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ABSTRACT

Language-based audio retrieval aims to retrieve audio recordings
based on a queried caption, formulated as a free-form sentence writ-
ten in natural language. To perform this task, a system is expected
to project both modalities (text and audio) onto the same subspace,
where they can be compared in terms of a distance. In this work,
we propose a first system based on large scale pretrained models to
extract audio and text embeddings. As audio embeddings, we use
logits predicted over the set of 527 AudioSet tag categories, instead
of the most commonly used 2-d feature maps extracted from ear-
lier layers in a deep neural network. We improved this system by
adding information from audio tag text embeddings. Experiments
were conducted on Clotho v2. A 0.234 mean average precision at
top 10 (mAP@10) was obtained on the development-testing split
when using the tags, compared to 0.229 without. We also present
experiments to justify our architectural design choices1.

Index Terms— Language-based audio retrieval, Pre-trained
representations, PaSST, MPnet, Transformers, AudioSet tags

1. INTRODUCTION

The ability to retrieve audio recordings from a text query can be
very useful when searching for recordings in a large audio database.
Language-based audio retrieval systems rank audio samples accord-
ing to their match with a queried caption.

Recent systems are usually comprised of two neural networks:
a text encoder, responsible for encoding a concise and dense rep-
resentation of a textual query, and an audio encoder that encodes
the audio content of the candidate recordings [1, 2]. Both encoders
are expected to provide representations embedded in the same sub-
space, where the textual and audio samples can be compared in
terms of a distance.

In this paper, we present a baseline system that follows this ar-
chitecture, based on two open-sourced pre-trained models to extract
text and audio embeddings. Our main innovation is two-fold: i)
we use logits as basic audio embeddings [3], instead of the more
usual 2-d feature maps extracted from a hidden layer of a pretrained
deep neural network [4, 5, 6], ii) we improve our baseline system by
incorporating information from tags predicted on the audio record-
ings. We propose to combine the basic audio logit embeddings with
the textual embeddings of the tag names.

Thanks for funding by the French ANR agency (LUDAU, ANR-18-
CE23-0005-01) and ”Investing for the Future — PIA3” AI Interdisciplinary
Institute ANITI (ANR-19-PI3A-0004).

1PyTorch code available: https://github.com/topel/
my-audio-retrieval-dcase2022

After describing our system architectures and experimental
setup, we report results obtained on Clotho v2 [7]. We then dis-
cuss our architecture design choices in depth.

2. SYSTEM DESCRIPTION

Our system architecture is shown in Fig. 1, with the audio encoder
on the right part of the figure, and the caption encoder on the left
part. We used two open-sourced pretrained transformers as en-
coders. Both were “frozen”: the embeddings were extracted only
once offline and used as input to our systems. The learnable part of
the model corresponds to a single linear layer that projects the audio
embeddings onto the caption embedding subspace.

2.1. Text encoder: sentence embeddings with MPnet

The textual queries (captions) are encoded as sentence embeddings,
obtained by averaging the word embeddings outputted by a sentence
transformer. The all-mpnet-base-v2 model [8], further referred to
as MPnet, was used to extract these embeddings e⃗s, which are 768-
dimensional ℓ2-normalized vectors. MPnet is a transformer of more
than 109 M parameters, trained on over a billion pairs of sentences.
It was chosen since it was reported as the best model for sentence
embedding against a selected list of other models [9]. We apply
Layer normalization [10], followed by ℓ2-normalization is applied
to the embeddings to obtain the final ones, named e⃗q:

e⃗q = ℓ2-norm (LayerNorm (e⃗s))) (1)

Layer normalization (LayerNorm, LN) is used to normalize the
samples of a minibatch independently, with adaptive per-dimension
bias and gain (scale). We found that using those led to slight over-
fitting, thus, we removed this option. Therefore, our text encoder
does not have any learnable parameter.

2.2. Audio encoder: AudioSet logit embeddings with PaSST

In the proposed system, an audio recording is encoded as a single
vector, a so-called scene embedding, using the Patchout transformer
named PaSST [11], pretrained on AudioSet [12]. We use the “log-
its” embedding outputted by PaSST, which is a 527-dimensional
dense vector, comprised of the logits predicted for the 527 AudioSet
event tag classes. We denote this embedding e⃗l.

