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Database Repair via Event-Condition-Action
Rules in Dynamic Logic

Guillaume Feuillade, Andreas Herzig, Christos Rantsoudis

IRIT, Univ. Paul Sabatier, CNRS

Abstract. Event-condition-action (ECA) rules equip a database with
information about preferred ways to restore integrity. They face prob-
lems of non-terminating executions and only procedural semantics had
been given to them up to now. Declarative semantics however exist for
a particular class of ECA rules lacking the event argument, called active
integrity constraints. We generalise one of these semantics to ECA rules
and couch it in a simple dynamic logic with deterministic past.
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1 Introduction

To restore the integrity of a database violating some constraints is an old and no-
toriously difficult problem. One of the main difficulties is that there are typically
several possible repairs: the integrity constraints alone do not provide enough
clues which the ‘right’ repair is. A natural idea is to add more information to
the integrity constraints. The most influential proposal was to move from classi-
cal, static integrity constraints to so-called Event-Condition-Action (ECA) rules.
Such rules indicate how integrity should be restored: when the event occurs and
the condition is satisfied then the action is triggered which, intuitively, makes
the violating condition false [13,15,4]. A relational database together with a set
of ECA rules make up an active database [13,24]. Such databases were studied
intensely in the database literature in the last four decades. The existing se-
mantics are mainly procedural and chain rule applications: the actions of some
ECA rule trigger other ECA rules, and so on. As argued in [7], “their lack of
declarative semantics makes it difficult to understand the behavior of multiple
ECAs acting together and to evaluate rule-processing algorithms in a principled
way”. They are moreover plagued by termination problems.

Up to now only few declarative, logical semantics were given to ECA rules.
Most of them adopted the logic programming paradigm [23,22,6,19,14]; Bertossi
and Pinto considered the Situation Calculus where ECA rules are described
in a first-order language plus one second-order axiom and where repairs are
performed by means of auxiliary actions [5]. Our aim in this paper is to associate
a semantics to ECA rules that is based in dynamic logic. A main reason for
our choice is that the latter has built-in constructions allowing us to reason
about terminating executions. Another reason is that this allows us to start



from existing declarative semantics for a simplified version of ECA rules. The
latter lack the event argument and are simply condition-action couples and were
investigated in the database and AI literature since more than 15 years under
the denomination active integrity constraints, abbreviated AIC [20,10,11,12,7].
AICs “encode explicitly both an integrity constraint and preferred basic actions
to repair it, if it is violated” [12]. Their semantics notably avoids problems with
non-terminating executions that plague ECA rules. Syntactically, an AIC is a
couple of the form

r = ⟨C(r),A(r)⟩

where the condition C(r) is a conjunction of literals L1 ∧ · · · ∧ Ln (that we can
think of as the negation of a classical, static integrity constraint) and the ac-
tion A(r) is a set of assignments of the form either +p or –p. It is supposed
that each of the elements of A(r) makes one of the literals false: +p ∈ A(r)
implies ¬p ∈ C(r), and –p ∈ A(r) implies p ∈ C(r). For instance, the AIC
⟨Bachelor ∧ Married, –Bachelor⟩ says that when Bachelor ∧ Married is true
then the action –Bachelor should be executed, that is, Bachelor should be
deleted. Given a set of AICs, a repair of a database D is a set of AIC actions
whose execution produces a database that is consistent with the integrity con-
straints. Their semantics is clear when there is only one AIC: if the set of AICs is
the singleton R = {⟨C(r),A(r)⟩} and D |= C(r) then each assignment α ∈ A(r)
is a possible repair of D. When there are several AICs then their actions may
interfere in complex ways, just as ECA rules do: the execution of A(r) makes
C(r) false but may have the side effect that the constraint part C(r′) of an-
other AIC r′ that was false before the execution becomes satisfied, and so on.
The consistency restoring actions should therefore be arranged in a way such
that overall consistency is obtained. Moreover, the database should be changed
minimally only. Several semantics achieving this were designed, among which
preferred, founded, and justified repairs [12] as well as more recent prioritised
versions [8]. Implementations of such repairs were also studied, and the account
was extended in order to cope with various applications [17,16,18].

In this paper we examine whether and how the existing logical semantics of
AICs can be generalised to ECA rules. For that reason (and also because the
term ‘rule’ has a procedural connotation) we will henceforth use the term ECA
constraints instead of ECA rules. Syntactically, we consider ECA constraints of
the form

κ = ⟨E(κ),C(κ),A(κ)⟩

where ⟨C(κ),A(κ)⟩ is an AIC and E(κ) is a boolean formula built from assign-
ments of the form either +p or –p. The latter describes the assignments that must
have occurred for the AIC to trigger. Our convention is to call events assign-
ments that happened in the past and led to a violation state, and to call actions
assignments to be performed in the future in order to repair the violation.



