑ K ′, if u ⊑ u′,
S ⊆ S′, O ⊆ O′, and R ⊆ R′.

Given a family of cognitive states (Kf)f∈F the supremum of the family is de-
noted

⊔
f∈F Kf and is the cognitive state K = (u, S,O,R) where:

u = ∪f∈Fuf

S = ∪f∈FSf

R = ∪f∈FRf

O = ∪f∈FOf

A cognitive state is compact if u and S are compact, and R and O are finite.

8 Inverse systems of models
The construction of an inverse system on objects of experience in [22] relies

on the existence for K ′ ⊑ K of functions:

1. hK′,K : ObjE(K) → ObjE(K ′) relating a predicate of experience in a state K
to its less precise formulation in a preceding state K ′;

2. from the domain of K to the domain of K ′.

The first requirement fails in our approach as in addition to cognitions, we con-
sider passive observations: For any u ⊑ u′ and any representation terms t, t′ we
may have Valu(t) ̸= Valu(t

′) but Valu′(t) = Valu′(t′), and conversely. In particular two
object terms may be temporarily considered distinct before realising that they
have the same properties. As a consequence we consider cognitive states with
the same observed logs u. The second requirement fails whenever two equiv-
alence classes of ≡o

K′ are merged into the same equivalence class of ≡o
K . This

justifies the restriction in this section to stable cognitive states.
Given a stable cognitive state K = (u, S,O,R) we denote K ↓ the set of stable

cognitive states K ′ = (u′, S′, O′, R′) such that K ′ ⊑ K and u′ = u.

Definition 20. (Thread) Let K = (u, S,O,R) be a stable cognitive state. A K-
thread is a function ξ : K ↓→ P(O) such that:

(i) ξ(K ′) is a ≡o
K′ equivalence class;

(ii) For all K ′,K ′′ ∈ K ↓, if K ′′ ⊑ K ′, then ξ(K ′) ⊆ ξ(K ′′).

Let K = (u, S,O,R) be a stable cognitive state and K ′ = (u, S′, O′, R′),K ′′ =
(u, S′, O′, R′) ∈ K ↓ with K ′′ ⊑ K ′. Threads have a few properties that need to be
mentioned. We have O′′ ⊆ O′ and thus Subst(K ′′) ⊆ Subst(K ′). Since we addition-
ally have R′′ ⊆ R′, for each Θ ⊆ Subst(K ′′) we have ObsK′′(Θ) ⊆ ObsK′(Θ). Since
the log u does not change by definition we have the first-order logic syntactic
tautology ObjK′(Θ)⇒ ObjK′′(Θ). Thus for all Θ1,Θ2 ⊆ Subst(K ′′) we have Θ1 ≡K′ Θ2

implies Θ1 ≡K′′ Θ2 by Lemma 9. Thus by Proposition 11 for all t1, t2 ∈ O′′ we have
t1 ≡o

K′ t2 implies t1 ≡o
K′′ t2. The constraint on the chosen equivalence classes in

Def. 20 can thus always be satisfied.
Also, we note that if ξ is a K-thread then ξ|K′↓ is a K ′-thread. Together with

the preceding remark we obtain that for every K-thread ξ we have ξ(K ′′) =

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

22

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

ξ|K′↓(ξ(K
′)). I.e., let ΞK be the set of K-threads. This set is in bijection with

the ≡o
K equivalence classes, i.e. the domain of K. In that sense the elements of

the domain of K are the inverse limits of the K-threads.
We note that all the elements of the domain of a cognitive state K ′ are visited

by at least one K-thread. Thus for all K ′,K ′′ ∈ K ↓ and K ′′ ⊑ K ′ there exists a
projection:

gK′,K′′ : Dom(K ′) → Dom(K ′′)
ξ(K ′) 7→ ξ(K ′′)

for all K ′ − threads ξ ∈ ΞK′

Per Lemma 9 we have Θ ≡K Θ′ if, and only if, ObjK(Θ) = ObjK(Θ′). Thus
ObjE(K) is in bijection with P(Subst(K))/ ≡K . Reusing the same argument as for
the threads, there exists a mapping from P(Subst(K))/ ≡K to P(Subst(K ′))/ ≡K′

that maps each equivalence class C to an equivalence class that contains C ∩
Subst(K ′).