Layer-norm is then used, in this case with adaptive bias and
gain, followed by a linear layer and a final ℓ2-normalization. The
final embedding is denoted e⃗a. We can summarize these steps in
Eq. 2:

e⃗a = ℓ2-norm (Linear (LayerNorm (e⃗l))) (2)
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Figure 1: System architecture. Left: audio encoder (with and without tag embeddings), right: text encoder. e⃗l: logit embedding, e⃗a: audio
embedding, e⃗t: weighted AudioSet tag embedding, e⃗at: combined audio and tag embedding, e⃗s: sentence embedding, e⃗q: textual query
embedding, Wt: matrix of the AudioSet tag name embeddings.

We will, here-after, refer to our baseline system using PaSST
and MPnet as PaSST-MPnet.

2.3. Augmented audio encoder: tag embeddings with MPnet

Adding information from tags and audio event predictions was
shown to help audio captioning systems [13, 14, 15]. It should also
help in our retrieval task. In this work, we tried to add such informa-
tion within the audio encoder, by using MPnet to encode tag names
as text embeddings. This tag name encoder is shown in Fig. 1, on
the left of the audio encoding branch.

AudioSet includes 527 audio event classes, with names that can
be single words, e.g., “Water”, “Rain” or a sequence of words, such
as “Child speech, kid speaking”. We precomputed 527 tag name
embeddings, extracted with MPnet.

For a given audio file, we use the PaSST logits e⃗l to weight each
of the 527 embeddings, sum them to obtain a single tag embedding
e⃗t, according the following equations. First, the PaSST logit em-
bedding is passed through a sigmoid function to obtain multilabel
probabilities p⃗, then we compute the weighted sum of the precom-
puted tag embeddings:

p⃗ = sigmoid (e⃗l) (3)

e⃗t = ℓ2-norm

 p⃗∑
c

pc
Wt

 (4)

where Wt ∈ R527×d is the matrix containing the 527 embeddings
of the AudioSet tag names. d is the dimension of the embeddings
provided by MPnet (d = 768). c is an index over the 527 tag cate-
gories.

After an ℓ2-normalization, e⃗t is combined to e⃗a with a convex
linear summation:

e⃗at = λ e⃗a + (1− λ) e⃗t (5)

where λ ∈ [0, 1] is a weight tuned on a validation subset. The
final audio embedding e⃗at is ℓ2-normalized before being compared
to the caption query embedding:

e⃗at = ℓ2-norm (e⃗at) (6)

The learnable parameters of the proposed system correspond to
the audio encoder ones: in the linear layer and in the element-wise
adaptive biases and gains of LN, with a total of 407 k parameters.
If we take into account the large-scale transformers, this number
increases up to 196M parameters, but as previously mentioned, we
did not fine-tune the transformers.

2.4. Training objective

We used the same loss and similarity scoring functions than in the
challenge baseline system [2]. Similarity between audio and cap-
tion embeddings is estimated by taking the dot product between
their embeddings, and all our systems were trained with a sampling-
based triplet loss [16]. We would like a model to provide a similarity
score Sp high for positive audio-query pairs, and low for either an
audio embedding not paired with the caption query (audio impostor
score Sn

a ), or for a caption not corresponding to the audio embed-
ding (query impostor score Sn

q ). The audio and query impostors are
randomly selected from the minibatch of samples being processed.
The loss function as a function of the network learnable parameters
θ is the sum of the contribution of these three scores:
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Development-testing split Evaluation dataset
System # params mAP@10 R@1 R@5 R@10 mAP@10 R@1 R@5 R@10

Challenge baseline 732k 0.068 0.032 0.109 0.188 0.061 0.026 0.102 0.176
CNN-transformer [5] 195M 0.260 0.150 0.400 0.530 0.251 0.153 0.387 0.504

PaSST-MPnet 196M 0.229 0.134 0.355 0.482 0.212 0.124 0.319 0.448
PaSST-MPnet-tags 196M 0.234 0.138 0.364 0.485 0.214 0.128 0.332 0.445
PaSST-MPnet-tags-AC 196M 0.240 0.145 0.365 0.500 0.213 0.125 0.322 0.454
Ensemble (2 models) 196M 0.243 0.148 0.369 0.498 0.216 0.127 0.321 0.463

Table 1: Results on Clotho v2.

L(θ) = 1

N

∑
batch

max(0, Sn
a −Sp+η)+max(0, Sn

q −Sp+η) (7)

where N is the number of samples in the minibatch, η a margin.