Example 1. Let eme,d stand for “e is an employee of department d”. The set of
ECA constraints

Kem =
{
⟨+eme,d1

, eme,d1
∧ eme,d2

, {–eme,d2
}⟩,

⟨+eme,d2
, eme,d1

∧ eme,d2
, {–eme,d1

}⟩
}

implements a ‘priority to the input’ policy repairing the functionality constraint
for the employee relation: when the integrity constraint ¬eme,d1 ∨ ¬eme,d2 is
violated and eme,d1

was made true in the last update action then the latter is re-
tained and eme,d2

is made false in order to enforce the constraint; symmetrically,
eme,d1

is made false when +eme,d2
is part of the the last update action.

Observe that if the last update action of our example made neither eme,d1 nor
eme,d2 true, i.e., if ¬+eme,d1 ∧¬+eme,d2 holds, then the database already violated
the integrity constraints before the last update action. In such cases ECA con-
straints are of no help: the violation should have been repaired earlier. Moreover,
if the last update action of our example made eme,d1

and eme,d2
simultaneously

true, i.e., if +eme,d1
∧+eme,d2

holds, then the ECA constraints of Kem authorise
both –eme,d1 and –eme,d2 as legal repairs.

A logical account of ECA constraints not only requires reasoning about in-
tegrity constraints and actions to repair them when violated, but also reasoning
about the event bringing about the violation. Semantically, we have to go be-
yond the models of AIC-based repairs, which are simply classical valuations
(alias databases): in order to account for the last update action we have to add
information about the events that led to the present database state. Our models
are therefore couples made up of a classical valuation D and a set of assignments
H. The intuition is that the assignments in H are among the set of assignments
that led to D; that is, H is part of the last update action that took place and
brought the database into its present state D. For these models, we show that
the AIC definitions of founded repair and well-founded repair can be generalised
in a natural way to ECA constraints. We then provide a dynamic logic analysis
of ECA constraints. More precisely, we resort to a dialect of dynamic logic: Dy-
namic Logic of Propositional Assignments DL-PA [3,2]. In order to take events
into account we have to extend the basic logic by connectives referring to a de-
terministic past. We are going to show that this can be done without harm, i.e.,
without modifying the formal properties of the logic; in particular, satisfiabil-
ity, validity and model checking stay in PSPACE. Our extension is appropriate
to reason about ECA-based repairs: for several definitions of ECA repairs we
give DL-PA programs whose executability characterises the existence of a repair
(theorems 1-4). Furthermore, several other interesting reasoning problems can
be expressed in DL-PA, such as uniqueness of a repair or equivalence of two
different sets of constraints.

Just as most of the papers in the AIC literature we rely on grounding and re-
strict our presentation to the propositional case. This simplifies the presentation
and allows us to abstract away from orthogonal first-order aspects. A full-fledged
analysis would require a first-order version of DL-PA, which is something that
has not been studied yet.



The paper is organised as follows. In Section 2 we recall AICs and their
semantics. We then define ECA constraints (Section 3) and their semantics in
terms of databases with histories (Section 4). In Section 5 we introduce a version
of dynamic logic with past and in Section 6 we capture well-founded ECA repairs
in DL-PA. In Section 7 we show that other interesting decision problems can be
expressed. Section 8 concludes. Proofs are contained in the long version.1

2 Background: AICs and their Semantics

We suppose given a set of propositional variables P with typical elements p, q, . . .
Just as most of the papers in the AIC literature we suppose that P is finite. A
literal is an element of P or a negation thereof. A database, alias a valuation, is
a set of propositional variables D ⊆ P.

An assignment is of the form either +p or –p, for p ∈ P. The former sets p to
true and the latter sets p to false. We use α, α′,. . . for assignments. For every α,
the assignment ᾱ is the opposite assignment, formally defined by +p = –p and
–p = +p. The set of all assignments is

A = {+p : p ∈ P} ∪ {–p : p ∈ P}.

An update action is some subset of A. For every update action A ⊆ A we
define the set of variables it makes true and the set of variables it makes false:

A+ = {p : +p ∈ A},
A− = {p : –p ∈ A}.

An update action A is consistent if A+ ∩A− = ∅. It is relevant w.r.t. a database
D if for every p ∈ P, if +p ∈ A then p /∈ D and if –p ∈ A then p ∈ D. Hence
relevance implies consistency. The update of a database D by an update action
A is a partial function ◦ that is defined if and only if A is consistent, and if so
then

D ◦A = (D \A−) ∪A+.

Proposition 1. Let A = {α1, . . . , αn} be a consistent update action. Then D ◦
A = D ◦ {α1} ◦ · · · ◦ {αn}, for every ordering of the αi.

An active integrity constraint (AIC) is a couple r = ⟨C(r),A(r)⟩ where
C(r) is a conjunction of literals and A(r) ⊆ A is an update action such that
if +p ∈ A(r) then ¬p ∈ C(r) and if –p ∈ A(r) then p ∈ C(r). The condition
C(r) can be thought of as the negation of an integrity constraint. For example,
in r = ⟨Bachelor∧ Married, –Bachelor⟩ the first element is the negation of the
integrity constraint ¬Bachelor∨¬Married and the second element indicates the
way its violation should be repaired, namely by deleting Bachelor.

