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Computing the Labellings of Higher-Order Abstract
Argumentation Frameworks
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Abstract
The topic of this work is related to a computational issue concerning an enriched abstract argumentation
framework called RAF (“Recursive Argumentation Framework”). A RAF is composed of a set of arguments
and a binary relation modelling the attacks as in Dung’s framework. The main difference between Dung’s
framework and a RAF is the fact that a RAF is able to take into account higher-order interactions (i.e. an
attack can target an attack and not only an argument). Since this kind of framework is relatively recent, the
efficient computation of the main semantics remains an open question. In this paper, we propose one of
the first algorithms dedicated to this issue. We prove the soundness and completeness of this algorithm.

Keywords
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1. Motivation

Argumentation, by considering arguments and their interactions, is a way of reasoning that has
proven successful in many contexts, multi-agent applications for instance (e.g. [1]). Considering
a formal representation of this reasoning model, argumentation frameworks with higher-order
attacks (e.g. [2, 3, 4, 5, 6]) are a rich extension of the classical Argumentation Framework
(AF) by [7]: not only they consider arguments and attacks between arguments, but also attacks
on attacks (see for instance [5, 6]). Among these frameworks, the Recursive Argumentation
Framework (RAF) by [8] proposes a direct approach regarding acceptability, which outputs sets of
arguments and/or attacks (defined under the notion of structure), keeping the full expressiveness
of higher-order attacks. A correspondence between Dung’s extension-based semantics for AFs
and structure-based semantics of RAFs without any attack on attacks has been shown in [8],
proving that RAFs are a conservative generalisation of AFs. This characteristic makes RAFs
particularly interesting to consider.

The computation of semantics of RAFs has not been addressed so far but a simple way
to do so can be to extend what is done for AFs: some of the most efficient algorithms for
computing AF semantics are based on a cutting of the AF and then on a distributed and parallel
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computation (see [9, 10, 11, 12]) using the notion of AF labellings (e.g. [13, 14])1 and the
fact that such semantics are decomposable (see [16]). Indeed, RAF labellings already exist
and classical decision problems for AFs were also adapted to RAFs with an interesting result
(see [17]): even if the expressive power of the frameworks with higher-order attacks is higher,
the complexity of their decision problems remains the same as in an AF. Moreover, it has been
proven in [18] that RAF semantics, as AF semantics, are decomposable. Thus, following the line
of the AFDivider algorithm designed for AFs [12], all the mandatory elements are now present
for the definition of some efficient algorithms for computing RAF labellings using a distributed
and parallel method; this is the topic of the present paper.

The paper is organised as follows: Recursive Argumentation Frameworks (RAFs) and their
semantics are recalled in Section 2. Section 3 gives some additional definitions mandatory before
the presentation of the algorithm itself in Sections 4 and 5. An example of a clustering method is
provided in Section 6. Section 7 draws conclusions and opens future perspectives. The proofs of
the soundness and completeness of the approach can be found in [19].

2. Background on Recursive Argumentation Frameworks

Higher-order attacks (that is, possibly targeting attacks as well as arguments) have been introduced
in [2] then developed in several papers among which one can cite the AFRA (Argumentation
Framework with Recursive Attacks) approach described in [6] and the RAF (Recursive Argu-
mentation Framework) approach introduced in [8]. RAF and AFRA differ on the way in which
these attacks are handled despite the fact that there is no difference in the structure of the graph.
This paper is concerned with the RAF approach. This section recalls its main definitions: basics,
labellings and decomposability of the semantics.

Definition 1. A Recursive Argumentation Framework (RAF) RAF = ⟨A,K,s, t⟩ is a quadruple
where A and K are (possibly infinite) disjoint sets respectively representing arguments and attack
names, and where s : K→ A and t : K→ A∪K are functions respectively mapping each attack
name to its source and to its target.