2.5. Evaluation

Once a system is trained, retrieval is performed by scoring the sim-
ilarity between the caption embedding and the audio embeddings
of all the candidate audio files. The same scoring function as dur-
ing training is used: the dot product. Following the DCASE 2022
challenge requirements, our systems retrieve ten audio files for each
queried caption, sorted according to their match with the query.

Standard information retrieval metrics are used to evaluate
the audio retrieval models: mean average precision at top-10
(mAP@10) [17] and recall at k, the number of retrieved audio items
considered for scoring (R@k with k ∈ {1, 5, 10}) [18]. To esti-
mate these metrics, only a correct audio-caption pair is considered
as positive, all the other audio recordings retrieved are considered
negative. To rank the systems submitted to the DCASE 2022 chal-
lenge, mAP@10 was the main metric [2]. It is a rank-aware metric.
For a given queried caption, the precision values are averaged at the
positions where the relevant items are in the retrieved rank list. The
R@k metric is rank-unaware, and corresponds to the proportion of
relevant items among the top-k retrieved results. For both mAP@10
and R@k, the higher the value, the better the system.

3. EXPERIMENTAL RESULTS

3.1. Datasets

We conducted our experiments on Clotho v2 [7], with the splits de-
fined in the DCASE 2022 challenge [19]. The development set is
comprised of 3839 audio clips with 19195 reference captions for
training, and 1045 audio recordings with 5225 captions for test-
ing. We refer to this test subset as development-testing, dev-test
in short. We did not use the validation set. A Clotho evaluation
set was provided in the challenge, used to rank the submitted sys-
tems. It contains 1000 audio files with 1000 associated captions [2].
We also used for pretraining the training subset of AudioCaps [20],
containing 46231 audio files with one reference caption per file.

3.2. Experimental setup

All our models were trained on Clotho v2 for 50 epochs with the
same setup: minibatches of 128 samples, a 1e-3 initial learning rate,
and the Adam optimizer. We used a reduce-on-plateau scheduler

based on the Clotho validation split loss, with a 0.5 ratio and a 5-
epoch patience. Smaller and larger batch sizes were tested, but 128
was found to be the best one. We used η = 0.4, and λ = 0.8
when using the tags, as will be discussed here-after. When pretrain-
ing a model on AudioCaps, the number of epochs was 100 and no
learning rate scheduler was used.

3.3. Results

Table 1 shows the results of our systems, together with the ones
of the baseline proposed by the DCASE 2022 Task 6b challenge
organizers (based on a convolutional recurrent neural network and
pretrained word embeddings), and of a CNN-transformer [5], which
reached the second rank out of ten teams in the challenge, with mod-
els comprised of a number of parameters similar to ours.

First, our systems based on pretrained transformers for both
audio and text encoding largely outperformed the challenge base-
line, which was trained from scratch on the Clotho v2 development
dataset. Relying on pretrained models is efficient in this case, where
labeled training data is scarce. Second, our results are worse by
about 0.02 on the evaluation dataset (eval) than on the development-
testing subset (dev-test). This is probably due to the fact that model
selection was performed on this subset, so overfitting might have
happened. It can also be that eval is more difficult than dev-test.

Compared to our baseline model PaSST-MPnet, adding infor-
mation from the tag embeddings was beneficial: PaSST-MPnet-tags
reached 0.234 mAP@10 compared to 0.229, on dev-test, and 0.214
compared to 0.212 on eval.

Pretraining on AudioCaps (PaSST-MPnet-tags-AC) brought a
0.06 absolute mAP@10 improvement on dev-test, compared to
PaSST-MPnet-tags. Interestingly, this gain was not observed on
eval, so we cannot conclude that pretraining was beneficial or not.
PaSST-MPnet-tags models trained on AudioCaps, before finetuning
on Clotho, reached about 0.18 mAP@10 on Clotho dev-test.

Finally, an ensemble of two PaSST-MPnet-tags-AC models
trained with different seeds, led to our best results. By ensemble,
we mean that the distance scores outputted by the two models were
averaged. This setting allowed us to obtain the fourth place of the
challenge [19].

4. ARCHITECTURE DESIGN CHOICES

In the following, all reported experiments were conducted with
PaSST-MPnet-tags models.