1 https://www.irit.fr/∼Andreas.Herzig/P/Foiks22Long.pdf

https://www.irit.fr/~Andreas.Herzig/P/Foiks22Long.pdf


In the rest of the section we recall several definitions of repairs via a given
set of AICs R. The formula

OK(R) =
∧
r∈R

¬C(r)

expresses that none of the AICs in R is applicable: all the static constraints hold.
When OK(R) is false then the database has to be repaired.

The first two semantics do not make any use of the active part of AICs. First,
an update action A is a weak repair of a database D via a set of AICs R if it
is relevant w.r.t. D and D ◦ A |= OK(R). The latter means that A makes the
static constraints true. Second, A is a minimal repair of D via R if it is a weak
repair that is set inclusion minimal: there is no weak repair A′ of D via R such
that A′ ⊂ A.2 The remaining semantics all require that each of the assignments
of an update action is supported by an AIC in some way.

First, an update action A is a founded weak repair of a database D via a set
of AICs R if it is a weak repair of D via R and for every α ∈ A there is an r ∈ R
such that

– α ∈ A(r),
– D ◦ (A \ {α}) |= C(r).

Second, A is a founded repair if it is both a founded weak repair and a minimal
repair [10].3

A weak repairA ofD viaR is well-founded [7] if there is a sequence ⟨α1, . . . , αn⟩
such that A = {α1, . . . , αn} and for every αi, 1 ≤ i ≤ n, there is an ri ∈ R such
that

– αi ∈ A(ri),
– D ◦ {α1, . . . , αi−1} |= C(ri).

A well-founded repair is a well-founded weak repair that is also a minimal repair.4

For example, for D = ∅ and R = {⟨¬p ∧ ¬q, {+q}⟩} any update action
A ⊆ {+p : p ∈ P} containing +p or +q is a weak repair of D via R; the
minimal repairs of D via R are {+p} and {+q}; and the only founded and
well-founded repair of D via R is {+q}. An example where founded repairs and
well-founded repairs behave differently is D = ∅ and R = {r1, r2, r3} with

r1 = ⟨¬p ∧ ¬q, ∅⟩,
r2 = ⟨¬p ∧ q, {+p}⟩,
r3 = ⟨p ∧ ¬q, {+q}⟩.

2 Most papers in the AIC literature call these simply repairs, but we prefer our de-
nomination because it avoids ambiguities.

3 Note that a founded repair is different from a minimal founded weak repair: whereas
the latter is guaranteed to exist in case a founded weak repair does, the former is not;
in other words, it may happen that founded weak repairs exist but founded repairs
do not (because none of the founded weak repairs happens to also be a minimal
repair in the traditional sense).

4 Again, the existence of a well-founded weak repair does not guarantee the existence
of a well-founded repair.



Then A = {+p,+q} is a founded repair: the third AIC supports +q because
D◦{+p} |= C(r3); and the second AIC supports +p because D◦{+q} |= C(r2).
However, there is no well-founded weak repair because the only applicable rule
from D (viz. the first one) has an empty active part.

Two other definitions of repairs are prominent in the literature. Grounded
repairs generalise founded repairs [7]. As each of them is both a founded and
well-founded repair, we skip this generalisation. We also do not present justified
repairs [12]: their definition is the most complex one and it is not obvious how
to transfer it to ECA constraints. Moreover, as argued in [7] they do not provide
the intuitive repairs at least in some cases.

3 ECA Constraints

We consider two kinds of boolean formulas. The first, static language LP is built
from the variables in P and describes the condition part of ECAs. The second,
dynamic language LA is built from the set of assignments A and describes the
event part of ECAs, i.e., the last update action that took place. The grammars
for the two languages are therefore

LP : φ ::= p | ¬φ | φ ∨ φ,

LA : φ ::= α | ¬φ | φ ∨ φ,

where p ranges over P and α over the set of all assignments A. We call the
elements of A history atoms.

An event-condition-action (ECA) constraint combines an event description
in LA, a condition description in LP, and an update action in 2A: it is a triple

κ = ⟨E(κ),C(κ),A(κ)⟩

where E(κ) ∈ LA, C(κ) ∈ LP, and A(κ) ⊆ A. The event part of an ECA
constraint describes the last update action. It does so only partially: only events
that are relevant for the triggering of the rule are described.5

Sets of ECA constraints are noted K. We take over from AICs the formula
OK(K) expressing that none of the ECA constraints is applicable:

OK(K) =
∧
κ∈K

¬C(κ).