Definition 21. (Coherence projection) Let K,K ′ be two DXS such that K ′ ∈ K ↓.
The coherence projection of K into K ′ is the function hK,K′ : ObjE(K)→ ObjE(K ′)
defined on predicates of experience by:

hK,K′(ObjK(Θ)) =

 1 If Θ ∩ Subst(K ′) = ∅
ObjK′(Θ ∩ Subst(K ′))

Otherwise

Proposition 12. Reusing the notations of Def. 21, the function hK′,K is well-
defined.

Proof. 1 Let φ ∈ ObjE(K ′). We have to prove that the value hK′,K(φ) is uniquely
defined. If is clearly the case if GrK′(φ) ∩ ΣK = ∅ or if GrK′(φ) ∩ ΣK = {σ}. Let
us thus assume there exists two distinct substitutions σ1, σ2 ∈ GrK′(φ) ∩ ΣK .
Since ObjK′(σ1) = ObjK′(σ2) we have ObsK′(σ1) = ObsK′(σ2) and for all r in this
set Valu(rσ1) = Valu(rσ2). Also, since K ⊑ K ′ we have ObsK(σi) ⊆ ObsK′(σi), for
i ∈ {1, 2} and by definition ObsK(σ1) ⊆ ObsK(σ2). Since the log u has not changed,
for all r ∈ ObsK(σ1) we have Valu(rσ1) = Valu(rσ2), and thus ObjK(σ1) = ObjK(σ2),
which completes the proof.

Proposition 13. Let K,K ′ be two DXS such that K ∈ K ′ ↓, and let hK′,K :

ObjE(K ′) → ObjE(K) be the coherence projection of K ′ into K. Then for all
φ ∈ ObjE(K ′) we have the first-order logic entailment |= φ⇒ hK′,K(φ).

Proof. hK′,K(φ) is a conjunction of a subset of the literals occuring in φ.

Each cognitive state K = (u, S,O,R) can be viewed as a first-order model on
the signature (Dom(K),ObjE(K)) with the interpretation that an atom φ(a1, . . . , an)
is true, with φ ∈ ObjE(K) having variables x1, . . . , xn, and ai ∈ Dom(K) for 1 ≤ i ≤ n
if, and only if, u |= φ {xi 7→ ai}.

We have inverse morphisms on the domains and on the predicate of experi-
ence. By construction the inverse morphisms on equivalence classes preserve

1old notations

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

23

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

the satisfaction of inverse morphisms on objects of experience, that are inter-
preted as relations. These two sets of inverse morphisms define an inverse sys-
tem of models as follows. We adapt the Def. 4 in [22] to take into account that
the set of predicates may change from one model to another.

Definition 22. (Inverse system of models, Def. 4 in) Let {Ms | s ∈ T} be a family
of first-order models indexed by a directed set T . Let Ds be the domain of Ms,
and Rs =

{
Rs

1, . . . , R
s
ns

}
be its set of predicate symbols.

Let F be a family of model homomorphisms

{(hst, gst) | t ⊑ s, hst : Rs → Rt and gst : Ds → Dt}

that satisfies the two following properties:

coherence: For all t ⊑ s ⊑ r we have htr ◦ hst = hsr and gtr ◦ gst = gsr;

model homomorphism: For all t ⊑ s we have:

Ms |= Rs
i (a1, . . . , an) implies Mt |= hst(R

s
i)(gst(a1), . . . , gst(an))

Then {Ms | s ∈ T} together with the family F of homomorphisms is an inverse
system of models.

The construction given yields trivially our main theorem.

Theorem 3. Let K = (u, S,O,R) be a cognitive state. For K ′ = (u′, S′, O′, R′) ∈ K ↓,
let RK′ = ObjE(K ′), DK′ = / ≡K′ .

Then (K ↓,
{
(Dom(K ′),ObjE(K ′)) |K ′ ∈ K ↓

}
,F), with F the family of inverse

model homomorphisms

{(hK′,K′′ , gK′,K′′ |K ′,K ′′ ∈ K ↓ and K ′′ ⊑ K ′}

is an inverse system of models of inverse limit K.

Consequence.. The connection for a fixed u with the work of [22] shown by The-
orem 3 implies that we can define objective validity, and that objectively valid
formulas are either existentially quantified geometric formulas or universally
quantified geometric implications.