Figure 1 shows an example of a RAF. There are two different possibilities for defining the
semantics of a RAF: either by selecting some specific structures (a pair composed of a set of
arguments and a set of attacks) [8] or by using labellings [17].2 Here we only present the latter
approach.3

Definition 2. Let RAF = ⟨A,K,s, t⟩ be a recursive argumentation framework. A RAF labelling
is a total function L : A∪K→{in,out,und}. We define in(L) (resp. out(L), und(L)) as the
set {x ∈ A∪K|L(x) = in (resp. out, und)}.
L is a complete RAF labelling iff it satisfies: ∀x ∈ (A∪K),

1Whereas an extension assigns to its elements an accepted or a rejected status, a labelling considers a third status,
undecided, which applies to arguments which are neither accepted, nor rejected. This enrichment has proven useful
for the computation of acceptance statuses in AFs (see [15] for a survey).

2Relations between labelling-based semantics and structure-based semantics have been exhibited in [17].
3These labellings were called “structure labellings” in [17] and defined as a pair of sets (the labellings for arguments,
the labellings for attacks). Here the definition and the name are simplified.
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Figure 1: Running example: a RAF with argument names given in a circle and attack names in a square
box

• (L(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x, L(α) = in and L(s(α)) = in)

• (L(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, L(α) = out or L(s(α)) = out)

Let x ∈ A∪K be an element of RAF . x is said to be legally labelled in L iff L is a complete
labelling and x ∈ und(L) iff ((∄α ∈ K s.t. t(α) = x, L(α) = in and L(s(α)) = in) and (∃α ∈
K s.t. t(α) = x, L(α) ̸= out and L(s(α)) ̸= out)). L is said to be a valid RAF labelling if all
its elements are legally labelled. A preferred (resp. grounded) labelling is a complete labelling
that maximises (resp. minimises) the in elements. A stable labelling is a complete labelling for
which there are no und elements.

Regarding the RAF of Figure 1, Example 1 shows its grounded labelling.

Example 1. The grounded labelling of the RAF illustrated in Figure 1 is:

Lgr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a,und),(b,und),(c,und),(d,und),(e,in),( f ,in),(g,out),(h,und),(i,und),

(k,und),(l,und),(m,und)(α,in),(β ,in),(γ,in),(δ ,in),(ε,out),(ζ ,in),(η ,in),

(θ ,in),(ι ,in),(κ,in),(λ ,und),(ξ ,und),(o,und),(π,in),(ρ,in),(ψ,in)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
In order to define an algorithm able to answer the enumeration problem4 in the case of a RAF,

similarly to the one given for an AF (AFDivider [12]), we must be able to split a RAF. Based
on the notion introduced in [16], any AF can be split into several sub-frameworks by simply
ignoring some attacks (that are always valid). Nevertheless, it is not the case for RAFs. Attacks,
as arguments, can be labelled in, out or und. As a consequence, we cannot just ignore attacks to
split a RAF. So, if we do not suppress attacks while splitting RAFs, we will have attacks without
targets or without sources. Thus, the result of such a split does not produce a RAF but a partial
RAF.

4The enumeration problem consists in enumerating all the solutions under a given semantics of a framework; see [20]
for more details on this problem.
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Definition 3. Let RAF = ⟨A,K,s, t⟩ be a RAF. A partial RAF ˜︁RAF =
⟨︁
Ã, K̃, s̃, t̃,s, t

⟩︁
of RAF is a

tuple where Ã⊆ A (resp. K̃ ⊆ K) is a set representing arguments (resp. attacks) and:

• s̃ : K̃→{true,false} s.t. ∀α ∈ K̃, s̃(α) = true if s(α) ∈ Ã otherwise false

• t̃ : K̃→{true,false} s.t. ∀α ∈ K̃, t̃(α) = true if t(α) ∈ Ã∪ K̃ otherwise false

Then, using the notion of partial RAF, a partition of a RAF can be defined:

Definition 4. Let RAF = ⟨A,K,s, t⟩ be a RAF. Let Ω = {ω1, ...,ωn} be a partition5 of
(A∪K). A RAF partition of RAF is a set of partial RAFs {˜︁RAF 1, ...,˜︁RAF n} s.t.: ∀i,˜︁RAF i =⟨︁

Ãi, K̃i, s̃i, t̃ i,s, t
⟩︁

with Ãi = ωi∩A and K̃i = ωi∩K.