Example 2. [20, Example 4.6] Every manager of a project carried out by a de-
partment must be an employee of that department; if employee e just became
the manager of project p or if the project was just assigned to department d1
then the constraint should be repaired by making e a member of d1. Moreover,
if e has just been removed from d1 then the project should either be removed
from d1, too, or should get a new manager. Together with the ECA version of

5 We observe that in the literature,C(κ) is usually restricted to conjunctions of literals.
Our account however does not require this.



the functionality constraint on the em relation of Example 1 we obtain the set
of ECA constraints

Kmg =
{
⟨+eme,d1

, eme,d1
∧ eme,d2

, {–eme,d2
}⟩,

⟨+eme,d2
, eme,d1

∧ eme,d2
, {–eme,d1

}⟩,
⟨+mge,p ∨+prp,d1

, mge,p ∧ prp,d1
∧ ¬eme,d1

, {+eme,d1
}⟩,

⟨–eme,d1
, mge,p ∧ prp,d1

∧ ¬eme,d1
, {–mge,p, –prp,d1

}⟩
}
.

Example 3. Suppose some IoT device functions (fun) if and only if the battery is
loaded (bat) and the wiring is in order (wire); this is captured by the equivalence
fun ↔ (bat ∧ wire), or, equivalently, by the three implications fun → bat,
fun → wire, and (bat ∧ wire) → fun. If we assume a ‘priority to the input’
repair strategy then the set of ECA constraints has to be

Kiot =
{
⟨+fun, fun ∧ ¬bat, {+bat}⟩,
⟨–bat, fun ∧ ¬bat, {–fun}⟩,
⟨+fun, fun ∧ ¬wire, {+wire}⟩,
⟨–wire, fun ∧ ¬wire, {–fun}⟩,
⟨+bat, bat ∧ wire ∧ ¬fun, {+fun}⟩,
⟨+wire, bat ∧ wire ∧ ¬fun, {+fun}⟩,
⟨–fun, bat ∧ wire ∧ ¬fun, {–bat, –wire}⟩

}
.

Observe that when the last update action made bat and wire simultaneously
true then Kiot allows to go either way. We can exclude this and force the repair
to fail in that case by refining the last three ECA constraints to

⟨+bat ∧+wire ∧ –fun, bat ∧ wire ∧ ¬fun, ∅⟩,
⟨+bat ∧ ¬–fun, bat ∧ wire ∧ ¬fun, {+fun}⟩,
⟨+wire ∧ ¬–fun, bat ∧ wire ∧ ¬fun, {+fun}⟩,
⟨+bat ∧ ¬+wire ∧ –fun, bat ∧ wire ∧ ¬fun, {–wire}⟩,
⟨+wire ∧ ¬+bat ∧ –fun, bat ∧ wire ∧ ¬fun, {–bat}⟩.

4 Semantics for ECA Constraints

As ECA constraints refer to the past, their semantics requires more than just
valuations, alias databases: we have to add the immediately preceding update
action that caused the present database state. Based on such models, we exam-
ine several definitions of AIC-based repairs in view of extending them to ECA
constraints.

4.1 Databases with History

A database with history, or h-database for short, is a couple ∆ = ⟨D,H⟩ made
up of a valuation D ⊆ P and an update action H ⊆ A such that H+ ⊆ D and



H− ∩ D = ∅. The intuition is that H is the most recent update action that
brought the database into the state D. This explains the two above conditions:
they guarantee that if +p is among the last assignments in H then p ∈ D and
if –p is among the last assignments in H then p /∈ D. Note that thanks to this
constraint H is consistent: H+ and H− are necessarily disjoint.

The update of a history H by an event A is defined as

H ◦A = A ∪ {α ∈ H : A ∪ {α} is consistent}.

For example, {+p,+q} ◦ {–p} = {–p,+q}. The history H◦A is consistent if and
only if A and H are both consistent.

Let M be the class of all couples ∆ = ⟨D,H⟩ with D ⊆ P and H ⊆ A such
that H+ ⊆ D and H−∩D = ∅. We interpret the formulas of LP in D and those of
LA in H, in the standard way. For example, consider the h-database ⟨D,H⟩ with
D = {eme,d1

, eme,d2
} and H = {+eme,d1

}. Then we have D |= eme,d1
∧ ¬eme,d3

and H |= +eme,d1
∧ ¬+eme,d2

.
Now that we can interpret the event part and the condition part of an ECA

constraint, it remains to interpret the action part. This is more delicate and
amounts to designing the semantics of repairs based on ECA constraints. In
the rest of the section we examine several possible definitions. For a start, we
take over the two most basic definitions of repairs from AICs: weak repairs and
minimal repairs of an h-database ⟨D,H⟩ via a set of ECA constraints K.

– An update action A is a weak repair of ⟨D,H⟩ via K if A is relevant w.r.t.
D and D ◦A |= OK(K);

– An update action A is a minimal repair of ⟨D,H⟩ via K if A is a weak repair
that is set inclusion minimal: there is no weak repair A′ of ⟨D,H⟩ via K such
that A′ ⊂ A.