9 Conclusion
The approach to learning presented in this report formalises the existing en-

semble learning technique in a discrete setting where the real numbers usually
associated with Machine Learning (ML) are replaced by values in domains, and
ML algorithms are modeled as continuous functions over these values. It builds
a model of the system that represents a flight envelope for its possible behaviors
and monitors the network with literals denoting that the value observed in the
network must be more specific than a value fixed after the learning phase. In
practical terms the approach presented in this report is sufficiently explainable
to allow for guiding an expert user reviewing the results into either constructing
new algorithms or proposing novel representation construction as in [25].

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

24

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

We then extended this construction to construct an inverse system of models.
The implications of this extension are best presented in [22] but we sum them up
here. First there is a clear delineation between a transcendental logic formula
that is evaluated on the threads of an inverse system and a formula of experience
that is evaluated locally in each model. By Theorem 3 they coincide in the limit
though it usually cannot be effectively computed. However a user can always add
formulas that are known to be true as transcendental formulas. These formulas
are satisfied in all stable states and form a background theory with which it
is possible to reason in each stable state. A result of [22] is that geometric
implications [18,21] are well-behaved wrt the evaluation on an inverse system
of models.

References
[1] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining pro-

cess models from workflow logs. In Hans-Jörg Schek, Gustavo Alonso, Fe-
lix Saltor, and Isidro Ramos, editors, Advances in Database Technology —
EDBT’98, pages 467–483, Berlin, Heidelberg, 1998. Springer Berlin Hei-
delberg.

[2] AUTOSAR. Specification of can transport layer. Technical Report 014, AU-
TOSAR, December 2017.

[3] Béatrice Longuenesse. Kant and the Capacity to Judge: Sensibility and
Discursivity in the Transcendental Analytic of the Critique of Pure Reason.
Princeton University Press, Princeton, NJ, USA, 2001.

[4] Dana Angluin. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[5] David I. Spivak and RyanWisnesky. On The Relational Foundations Of Func-
torial Data Migration. CoRR, abs/1212.5303, 2012.

[6] Deepak Kapur and Paliath Narendran. The Knuth-Bendix Completion Pro-
cedure and Thue Systems. SIAM J. Comput., 14(4):1052–1072, 1985.

[7] Community Effort. Obd-ii semantics of can frames, 2019. Own-
ers’ assessment of the frame ID semantics in a Tesla Model 3
CAN Bus, available at https://docs.google.com/spreadsheets/d/
1ijvNE4lU9Xoruvcg5AhUNLKr7xYyHcxa8YSkTxAERUw/edit#gid=0.

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel Schneider, editors. The Description Logic Handbook.
Cambridge University Press, Cambridge, UK, 2003.

[9] Jeremy Gunawardena. Deducing causal relationships in CCS. In C. E.Veni
Madhavan, editor, Foundations of Software Technology and Theoretical
Computer Science, pages 161–170, Berlin, Heidelberg, 1989. Springer
Berlin Heidelberg.

[10] Immanuel Kant. Critique of the Pure Reason ; Translated from the German
by Paul Guyer and Allen W. Wood. Cambridge University Press, 1998.

[11] ISO. Road vehicles — diagnostic communication over controller area net-
work (docan) — part 2: Transport protocol and network layer services.
Technical Report 15765-2, ISO, 2016.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

25

https://docs.google.com/spreadsheets/d/1ijvNE4lU9Xoruvcg5AhUNLKr7xYyHcxa8YSkTxAERUw/edit#gid=0
https://docs.google.com/spreadsheets/d/1ijvNE4lU9Xoruvcg5AhUNLKr7xYyHcxa8YSkTxAERUw/edit#gid=0
https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

[12] Abir Laraba, Jérôme François, Shihabur Rahman Chowdhury, Isabelle
Chrisment, and Raouf Boutaba. Mitigating TCP protocol misuse with pro-
grammable data planes. IEEE Trans. Netw. Serv. Manag., 18(1):760–774,
2021.

[13] Mark V. Lawson. 1. Classical Stone Duality. 2018.

[14] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite Systems. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Semantics, pages 243–320. Elsevier and MIT
Press, 1990.

[15] Nuel D. Belnap Jr. A Useful Four-Valued Logic. InModern Uses of Multiple-
Valued Logic, pages 5–37. D. Reidel Publishing Company, 1977.

[16] Philipp Cimiano, Andreas Hotho, and Steffen Staab. Learning Concept Hi-
erarchies from Text Corpora using Formal Concept Analysis. J. Artif. Intell.
Res., 24:305–339, 2005.