Considering a partial RAF implies to consider also its “inputs” (the elements that do not belong
to the partial RAF but that can impact its labellings) and their labellings:

Definition 5. Let RAF = ⟨A,K,s, t⟩ be a RAF and ˜︁RAF = ⟨Ã, K̃, s̃, t̃, s, t⟩ be a partial RAF of
RAF . The input I of ˜︁RAF is a tuple

⟨︁
Sinp,Qinp

⟩︁
where: Sinp = {s(α)∈ (A\ Ã)|α ∈K and t(α)∈

(Ã∪ K̃)} and Qinp = {α ∈ (K \ K̃)|t(α) ∈ (Ã∪ K̃)}. The tuple
⟨︂
˜︁RAF ,I,Linp

⟩︂
is called a partial

RAF with input, where Linp is a labelling of I.

Note that several partial RAFs with input can be built from a given partial RAF since several
labellings can exist for its inputs.

The local function associates any partial RAF with input with a set of labellings:

Definition 6. Let σ be a semantics. A local function F ra f
σ assigns to any partial RAF with input⟨︂

˜︁RAF ,I,Linp
⟩︂

a (possibly empty) set of labellings of ˜︁RAF under σ , i.e. F ra f
σ (˜︁RAF ,I,Linp) ∈

2{L|L being any labelling over ˜︁RAF }.

The notion of semantics decomposability is thus as follows:

Definition 7. A semantics σ is full decomposable iff there is a local function F ra f
σ s.t., for

any RAF RAF = ⟨A,K,s, t⟩ and any partition {˜︁RAF 1, ...,˜︁RAF n} of RAF , the set of all possible
labellings under the semantics σ of RAF , denoted by Lσ (RAF ), satisfies: Lσ (RAF ) = {L1∪
...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f

σ (˜︁RAF i,Ii,L
inp
i )} with L

inp
i = (

⋃︁
j∈{1,...,n} s.t. j ̸=i

L j) ↓Ii .
6

A semantics σ is said to be top-down (resp. bottom-up) decomposable iff:
Lσ (RAF )⊆ (resp. ⊇){L1∪ ...∪Ln|∀i ∈ {1, ...,n}, Li ∈F ra f

σ (˜︁RAF i,Ii,L
inp
i )}

In [18], a specific RAF partition selector has been defined that produces a partition respecting
the strongly connected components (SCC) of a RAF:7

5So the following property holds for Ω: ∀(i, j) ∈ {1, ...,n} s.t. i ̸= j,ωi∩ω j =∅ and
n⋃︁

i=1
ωi = A∪K.

6↓ is the classical generic operator of restriction that allows the selection of a sub-part of a given “object” wrt to a
given set of “elements”. Here for instance, it produces the sub-part of the labellings concerning only the elements
belonging to Ii.

7See in [18] the details about the method for defining the SCC of a RAF.
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Definition 8. Let RAF be a RAF. Let Sra f -USCC be the RAF partition selector s.t.:
Sra f -USCC(RAF ) = {Ω| Ω is a partition of RAF and ∀S ∈ SCCSra f (RAF ), ∃ωi ∈Ω s.t. S⊆ ωi}.
Let S⊆ A∪K s.t. S ∈Sra f -USCC(RAF ), S is called an “USCCra f ”.

Then, in [18], the following proposition has been proven:

Proposition 1. Let RAF = ⟨A,K,s, t⟩ be any RAF. The semantics properties in Table 1 hold.

RAF semantics

complete grounded preferred stable

Full decomposability ××× ×××

Top-down decomposability

Bottom-up decomposability ××× ×××

Full decomposability w.r.t. Sra f -USCC

(so Top-down and Bottom-up decomposability)

“ ” (resp. “×××”) means that the semantics on the column has (resp. does not have) the property on the
row.

Table 1
RAF Semantics decomposability properties

3. Some Preliminary Definitions

Before explaining our algorithm, some additional definitions are needed. First, Definition 9 gives
an adaptation of the notion of walk and path to the case of partial RAF, then Definition 10 defines
the notion of connected elements in a partial RAF.