4.2 Founded and Well-Founded ECA Repairs

A straightforward adaption of founded repairs to ECA constraints goes as fol-
lows. Suppose given a candidate repair A ⊆ A. For an ECA constraint κ to
support an assignment α ∈ A given an h-database ⟨D,H⟩, the constraint E(κ)
about the immediately preceding event should be satisfied by H together with
the rest of changes imposed by A, i.e., we should also have H◦(A\{α}) |= E(κ).6

This leads to the following definition: a weak repair A is a founded weak ECA
repair of ⟨D,H⟩ via a set of ECAs K if for every α ∈ A there is a κ ∈ K such
that

– α ∈ A(κ),
– D ◦ (A \ {α}) |= C(κ),
– H ◦ (A \ {α}) |= E(κ).

6 A naive adaption would only require H |= E(κ). However, the support for α would
be much weaker; see also the example below.



Once again, a founded ECA repair is a founded weak ECA repair that is also a
minimal repair.

Moving on to well-founded repairs, an appropriate definition of ECA-based
repairs should not only check the condition part of constraints in a sequential
way, but should also do so for their triggering event part. Thus we get the
following definition: a weak repair A of ⟨D,H⟩ via the set of ECA constraints
K is a well-founded weak ECA repair if there is a sequence of assignments
⟨α1, . . . , αn⟩ such that A = {α1, . . . , αn} and such that for every αi, 1 ≤ i ≤ n,
there is a κi ∈ K such that

– αi ∈ A(κi),

– D ◦ {α1, . . . , αi−1} |= C(κi),
7

– H ◦ {α1} ◦ · · · ◦ {αi−1} |= E(κi).

As always, a well-founded ECA repair is defined as a well-founded weak ECA
repair that is also a minimal repair.

Example 4 (Example 2, ctd.). Consider the ECA constraints Kmg of Example 2
and the h-database ⟨D,H⟩ with D = {mge,p, prp,d1

, eme,d2} and H = {+mge,p},
that is, e just became manager of project p. There is only one intended repair:
A = {+eme,d1

, –eme,d2
}. Based on the above definitions it is easy to check that

A is a founded ECA repair (both assignments in A are sufficiently supported by
D and H) as well as a well-founded ECA repair of ⟨D,H⟩ via Kmg.

Remark 1. A well-founded weak ECA repair of ⟨D,H⟩ via K is also a weak
repair. It follows that D ◦ A |= OK(K), i.e., the repaired database satisfies the
static integrity constraints.

In the rest of the paper we undertake a formal analysis of ECA repairs in
a version of dynamic logic. The iteration operator of the latter allows us to get
close to the procedural semantics while discarding infinite runs. We follow the
arguments in [7] against founded and justified AICs and focus on well-founded
ECA repairs.

5 Dynamic Logic of Propositional Assignments with
Deterministic Past

In the models of Section 4 we can actually interpret a richer language that is
made up of boolean formulas built from P ∪ A. We further add to that hybrid
language modal operators indexed by programs. The resulting logic DL-PA±

extends Dynamic Logic of Propositional Assignments DL-PA [3,2].

7 This is equivalent to D ◦ {α1} ◦ · · · ◦ {αi−1} |= C(κi) because A is consistent (cf.
Proposition 1).



5.1 Language of DL-PA±

The hybrid language LDL-PA± of DL-PA with past has two kinds of atomic
formulas: propositional variables of the form p and history atoms of the form
+p and –p. Moreover, it has two kinds of expressions: formulas, noted φ, and
programs, noted π. It is defined by the following grammar

φ ::= p | +p | –p | ¬φ | φ ∨ φ | ⟨π⟩φ,
π ::= A | π;π | π ∪ π | π∗ | φ?,

where p ranges over P and A over subsets of A. The formula ⟨π⟩φ combines
a formula φ and a program π and reads “π can be executed and the resulting
database satisfies φ”. Programs are built from sets of assignments by means
of the program operators of PDL: π1;π2 is sequential composition, π1 ∪ π2 is
nondeterministic composition, π∗ is unbounded iteration, and φ? is test. Note
that the expression +p is a formula while the expression {+p} is a program.
The program {+p} makes p true, while the formula +p expresses that p has just
been made true. The languages LP and LA of Section 3 are both fragments of
the language of DL-PA±.

For a set of propositional variables P = {p1, . . . , pn}, we abbreviate the
atomic program {–p1, . . . , –pn} by –P . The program π+ abbreviates π;π∗. For
n ≥ 0, we define n-ary sequential composition ;i=1,...,n πi by induction on n

;i=1,...,0 πi = ⊤?,

;i=1,...,n+1 πi = (;i=1,...,n πi);πn+1.

A particular case of such arbitrary sequences is n-times iteration of π, expressed
as πn = ;i=1,...,n π. We also define π≤n as (⊤?∪π)n. (It could as well be defined as⋃

0≤i≤n π
i.) Finally and as usual in dynamic logic, the formula [π]φ abbreviates

¬⟨π⟩¬φ.
Given a program π, Pπ is the set of propositional variables occurring in π.