[17] Rudolf Wille. Restructuring Lattice Theory: An Approach Based on Hierar-
chies of Concepts. In Ivan Rival, editor, Ordered Sets, volume 83 of NATO
Advanced Study Institutes Series, pages 445–470. Springer Netherlands,
1982.

[18] Samson Abramsky. Domain Theory in Logical Form. Ann. Pure Appl. Log.,
51(1-2):1–77, 1991.

[19] Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum. Handbook of
logic in computer science. Volume 3. Semantic Structures. Clarendon Press,
1994.

[20] Steve Vickers. Geometric Logic in Computer Science. In Geoffrey Burn,
Simon Gay, and Mark D. Ryan, editors, Theory and Formal Methods 1993,
pages 37–54, London, 1993. Springer London.

[21] Steven Vickers. Continuity and Geometric Logic. J. Appl. Log., 12(1):14–27,
2014.

[22] Theodora Achourioti and Michiel van Lambalgen. A Formalization of Kant’s
Transcendental Logic. Rev. Symb. Log., 4(2):254–289, 2011.

[23] Theodora Achourioti and Michiel van Lambalgen. Kant’s Logic Revisited.
FLAP, 4(4), 2017.

[24] J. Wardell. Log of a tesla model 3 car, 2019. available at https:
//www.dropbox.com/s/vpz5b0c78qmqlt8/Model3Log2019-10-02v10.
asc.zip?dl=0&file_subpath=%2FModel3Log2019-10-02v10.asc.

[25] Yannick Chevalier. Data Exchange for Anomaly Detection: The Case of the
CAN Bus. In Conference on Artificial Intelligence for Defense (CAID 21),
pages 25–32, Rennes, France, November 2021. DGA : Direction Générale
de l’Armement - Ministère français des Armées.

[26] Yannick Chevalier and Michaël Rusinowitch. Implementing Security Proto-
col Monitors. In Temur Kutsia, editor, Proceedings of the 9th International
Symposium on Symbolic Computation in Software Science, SCSS 2021, Ha-
genberg, Austria, September 8-10, 2021, volume 342 of EPTCS, pages 22–
34, 2021.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

26

https://www.dropbox.com/s/vpz5b0c78qmqlt8/Model3Log2019-10-02v10.asc.zip?dl=0&file_subpath=%2FModel3Log2019-10-02v10.asc
https://www.dropbox.com/s/vpz5b0c78qmqlt8/Model3Log2019-10-02v10.asc.zip?dl=0&file_subpath=%2FModel3Log2019-10-02v10.asc
https://www.dropbox.com/s/vpz5b0c78qmqlt8/Model3Log2019-10-02v10.asc.zip?dl=0&file_subpath=%2FModel3Log2019-10-02v10.asc
https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

A Proofs
The proof of Lemma 1 is a rephrasing of the case analysis of the proof of

Lemma 2.

Lemma 2. Let TA be a log domain on A. For every element u ∈ TA we have
u = ⊔v∈↓uv.

Proof. By definition if u is a finite sum of finite words then u ∈↓ u, and it is then
trivial that u = ⊔v∈↓uv.

Also if u is an infinite word then ↓ u is the set of finite prefixes of u. By definition
of infinite words we then have u = ⊔v∈↓uv.

Finally if u is an infinite sum of words, say u = Σa∈I⊆A∗∪Aωa, then by the two
former cases we have u =

⊔
a∈I⊆A∗∪Aω

⊔
v∈↓u v and thus u ⊑↓ u. The other direction

is trivial, and thus u =⊑↓ u.

Proposition 3. Let TA be a world domain, and c be a choice function on TA. The
split function for c is strict and continuous, and {(N→ TA)} is an object of ALG⊥!.

Proof. We construct (N→ TA) as a limit of the functions on the finite prefixes of N.
By Prop. 2 this limit is still in ALG⊥!. Looking at the construction in the proof, its
basis is the set of elements whose value at every coordinate is ⊥, but for a finite
number of coordinates for which it is a compact world. The Splitc function clearly
maps compact elements to compact elements, and ϵ to the bottom element (n 7→
ϵ). Thus it defines a unique strict and continuous mapping.

Lemma 4. D(Σ) is an object in DCPO⊥!.