4.1. Influence of LayerNorm in the audio encoder

As described in Section 2, in our models, we use LayerNorm (LN)
with adaptive gain and bias applied to the PaSST embeddings in the
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Figure 2: Similarity score distributions on the training subset when
using either a 0.4 (top) or a 1.0 (bottom) value for the margin η,
when training a PaSST-MPnet-tags model. Pos: positive audio-
caption pair, A imp: negative audio-query pair (audio impostor),
Q imp: negative query-audio pair (caption impostor).

audio encoder.
First, if we do not use LN in the audio encoder, mAP@10 and

the other metrics are much worse: 0.217 mAP@10, compared to
0.234 reported in Table 1.

Second, we tried to use batch normalization (BatchNorm, BN)
in the audio encoder, instead of LN. Using BN and keeping all the
rest of the architecture unchanged (and for a given random seed),
led to a 0.229 mAP@10 value, again worse than 0.234 when using
LN. By observing the learning curves, BN seems to overfit a little
more than LN. When using adaptive bias and scale, the number of
learnable parameters is the same for both types of normalization, i.e.
twice the dimension of the embeddings. The only possible reason
why BN overfits more is because of the running means and standard
deviations estimated on the training subset of data, that may not
generalize so well on the test subset. These are necessary for BN
but not for LN, since LN performs a per sample normalization.

4.2. Impact of the margin η

In [16], the authors used a default value of 1.0 for the margin η,
used in the loss function, given in Eq. 7. In the DCASE challenge
baseline, this default value was also used. In our case, the audio
and queried caption embeddings are of unit norm. The results of the
dot products, i.e., the similarity scores, are theoretically between -
1.0 and 1.0. A margin of 1.0 might be to difficult to obtain when
training a model. Indeed, η = 1.0 led to a 0.225 mAP@10 on
dev-test, worse than 0.234 obtained with η = 0.4. We tried several

Figure 3: mAP@10 values on dev-test according to the audio em-
bedding weight λ.

values lower than 1.0, and η = 0.4 was the best value.
In Fig. 2, we plotted the score distributions of the positive pairs

(Pos, a positive caption-audio pair) and negative pairs (A imp and
Q imp for audio and query impostors, resp.), on the training sub-
set. The distributions on the dev-test subset are very similar. The
difference between the top and the bottom plots is the value of the
margin: η = 0.4 (top figure) and η = 1.0 (bottom figure). As can
be seen, the support interval of the scores is smaller with η = 0.4
than with η = 1.0: the positive pair scores reach about 0.62 maxi-
mum with η = 0.4, and about 0.8 with η = 1.0. Nevertheless, we
can see more overlap with impostor scores in the case of η = 1.0,
which mean that more mistakes are made by this model.

4.3. Influence of the audio/tag weight λ

Figure 3 shows the mAP@10 values on dev-test, when varying λ
from Eq. 5. When λ = 0, the audio encoder provides as output
the tag embeddings e⃗t, and the model has no learnable parameters
at all. In this setting, a 0.105 mAP@10 is obtained. This shows
that using the tag name embeddings weighted with their probabil-
ities already brings some information. When λ = 1, the audio
encoder provides as output the projected PaSST embeddings e⃗a,
and the model corresponds to PaSST-MPnet, which reached 0.229
mAP@10. In between, the score varies, and the best value was ob-
tained with λ = 0.8.

5. CONCLUSION

We reported text-based audio retrieval experiments, with systems
based on pretrained audio and sentence large scale transformers. In
our baseline system, we used logits as audio embeddings, instead
of the most commonly used 2-d feature maps extracted from earlier
layers in a deep neural network. We improved this system by adding
information from AudioSet tags, encoded as sentence embeddings.
Finally, we discussed some of our architecture design choices: the
use of layer normalization, a value smaller than 1.0 for the margin
in the contrastive loss function for learning, and the 0.8 value for
weighting the audio embeddings when adding the tag contribution
within the audio encoder.

As a short-term perspective, we would like to use logit embed-
dings together with more standard 2-d feature maps in the audio en-
coder, to see whether those are complementary [5]. We also would
like to investigate the use of external data, either for pretraining
models or in a semi-supervised learning setting, where existing al-
gorithms could be adapted to the present task [21].
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[21] L. Cances, E. Labbé, and T. Pellegrini, “Comparison
of semi-supervised deep learning algorithms for audio
classification,” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2022, no. 23, Sept. 2022. [Online].
Available: https://doi.org/10.1186/s13636-022-00255-6