Definition 9. Let ˜︁RAF =
⟨︁
Ã, K̃, s̃, t̃,s, t

⟩︁
be a partial RAF and e1,en ∈ (Ã∪ K̃) be elements of

˜︁RAF . A non-directed partial-RAF-walk is a sequence (e1, ...,en) with n ∈N∗ and ∀i,ei ∈ (A∪K)
s.t.:

• If n > 1, ∀i ∈ {1, ...,n − 1}, ei ∈ A =⇒ ei+1 ∈ K and (s̃(ei+1) = true and ei =
s(ei+1) or (t̃(ei+1) = true and ei = t(ei+1)))

• If n > 1, ∀i ∈ {1, ...,n− 1}, ei ∈ K =⇒ (ei+1 ∈ A and ((s̃(ei) = true and s(ei) =
ei+1) or (t̃(ei) = true and t(ei) = ei+1))) or (ei+1 ∈ K and ((t̃(ei+1) = true and ei =
t(ei+1)) or (t̃(ei) = true and t(ei) = ei+1)))

A non-directed partial-RAF-path is a non-directed partial-RAF-walk in which all the elements
are distinct.

Considering the RAF given in Figure 1, ( f ,ε,δ ,d) is an example of a non-directed partial-
RAF-path.
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Definition 10. Let ˜︁RAF =
⟨︁
Ã, K̃, s̃, t̃,s, t

⟩︁
be a partial RAF. ˜︁RAF is a connected partial RAF if,

for all distinct elements xi ∈ Ã∪ K̃ and x j ∈ Ã∪ K̃, there exists a non-directed partial-RAF-path
p in ˜︁RAF s.t. xi is the first element of p and x j is the last element of p. Otherwise the partial
RAF is disconnected.

Considering the partial RAF obtained from the RAF given in Figure 1 by the removal of ξ ,
this partial RAF is disconnected since, for instance, none non-directed partial-RAF-path exists
between f and k.

The very classical operator of restriction, denoted by ↓, can also be applied to partial RAF
giving the partial RAF that is the restriction of a given partial RAF to a given set of elements
(arguments and/or attacks). Then, using this operator, we can define the notion of “Partial RAF
Connected Component”:

Definition 11. Let ˜︁RAF =
⟨︁
Ã, K̃, s̃, t̃,s, t

⟩︁
be a partial RAF. Let S ⊆ Ã∪ K̃ be a set of elements.

The partial RAF ˜︁RAF ↓S is a connected component of ˜︁RAF iff: ˜︁RAF ↓S is connected and there
exists no set S′ ⊆ Ã∪ K̃ s.t. S⊂ S′ and ˜︁RAF ↓S′ is connected.

4. A Generic Algorithm for computing RAF semantics:
Presentation by Example

The RAFDivider algorithm we propose in this paper is an adaptation of the AFDivider algorithm
proposed in [12]. Similarly to AFDivider, it addresses the enumeration problem for the complete,
stable and preferred semantics (finding all the possible solutions of a given semantics for a given
RAF). It follows the same four major steps (see Figure 2):

1. A preprocessing on RAF removes “trivial” parts of it.

2. Clusters in RAF are identified.

3. The labellings under semantics σ in each cluster are computed in parallel.

4. The results of each cluster are reunified to get the labellings of RAF .
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Figure 2: RAFDivider operating diagram

Before giving the formal definition of the algorithm, we describe its desired behaviour on a
running example.
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4.1. Preprocessing: Removing the Trivial Part

The first step is to identify the trivial part to remove. Similarly to an AF, it is built using the in
and out elements produced by the grounded semantics. In the case of an AF, these elements are
all removed. However, for a RAF, this complete removal is not possible. Consider for instance
the grounded labelling given in Example 1. If we remove all elements that are not labelled und as
it was done in the case of an AF, the resultant partial RAF would not capture the initial relations
between the elements (for instance, the relation between the arguments a and b is expressed
by the attack α labelled in, so the removal of α is not possible). This leads to the following
definition of the RAF trivial part:

Definition 12. Let RAF = ⟨A,K,s, t⟩ be a RAF and let Lgr be the grounded labelling of
RAF . The “trivial part” of RAF is the structure of RAF , denoted by Utriv = ⟨Striv,Qtriv⟩, with
Striv = {a ∈ A|a /∈ und(Lgr)} and Qtriv = {α ∈ K|α ∈ out(Lgr) or (α ∈ in(Lgr) and s(α) /∈
und(Lgr))}

Example 2. Following Example 1, the trivial part of RAF is: Utriv = ⟨{e, f ,g} ,{ε,ζ ,η ,θ}⟩.