Proof. It clearly has a bottom element, so it suffices to prove it is a DCPO.
Assume there exists a signature Σ and a directed set X ⊆ D(Σ) such that

⊔S∈XS /∈ D(Σ) Since DXS are bounded, there exists a minimal element (for inclu-
sion) SX ∈ D(Σ) such that ⊔S∈XS ⊑ SX . By contradiction assume that SX ̸= ⊔S∈XS,
and thus that SX \ ⊔S∈XS = S′ ̸= ∅. Since the subterm ordering on terms is well-
founded, S′ has a minimal element t for the subterm relation. Two cases are
possible:

• If t = f(t1, . . . , tn) then by minimality all t1, . . . , tn are in SX and ⊔S∈XS. By
minimality of SX there is no term t′ ∈ SX such that t ∈ Sub(t′). Thus SX \ {t}
is also a state, which contradicts the minimality of SX ;

• If t = cn(t′), the same reasoning applies, but with SX \ {cn(t′)}n∈N.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

27

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Lemma 5. Every S ∈ D(Σ) is reachable.

Proof. Let S ∈ D(Σ). Let X be the set of reachable S′ ∈ D(Σ) such that S′ ⊑ S. For
i ∈ {1, 2}, if Si is reachable by a composition Fi, then S1 ∪ S2 is reachable by the
composition in which functions of F1 and F2 are alternatively chosen. Thus the
set X is directed. Let RS = ⊔S′′∈XS′′. We clearly have RS ⊆ S.

By contradiction assume S\RS ̸= ∅, and let t be in this difference. By induction
on terms, there exists a finite composition that reaches a state containing Sub(t)
from the initial state. By the above paragraph, this implies t ∈ RS, a contradic-
tion.

Lemma 6. A DXS S ∈ D(Σ) is compact iff it is finitely reachable.

Proof. If S is finitely reachable then it is trivially compact. For the if part, if it
is not finitely reachable, it is still reachable by Lemma 5, and thus is the sup of
a strictly increasing chain of the states reached after a finite number of function
composition, but equal to none of these states, and thus is not compact.

Proposition 4. D(Σ) is an object in ALG⊥!.

Proof. We already know it is inDCPO⊥! by Lemma 4. By Lemma 5 every element
is reachable. Given a state S let F be a function composition such that S = F ("X").
If F is finite, S is compact. Otherwise, finite prefixes construct a sequence of
compact elements (by Lemma 6) whose sup is S. Since every element of D(Σ) is
either a compact or the sup of compact elements below it, D(Σ) is algebraic.

Lemma 8. Let Σ be a signature, and d be in coDom(t) for a representation term
t. Then the functionMt,d : u 7→ Valu(t) ⊑ d is strict and continuous. If furthermore
d is compact then the function: Mt,d

s : u 7→ Valu(t) ⊏ d is continuous.

Proof. Only the last statement is not trivial. Assume u =
⊔

v∈V v where V contains
only compact elements. We have to prove that Valu(t) ⊏ d =

⊔
v∈V Valv(t) ⊏ d. By

monotony of the valuation and 1 ⊏ 0 this is true if Valu(t) ⊏ d = 1. Let us now
assume this is not the case, and thus that Valu(t) ⊏ d = 0 or equivalently that
d ⊑ Valu(t).

The functionw 7→ Valw(t) is continuous by Lemma 7 and thusValu(t) =
⊔

v∈V Valv(t).
Since this function maps compact elements to compact elements all the Valv(t)
values are compact. By definition of compactness if d ⊑ Valu(t) =

⊔
v∈V Valv(t)

there exists v ∈ V such that d ⊑ Valv(t) and thus such that Valv(t) ⊏ d = 0.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

28

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

B Example application: Detection of Network Proto-
cols

B.1 Detection of purely parallel processes

While process mining [1] usually focuses on the discovery of workflow graphs
encoding conditionals and loops, the detection of synchronisation between mes-
sages is more often, as e.g. in the case of a protocol, a sequential activity without
holes: Messages a and b in an order are always followed by messages c and d,
etc. In the case of the CAN Bus these sequences occur in two contexts. In a
MFM protocol execution that starts with an initial message, replied to with an
ack, and followed by a sequence of messages with a counter. Or in the case of
a proper design of the CAN Bus in which such synchronisation is introduced to
avoid collisions between messages. These are examples of purely parallel pro-
cesses [9] that are built with sequential and parallel composition only, i.e. with
no non-deterministic choice.