For example, P+p∧⟨–q⟩¬–r? = {p, q, r}.

5.2 Semantics of DL-PA±

The semantics is the same as that of ECA constraints, namely in terms of
databases with history. The interpretation of a formula is a subset of the set
of all h-databases M, and the interpretation of a program is a relation on M.
More precisely, the interpretation of formulas is

∆ |= p if ∆ = ⟨D,H⟩ and p ∈ D,

∆ |= +p if ∆ = ⟨D,H⟩ and +p ∈ H,

∆ |= –p if ∆ = ⟨D,H⟩ and –p ∈ H,

∆ |= ⟨π⟩φ if ∆||π||∆′ and ∆′ |= φ for some ∆′,



and as expected for the boolean connectives; the interpretation of programs is

∆||A||∆′ if A is consistent, ∆ = ⟨D,H⟩, and ∆′ = ⟨D ◦A,H ◦A⟩,
∆||π1;π2||∆′ if ∆||π1||∆′′ and ∆′′||π2||∆′ for some ∆′′,

∆||π1 ∪ π2||∆′ if ∆||π1||∆′ or ∆||π2||∆′,

∆||π∗||∆′ if ∆||πn||∆′ for some n ≥ 0,

∆||φ?||∆′ if ∆ |= φ and ∆′ = ∆.

Hence the interpretation of a set of assignments A updates both the database D
and the history H by A.8

We say that a program π is executable at an h-database ∆ if ∆ |= ⟨π⟩⊤, i.e.,
if there is an h-database ∆′ such that ∆||π||∆′. Clearly, consistency of A ⊆ A is
the same as executability of the program A at every h-database ∆.

The definitions of validity and satisfiability in the class of models M are
standard. For example, +p → p and –p → ¬p are both valid while the other
direction is not, i.e., p ∧ ¬+p and ¬p ∧ ¬–p are both satisfiable.

Proposition 2. The decision problems of DL-PA± satisfiability, validity and
model checking are all PSPACE complete.

6 Well-Founded ECA Repairs in DL-PA±

We now show that well-founded weak ECA repairs and well-founded ECA repairs
can be captured in DL-PA±.

6.1 Well-Founded Weak ECA Repairs

Given a set of ECA constraints K, our translation of well-founded weak ECA
repairs uses fresh auxiliary propositional variables D(α) recording that α ∈ A
has been executed during the (tentative) repair. For the set of assignments A =
{α1, . . . , αn} ⊆ A, let the associated set of auxiliary propositional variables be
D(A) = {D(α) : α ∈ A}. Then the program

–D(A) = {–D(α1), . . . , –D(αn), –D(α1), . . . , –D(αn)}

initialises the auxiliary variables D(αi) and D(αi) to false. Note that the propo-
sitional variable D(α) is to be distinguished from the history atom α ∈ A ex-
pressing that α was one of the last assignments that brought the database into
the violation state.

8 An alternative to the update of H would be to erase the history and replace it
by A. Altogether, this would make us go from ⟨D,H⟩ to ⟨D ◦ A,A⟩. This would be
appropriate in order to model external updates such as the update {+mge,p} that had
occurred in Example 2 and brought the database into an inconsistent state, differing
from the kind of updates occurring during the repair process that our definition
accounts for.



The next step is to associate repair programs rep(α) to assignments α. These
programs check whether α is triggered by some ECA constraint κ and if so
performs it. This involves some bookkeeping by means of the auxiliary variables
D(α), for two reasons: first, to make sure that none of the assignments α ∈ A is
executed twice; second, to make sure that A is consistent w.r.t. α, in the sense
that it does not contain both α and its opposite α.

rep(α) = ¬D(α) ∧ ¬D(α) ∧
∨

κ∈K : α∈A(κ)

(E(κ) ∧C(κ))?; {α,+D(α)}.

The program first performs a test: neither α nor its opposite α has been done
up to now (this is the conjunct ¬D(α)∧¬D(α)) and there is an ECA constraint
κ ∈ K with α in the action part such that the event description E(κ) and the
condition C(κ) are both true (this is the conjunct

∨
κ : α∈A(κ)(E(κ)∧C(κ))). If

that big test program succeeds then α is executed and this is stored by making
D(α) true (this is the update {α,+D(α)}).

Theorem 1. Let ∆ be an h-database and K a set of ECA constraints. There
exists a well-founded weak ECA repair of ∆ via K if and only if the program

repwwfK = –D(A);
( ⋃

α∈A
rep(α)

)∗
;OK(K)?

is executable at ∆.

The unbounded iteration (
⋃

α∈A rep(α))∗ in our repair program repwwfK can be

replaced by (
⋃

α∈A rep(α))≤card(P), i.e., the number of iterations of
⋃

α∈A rep(α)
can be bound by the cardinality of P. This is the case because well-founded ECA
repairs are consistent update actions: each propositional variable can occur at
most once in a well-founded ECA repair. This also holds for the other repair
programs that we are going to define below.