Then the partial hard RAF and partial hard RAF with input are defined as follows:

Definition 13. Let RAF = ⟨A,K,s, t⟩ be a RAF and let Utriv = ⟨Striv,Qtriv⟩ be the RAF trivial
part of RAF . The partial hard RAF of RAF , denoted by ˜︁RAF hard , is defined as ˜︁RAF hard =⟨︁
Ã, K̃, s̃, t̃,sh, th

⟩︁
with Ã = A \ Striv, K̃ = K \Qtriv, sh : K̃ → A s.t. ∀α ∈ K̃,sh(α) = s(α) and

th : K̃→ (A∪K) s.t. ∀α ∈ K̃, th(α) = t(α) (s̃ and t̃ are defined as in Definition 3).
The partial hard RAF with input is

⟨︂
˜︁RAF hard ,I= ⟨Sinp,Qinp⟩,Linp

⟩︂
, where Sinp = {s(α) ∈

(A\ Ã)|α ∈ K̃}, Qinp =∅ and Linp is the grounded labelling of the elements in I.

Although a partial hard RAF is a partial RAF, we only consider the input labelling that coincides
with the grounded labelling of the initial RAF. So the corresponding partial hard RAF with input
is trivially unique, the labelling of its inputs being unique.

Example 3. Figure 3 illustrates ˜︁RAF hard , the partial hard RAF corresponding to the RAF shown
in Figure 1. In this partial hard RAF, two attacks have no source (λ and ξ ). This partial hard
RAF has one input; so I= ⟨{ f},∅⟩ and Linp = {( f ,in)}.
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Figure 3: Partial Hard RAF (the attacks λ and ξ have no source)

For each input element, several cases have to be considered and this can be very time consuming.
In order to avoid this cost for elements that are in the “trivial part”, we simply cut that part from the
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RAF and, only after that, look for clusters. So, given a RAF RAF = ⟨A,K,s, t⟩, the RAFDivider
algorithm starts by computing Lgr, the grounded labelling of RAF and Utriv the trivial part
corresponding to it. Once the trivial part has been computed, the algorithm removes it from RAF
to produce ˜︁RAF hard the partial hard RAF of RAF , as well as ˜︁RAF hard input elements I with their
labelling issued from Lgr. Then, if possible, ˜︁RAF hard is split into several connected components
(see Definition 10), producing the set CCSet. CCSet is a set of partial hard RAFs (with input).

a α b
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cγd

δ

(a) Component 1: ˜︂raf 1

f

λ

i

κh

m

ρ

ι k

l

o π

ξ

ψ

(b) Component 2: ˜︂raf 2

Figure 4: The connected components of ˜︁RAF hard with their inputs (˜︂raf 1 has no input; ˜︂raf 2 has one
input f )

Example 4. Figure 4 illustrates the two connected components of ˜︁RAF hard , the partial hard RAF
illustrated in Figure 3. The CCSet will then contain these two partial RAFs.

4.2. Identifying Clusters

For each connected component, a clustering can be performed using any clustering method
partitioning the partial RAF (even a random partition method). See in Section 6 such a method
that returns the set of clusters identified, that is, a set of partial RAFs.

Example 5. Following Example 4, let us consider that the chosen clustering method produces
only one cluster for component 1. Let ˜︂raf 2 be the other component and let the following partition
be the one produced by the chosen clustering method:

Ω = {ω1 = {h, i,m, ι ,κ,λ ,ρ,ψ} ,ω2 = {k, l,ξ ,o,π}}
Figure 5 illustrates the partial RAFs corresponding to the partitioning of ˜︂raf 2, that is ˜︂raf 2 ↓ω1

8

(also denoted by ˜︂raf 2.1) and ˜︂raf 2 ↓ω2 (also denoted by ˜︂raf 2.2).
Note that, following this clustering, m and ψ also become inputs for ˜︂raf 2.2. Note also that

this clustering must also take into account attacks and not only arguments (as it is the case for
AFDivider). See in Section 6 an example of such a clustering.