Let S be a DXS. A subset Sc ⊆ S of terms which are applications of split func-
tions on "X" is called a pre-classification. If it is maximal then it is the classifica-
tion of the DXS. If the codomain of "X" is the set of possible CAN frames, then
the codomain of each t in the classification Sc is also the set of CAN frames. We
assume that all the events in the log are distinct e.g. by adding a time of capture.
To simplify notations we denote e ∈ u if the event e occurs at some position in the
word u, and |u| the length of the word u.
Algorithm. Let S be a DXS with a classification set Sc. A representation function
nb_occ is applied on each t ∈ Sc to count the number of occurrences of messages
in the interpretation of the term t. The state of the network after seeing a trace
u is represented by a boolean square matrixPSc

(u) indexed by terms in Sc and
defined inductively on traces with:

Pu
Sc
(t, t′) =


1 If u = ε
P v
Sc
(t, t′) ∧ (nb_occ(t′) ̸= nb_occ(t′)

Pu
Sc
(t, t′) Otherwise

When analyzing a log Σu∈Uu we let

PΣu∈Uu
Sc

= Σu∈UP
u
Sc

be the coordinate-wise conjunctions of the matrice Pu
Sc

for u ∈ U . Ordering the
matrice with the extension on all coordinates of the ordering on booleans, one
easily checks that the conjunction being the sup of boolean values, this function
is monotonic and strict and thus can be extended by continuity to infinite traces.
We note it is defined on a DXS built when analyzing the network, see Prop. 5.

In the following definition, the semi-colon denotes sequential composition, a
set of term denotes a parallel composition of these terms, and the while true do
denotes an unbounded iteration of the process.

Definition 23. (Purely Parallel Process—PPP Let S be a DXSwith a classification
set Sc. An iterated purely parallel process is a process of thewhile true do (A1; . . . ;An)
where A1, . . . , An is a partition of a subset of Sc.

A PPP P = while true do (A1; . . . ;An) is unambiguous on trace u = (ei)1≤i≤N if
furthermore for all 1 ≤ i ≤ N if ei occurs in [[t]]u and intput′ for t, t′ ∈ ∪ni=1Ai then
t = t′.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

29

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Lemma 13. Assume the purely parallel process P = while true do (A1; . . . ;An) is
executed on the network, that the trace u is observed, and that P is unambiguous
for u. Then for all 1 ≤ i < j ≤ n and for all t′ ∈ Ai, t ∈ Aj we have:

|[[t′]]u| = |[[t]]u| or |[[t′]]u| = |[[t]]u|+ 1

Proof. We first prove the following statement that is satisfied by the less con-
strained process:

P = while true do (∪ni=1Ai)

Claim. For every trace u there exists Lu, Hu, and Eu such that:

• Lu, Hu is a partition of ∪ni=1Ai and Lu ̸=;

• Eu ⊆ ∪ni=1Ai is the subset of the terms of the process that have not been
observed in the current iteration of the process;

• The following equalities are satisfied:
∀t, t′ ∈ Lu, |[[t]]u| = |[[t′]]u| (A)
∀t, t′ ∈ Hu, |[[t]]u| = |[[t′]]u| (B)
∀t ∈ Lu,∀t′ ∈ Hu, |[[t]]u|+ 1 = |[[t′]]u| (C)
Eu = Lu (D)

Proof of the claim. By induction on the length of the trace u.

• If u = ε let Hε = ∅ and Lε = Eε = ∪ni=1Ai. Since Hu = ∅ the equations (C)
and (D) are trivially satisfied. The interpretation is strict so the equation
(A) is satisfied (and the length is equal to 0). The equation (D) is satisfied
by definition.

• Assume the claim stands for a trace u and consider the trace u · e.

– If e /∈ ∪ni=1 ∪t∈Ai
[[t]]u·e, i.e. the observed event e is not associated with a

term in the process, then setting Lu·e = Lu, Hu·e = Hu, and Eu·e = Eu

satifies the constraints of the claim;
– Otherwise there exists t ∈ ∪ni=1Ai such that e ∈ [[t]]u·e. Since the process is
unambiguous the term t has not been observed in the current iteration
of the loop, and thus t ∈ Eu. By induction this implies t ∈ Lu. One then
easily checks that the equalities are all satisfied by setting:
∗ If Lu = {t}: Lu·e = Eu·e = ∪ni=1Ai and Hu·e = ∅;
∗ Otherwise Lu·e = Lu \ {t}, Eu·e = Lu·e, and Hu·e = Hu ∪ {t};

Claim. For any trace u, there exists 1 ≤ it ≤ n such that Hu ⊆ ∪iti=1Ai, Lu ⊆ ∪ni=it
Ai,

and if Eu ̸= Eu·e there exists t ∈ Lu ∩Ait such that e ∈ [[t]]u.