Observe that finiteness of P is necessary for Theorem 1. This is not the case
for the next result.

Theorem 2. Let ∆ be an h-database and K a set of ECA constraints. The set
of assignments A = {α1, . . . , αn} is a well-founded weak ECA repair of ∆ via K
if and only if the program

repwwfK (A) = –D(A);
( ⋃

α∈A

rep(α)
)∗

;OK(K)?;
∧
α∈A

D(α)?

is executable at ∆.

The length of both repair programs is polynomial in the size of the set of
ECA constraints and the cardinality of P.



6.2 Well-Founded ECA Repairs

In order to capture well-founded ECA repairs we have to integrate a minimality
check into its DL-PA± account. We take inspiration from the translation of
Winslett’s Possible Models Approach for database updates [25,26] into DL-PA
of [21]. The translation associates to each propositional variable p a fresh copy
p′ whose role is to store the truth value of p. This is done before repair programs
rep(+p) or rep(–p) are executed so that the initial value of p is remembered: once
a candidate repair has been computed we check that it is minimal, in the sense
that no consistent state can be obtained by modifying less variables.

For α being either +p or –p, the programs copy(α) and undo(α) respectively
copy the truth value of p into p′ and, the other way round, copy back the value
of p′ into p. They are defined as follows

copy(α) = (p?;+p′) ∪ (¬p?; –p′),
undo(α) = (p′?;+p) ∪ (¬p′?; –p).

For example, the formulas p → ⟨copy(+p)⟩(p ∧ p′) and ¬p → ⟨copy(+p)⟩(¬p ∧
¬p′) are both valid, as well as p′ → ⟨undo(+p)⟩(p∧p′) and ¬p′ → ⟨undo(+p)⟩(¬p∧
¬p′). Then the program

init({α1, . . . , αn}) = {–D(α1), . . . , –D(αn),

–D(α1), . . . , –D(αn)}; copy(α1); · · · ; copy(αn)

initialises the values of both kinds of auxiliary variables: it resets all ‘done’
variables D(αi) and D(αi) to false as before and moreover makes copies of all
variables that are going to be assigned by αi (where the order of the αi does not
matter).

Theorem 3. Let ∆ be an h-database and K a set of ECA constraints. There
exists a well-founded ECA repair of ∆ via K if and only if the program

repwfK = init(A);
( ⋃

α∈A
rep(α)

)∗
;OK(K)?;

¬
〈( ⋃

α∈A
D(α)?; undo(α)

)+〉
OK(K)?

is executable at ∆.

Theorem 4. Let ∆ be an h-database and K a set of ECA constraints. The set
of assignments A = {α1, . . . , αn} is a well-founded ECA repair of ∆ via K if
and only if the program

repwfK (A) = init(A);
( ⋃

α∈A

rep(α)
)∗

;OK(K)?;
( ∧

α∈A

D(α)
)
?;

¬
〈( ⋃

α∈A

undo(α)
)+〉

OK(K)?

is executable at ∆.



The length of both repair programs is polynomial in the size of the set of
ECA constraints and the cardinality of P.

7 Other Decision Problems

In the present section we discuss how several other interesting decision problems
related to well-founded weak ECA repairs and well-founded ECA repairs can be
expressed. Let repK stand for either repwwfK or repwfK , i.e., the program performing
well-founded (weak) ECA repairs according to the set of ECA constraints K.

7.1 Properties of a Set of ECA Constraints

Here are three other decision problems about a given set of ECA constraints:

1. Is there a unique repair of ∆ via K?

2. Does every ∆ have a unique repair via K?

3. Does every ∆ have a repair via K?

Each of them can be expressed in DL-PA±. First, we can verify whether
there is a unique repair of ∆ via K by checking whether the program repK is
deterministic. This can be done by model checking, for each of the variables
p ∈ P occurring in K, whether ∆ |= ⟨repK⟩p → [repK]p. Second, global unicity of
the repairs (independently of a specific database ∆) can be verified by checking
for each of the variables p ∈ P whether ⟨repK⟩p → [repK]p is DL-PA± valid.
Third, we can verify whether K can repair every database by checking whether
the formula ⟨repK⟩⊤ is DL-PA± valid.

7.2 Comparing Two Sets of ECA Constraints

We start by two definitions that will be useful for our purposes. The program
π1 is included in the program π2 if ||π1|| ⊆ ||π2||. Two programs π1 and π2 are
equivalent if each is included in the other, that is, if ||π1|| = ||π2||.