4.3. Computing the Labellings

The next step is the computation of the component labellings in a distributed way relying on the
clustering made. The σ -labellings of each cluster are computed simultaneously. Unlike the case

8 ˜︂raf 2 ↓ω1 produces a partial RAF built from ˜︂raf 2 keeping only the elements of ω1.
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(a) Cluster 1: ˜︂raf 2.1 =
˜︂raf 2 ↓ω1
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(b) Cluster 2: ˜︂raf 2.2 =
˜︂raf 2 ↓ω2

Figure 5: Clusters of ˜︂raf 2 (the inputs m and ψ for ˜︂raf 2.2 are given in blue since their labellings are
unknown at this time; whereas f is in green since its labelling is known: following Lgr , f must be in)

of connected components, the partial RAF corresponding to the computed clusters may admit
several input labellings. In order to compute all the possible σ -labellings of a given cluster, every
possible case concerning its input elements has to be considered. We call “context” a particular
input labelling of a partial RAF:9

Definition 14. Let ˜︁RAF =
⟨︁
Ã, K̃, s̃, t̃,s, t

⟩︁
be a partial RAF and I=

⟨︁
Sinp,Qinp

⟩︁
be the input of

˜︁RAF . A context µ of a partial RAF is a labelling of I.

Example 6. Following Figure 5, in the worst case, there exist 27 contexts of ˜︂raf 2.2 (3 inputs with
3 possible values, so 33 = 27 ). Nevertheless, some of these 27 contexts are not compatible with
the labelling Lgr ( f must be labelled in). So only 9 contexts are compatible.

As one can notice from Example 6, it may be useless to consider some cluster contexts. So
three optimizations can enhance the computation time:

• First optimization: Given a cluster, if one of its input elements is also an input element of
the partial hard RAF then this element should only be labelled as in the grounded labelling
Lgr (see Example 6).

• Second optimization: If an input attack is unattacked (a so-called valid attack) in the initial
RAF, then this attack will always be labelled in following all semantics we are interested
in.

Example 7. The attack ψ is an input of ˜︂raf 2.2 and a valid one in RAF and in ˜︁RAF hard .
Hence, it is useless to consider contexts where ψ is not labelled in.

• Third optimization: Some contexts can lead to the same labellings. For instance, let us
consider an inward attack y, the context putting y to out, or the context putting s(y) to
outgive exactly the same labellings for t(y). This can be used in order to decrease the
number of contexts to consider (see [19] for more details).

9Obviously, each context of a partial RAF will induce a specific set of labellings of this partial RAF.
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Example 8. Applying the previous optimizations on the running example leads to 3 (resp. 3, 6)
complete labellings for ˜︂raf 1 (resp. ˜︂raf 2.1, ˜︂raf 2.2) with 1 (resp. 1, 3) context. For instance, among
the 3 (resp. 6) labellings for ˜︂raf 2.1 (resp. ˜︂raf 2.2), we have L2.1.1 = {(i,out),(h,out), (m,in),
(ι ,in), (κ,in), (λ ,in), (ρ,in), (ψ,in)} (resp. L2.2.1 = {(k,in), (l,out), (ξ ,out), (o,in),
(π,in)}).

4.4. Reunifying the Results

The labelling reunifying process is made in two steps: first, the reunification of the component
labellings (i.e. the reunification of their cluster labellings together) and second, the reunification
of the whole RAF labellings (i.e. the reunification of its component labellings together).

For the component labelling reunification, a CSP (Constraint Satisfaction Problem) is created.
The aim is to identify the compatibility between the labellings of the elements that are in the
“interface” of clusters in the same component (see our technical report [19] for details).