The proof is a copy of the one of the first claim, but it has been separated for
clarity. One has to observe that to respect the sequentiality of the process, when
t ∈ Eu ∩Aj is chosen we must have Eu ∩ ∪j−1i=1Ai = ∅.

The Lemma follows from the two claims by case analysis on the repartition of
t, t′ in Hu and Lu using the second claim to transform it into a case analysis on
the indice.

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

30

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

Proposition 14. Let S be a DXS with a classification set Sc, and u be a trace.
Assume the purely parallel process P = while true do (A1; . . . ;An) is executed on
the network, and that P is unambiguous for u. Then for every t ∈ Ai, t

′ ∈ Aj with
i > j we have Pu

Sc
(t, t′) = 1.

The other direction cannot be proven as a purely parallel process can be found
by coincidence when there are few iterations of the loop.

We present in Fig. 1 examples of the analysis result on a Model 3 CAN Bus
log [24] representing 418s of execution and 879682 frames.

(a) The star PPP is the most common one
on the Tesla Model 3: Two sets of ids
separated by a single node. This PPP is
iterated 4181 times in the log.

(b) A degeneracy of the star PPP is to
have one of the set of nodes which is
empty. This PPP is also iterated 4181
times in the log.

Figure 1: Examples of purely parallel processes found on a Tesla Model 3 log. In
total 29 CAN frames id were isolated, 32 were discovered in a request-response
process, and 126 involved were in a star process either proper as in Fig. 1a or
degenerate as in Fig. 1b.

B.2 Discovering Protocol Instances

Setting.. A protocol is a program running among multiple participants in a net-
work and observed through the messages exchanged by these participants. It
is specified with a set of roles that are programs and the execution of a role is
a process called an actor. In addition to the control rules defined in the role
an actor is playing, the actor has a local memory that is updated while running
the protocol. We note that as in [26] under this definition a multi-step attack in
which an adversary communicates with different actors on the network is also a
protocol.

As in [12] each role ismodeledwith anExtended Finite StateMachine (EFSM),
a finite state automaton enriched with rules updating the state of an actor play-
ing that role. This automaton is deterministic in the sense that an actor playing a
role and receiving a message can either reject that message as non-conforming
with the protocol specification and leaves its state unchanged, or change its state
according to the rules set in the rule in exactly one possible way. Thus to each
state of the automaton we associate a couple of functions (g, p) where g returns
whether a message received in the current participant’s state is acceptable, and
p that performs the update of the memory and of the automaton state. A group
of actors playing the roles defined in the protocol and communicating one with
another is called a session.

More formally let X be a finite set of sorted variables, R be a finite set of

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

31

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Y. Chevalier Theory Synthesis based on Experience

constants (the roles), Q be a finite state of automaton states, and E be the set
of the possibly observed events (the messages). A memory state is a ground
substitution of domain X. We denote M the set of possible memory states. A
state is a couple (q, σ) ∈ Q ×M. A guard is a function Q ×M × E → B. A post-
transition is a function Q ×M× E → Q×M× E. If p is a transition function and
f(q,m, e)) = (q′,m′, e′) then upon receiving the message e, the actor with a state
(q,m) updates it to (q′,m′) and sends the message e′.

An EFSM E is a set of tuples {(q, gq, fq)}q∈Qr⊆Q where gq is a guard and fq is
a post-transition function. A protocol P is a finite set of tuples {(r, ιr, Er)}r∈R
where each Er is an EFSM, ιr ∈ Q is the initial state of the role r, and if r ̸= r′

then Qr ∩Qr′ = ∅. The bin role contains one state Qb = {ιb}, and one rule (ιb, gb, fb)
where the guard gb is always true and fb does nothing.
Algorithm.. Again we build a representation of the system inductively on a trace
u. Let P = {(r, ιr, Er)}r∈R be a protocol. Participants are identified uniquely and
are assumed to always or never play a role of the protocol. Depending on the
network type they can be identified by a socket address or in the case of the CAN
bus by the id of the frame. Actors are participants playing a role in the protocol.
We first build a derived object simulating the network after observing a trace u
Our representation of the network is based on an internal state Au of potential
actors with their state. Accordingly we let:

A(ε) = {(ιp,r,mp,r, Ep,r)}(p,r)∈P×R

assuming initially every participant may play a role in the protocol.
Inductively the internal state of the function is defined as follows:

• If there exists (qp,r,mp,r, Ep,r) ∈ A(u), a transition (qp,r, gqp,r , fqp,r) ∈ Ep,r, and
an event e′ ∈ u such that:{

gqp,r (e
′,mp,r) = 1

fqp,r (e
′, qp,r,mp,r) = (e, q′p,r,m

′
p,r)

Then:
A(u · e) = (A(u) \ {(qp,r,mp,r, Ep,r)})

∪
{
(q′p,r,m

′
p,r, Ep,r)

}
• Otherwise the participant has sent a message that is not conformant with
the protocol specification, and thus per our assumption never is an actor,
in any role, of that protocol:

A(u · e) = A(u) \ {(qp,r,mp,r, Ep,r) ∈ A(u) | r ∈ R}

The representation of the network after observing the trace u is the subset of
participants p such that there exists an EFSM indexed by p in A(u). We order
these sets with A ⊑ B if and only if B ⊆ A. The top element is the emptyset
and the bottom element is the set of all participants, and the join A ⊔ B of two
sets is their intersection. This domain clearly is a representation domain. The
computation of A(u) is extended to worlds with A(Σu∈Uu) =

⊔
u∈U A(u), and is

clearly continuous. Though it possible for a participant to play different roles
concurrently and be correctly detected, playing concurrently the same role may
(as in the case of a server in [12]) make the participant appear as not playing
along the rules of the protocols. The benefit of this simplification is the low
computational and memory cost in practice.

Our implementation of the Multi-Frame Message protocol [11] has correctly
detected on the Tesla Model 3 log the similar CAN-TP [2] protocol according to
owners’ common findings [7].

Technical report No. IRIT/RR–2022–08–FR

https://www.irit.fr/ Yannick.Chevalier/ - Yannick.Chevalier@irit.fr

32

https://www.irit.fr/~Yannick.Chevalier/
mailto:Yannick.Chevalier@irit.fr

Institut de Recherche en Informatique de Toulouse
CNRS - INP - UT3 - UT1 - UT2J

ASR – Architecture, Systems and Networks
RMESS – Networks, Mobile, Embedded, Wireless, Sattelites

SEPIA – Operating systems, distributed systems, from Middleware to Architecture
SIERA – Service IntEgration and netwoRk Administration

T2RS – Real-Time in networks and systems
TRACES – Trace stands for research groups in architecture and compilation for embedded systems

CISO – HPC, Simulation, Optimization
APO – Parallel Algorithms and Optimisation

REVA – Real Expression Artificial Life

FSL – Reliability Systems and Software
ACADIE – Assistance for certification of distributed and embedded applications

ARGOS – Advancing Rigorous Software and System Engineering
ICS – Interactive Critical Systems

SM@RT – Smart Modeling for softw@re Research and Technology

GD – Data Management
IRIS – Information Retrieval and Information Synthesis

PYRAMIDE – Dynamic Query Optimization in large-scale distributed environments
SIG – Generalized information systems

IA – Artificial Intelligence
ADRIA – Argumentation, Decision, Reasoning, Uncertainty and Learning methods

LILaC – Logic, Interaction, Language and Computation
MELODI – Methods and Engineering of Language, Ontology and Discourse

ICI – Interaction, Collective Intelligence
ELIPSE – Human computer interaction

SMAC – Cooperative multi-agents systems
TALENT – Teaching And Learning Enhanced by Technologies

SI – Signals and Images
MINDS – coMputational Imaging anD viSion

SAMoVA – Structuration, Analysis, Modeling of Video and Audio documents
SC – Signal and Communications

STORM – Structural Models and Tools in Computer Graphics
TCI – Images processing and understanding

	Introduction
	Modeling Learning
	Informal considerations
	Model for machine learning

	Properties of the ALG-bot! Category
	World Domains
	Properties of World Domains
	Split functions
	Representations

	Continuity of the Learning Process
	Notations
	Data Exchange Systems (DXS)

	Learning and Monitoring
	Continuity of the Valuation
	Monitoring
	Angluin-like Learning

	Relation with the Notion of Knowledge
	Relation with Previous Formalisation
	Learning Objects from Experience

	Construction of First-Order Logic Models
	Construction of the relational signature
	Construction of the domain

	Inverse systems of models
	Conclusion
	Proofs
	Example application: Detection of Network Protocols
	Detection of purely parallel processes
	Discovering Protocol Instances