These comparisons can be polynomially reduced into validity checking prob-
lems. Our translation makes use of the assignment-recording propositional vari-
ables of Section 6.1 and of the copies of propositional variables that we have
introduced in Section 6.2. Hence we suppose that for every variable p there is a
fresh variable p′ that will store the truth value of p, as well as two fresh variables
D(+p′) and D(–p′). For a given set of propositional variables P ⊆ P we make
use of the following three sets of auxiliary variables

P ′ = {p′ : p ∈ P},
D(+(P ′)) = {D(+p′) : p ∈ P},
D(–(P ′)) = {D(–p′) : p ∈ P}.



The auxiliary variables are used in a ‘generate and test’ schema. For a given set
of propositional variables P ⊆ P, the program

guess(P ) = –(P ′ ∪ D(+(P ′)) ∪ D(–(P ′))); (
⋃

q∈P ′

+q)∗

guesses nondeterministically which of the auxiliary variables for P are going to
be modified: first all are set to false and then some subset is made true. The
formula

Guessed(P ) =
∧
p∈P

(
(p ↔ p′) ∧ (+p ↔ D(+p)) ∧ (–p ↔ D(–p))

)
checks that the guess was correct.

Now we are ready to express inclusion of programs in DL-PA±: we predict
the outcome of π1 and then check if π2 produces the same set of changes as π1.

Proposition 3. Let π1 and π2 be two DL-PA programs.

1. π1 is included in π2 if and only if

[guess(Pπ1
∪ Pπ2

)]
(
⟨π1⟩Guessed(Pπ1

∪ Pπ2
)

→ ⟨π2⟩Guessed(Pπ1
∪ Pπ2

)
)

is DL-PA± valid.

2. π1 and π2 are equivalent if and only if

[guess(Pπ1
∪ Pπ2

)]
(
⟨π1⟩Guessed(Pπ1

∪ Pπ2
)

↔ ⟨π2⟩Guessed(Pπ1
∪ Pπ2

)
)

is DL-PA± valid.

The reduction is polynomial. The following decision problems can be reformu-
lated in terms of program inclusion and equivalence:

1. Is the ECA constraint κ ∈ K redundant?

2. Are two sets of ECA constraints K1 and K2 equivalent?

3. Can all databases that are repaired by K1 also be repaired by K2?

Each can be expressed in DL-PA± by means of program inclusion or equivalence:
the first can be decided by checking whether the programs repK and repK\{κ}
are equivalent; the second can be decided by checking whether the programs
repK1

and repK2
are equivalent; the third problem can be decided by checking

the validity of ⟨repK1
⟩⊤ → ⟨repK2

⟩⊤.



7.3 Termination

In our DL-PA± framework, the taming of termination problems is not only
due to the definition of well-founded ECA repairs itself: in dynamic logics, the
Kleene star is about unbounded but finite iterations. The modal diamond op-
erator therefore quantifies over terminating executions only, disregarding any
infinite executions. We can nevertheless reason about infinite computations by
dropping the tests ¬D(α)∧¬D(α) from the definition of rep(α). Let the resulting
‘unbounded’ repair program be urep(α). Let urepK stand for either the programs
urepwwfK or urepwfK resulting from the replacement of rep(α) by urep(α). Then the
repair of ∆ loops if and only if ∆ |= [(urepK)

∗]⟨urepK⟩⊤.

8 Conclusion

Our dynamic logic semantics for ECA constraints generalises the well-founded
AIC repairs of [7], and several decision problems can be captured in DL-PA±.
Proposition 2 provides a PSPACE upper bound for all these problems. A closer
look at the characterisations of Section 6 shows that the complexity is actually
lower. For the results of Section 6.1 (Theorem 1 and Theorem 2), as executability
of a program π at ∆ is the same as truth of ⟨π⟩⊤ at ∆, our characterisation
involves a single existential quantification (a modal diamond operator), with
a number of nondeterministic choices that is quadratic in card(P) (precisely,
1 + 2card(P) nondeterministic choices that are iterated card(P) times, cf. what
we have remarked after the theorem, as well as the definition of π≤n in Section 5).
Just as the corresponding QBF fragment, this fragment is in NP. For the results
of Section 6.2 (Theorem 3 and Theorem 4), as executability of π;¬⟨π′⟩φ? at ∆
is the same as truth of ⟨π⟩[π′]φ at ∆, our characterisation involves an existential
diamond containing the same program as above that is preceded by init(A) and
that is followed by a universal quantification (a modal box operator). Just as
the corresponding QBF fragment, this fragment is in Σp

2 .
Beyond these decision problems we can express repair algorithms as DL-PA±

programs, given that the standard programming constructions such as if-then-
else and while can all be expressed in dynamic logic. Correctness of such a
program π can be verified by checking whether π is included in the program
repK. The other way round, one can check whether π is able to output any
well-founded ECA repair by checking whether repK is included in π.

It remains to study further our founded ECA repairs of Section 4.2 and their
grounded versions. We also plan to check whether the more expressive existential
AICs of [9] transfer. Finally, we would like to generalise the history component
of h-databases from update actions to event algebra expressions as studied e.g.
in [22,1]; dynamic logic should be beneficial here, too.
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