Example 9. The reunification of the 3 labellings of ˜︂raf 2.1 with the 6 labellings of ˜︂raf 2.2 produces
6 labellings for the component ˜︂raf 2. And L2.1 = {(i,out),(h,out), (m,in), (k,in), (l,out),
(ι ,in), (κ,in), (λ ,in), (ρ,in), (ψ,in), (ξ ,out), (o,in), (π,in)} is one of them (built from
the labellings given in Example 8: L2.1.1 for ˜︂raf 2.1 and L2.2.1 for ˜︂raf 2.2).

A special step has to be carried out for the preferred semantics as this reunifying process does
not ensure the maximality (w.r.t. ⊑) of the set of in-labelled elements. Indeed, the preferred
semantics is not bottom-up decomposable (see [16]). A maximality check must be done in order
to keep only the wanted labellings. Moreover, when computing the stable semantics, the set of
labellings Lσ returned by the algorithm may be empty. It happens when one of the component
clusters has no stable labelling.

Now that all the component labellings are built, we can reunify the labellings of the whole
RAF. Indeed, given that the trivial part is a fixed part of all σ -labellings of RAF and that each
connected component has a unique context (these contexts being compatible with each other), the
σ -labellings of the whole RAF are built by performing a simple cartesian product between the
labellings of all the components and the trivial part labelling. If one of the components has no
labelling then the whole RAF has no labelling (so Lσ =∅).

Example 10. The complete semantics produces 18 labellings for the running example, with for
instance the following labelling:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(e,in),( f ,in),(g,out),(ε,out),(ζ ,in),(η ,in),(θ ,in),

(a,in),(b,out),(c,in),(d,out),(α,in),(β ,in),(γ,in),(δ ,in),

(i,out),(h,out),(m,in),(k,in),(l,out),

(ι ,in),(κ,in),(λ ,in),(ρ,in),(ψ,in),(ξ ,out),(o,in),(π,in)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(in this labelling, the first line corresponds to the grounded labelling for the trivial part, the
second one is for ˜︂raf 1 and the two last lines are the labelling L2.1 given in Example 9 for ˜︂raf 2)
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5. RAFDivider: Algorithms and Properties

Algorithms 1 and 2 give the formal definition of the RAFDivider algorithm. Similarly to AFDi-
vider, they are said to be generic algorithms in the sense that any clustering method can be used
to split the framework and any sound and complete procedure that computes the semantics σ ,
can be used to compute the labellings of the different clusters.
Algorithm 1: RAFDivider algorithm.

Input: Let RAF = ⟨A,K,s, t⟩ be a RAF and σ be a semantics
Result: Lσ ∈ 2L (RAF ): the set of the σ -labellings of RAF

1 Utriv,Lgr← ComputeRAFTrivialPart(RAF )

2 ˜︁RAF hard ,I← RemoveRAFTrivialPart(RAF ,Utriv)

3 CCSet← SplitPartialRAFConnectedComponents(˜︁RAF hard)

4 for all ˜︂raf i ∈CCSet do in parallel
5 PartRAFSet← ComputePartRAFs(˜︂raf i) // clustering
6 Lσ (˜︂raf i)← ComputeRAFCompLabs(σ ,PartRAFSet,I,Lgr)

7 Lσ ←{Lgr ↓Utriv}×∏˜︂raf i∈CCSet Lσ (˜︂raf i)

8 return Lσ

Algorithm 2: ComputeRAFCompLabs algorithm.
Input: Let σ be a semantics, PartRAFSet be a set of clusters (partial RAFs) for a

component ˜︂raf i, I be the input of the partial hard RAF and Lgr be the grounded
labelling of the initial RAF

Result: Lσ ∈ 2L (˜︂raf i): the set of the σ -labellings of ˜︂raf i

1 for all ˜︂raf i. j ∈ PartRAFSet do in parallel

2 L
˜︂raf i. j

σ ← ComputePartRAFLabs(σ ,˜︂raf i. j,I,Lgr) // external solver call

3 Lσ ← ReunifyComp({L
˜︂raf i. j

σ |˜︂raf i. j ∈ PartRAFSet}) // using a CSP solver
4 if σ = pr then Lσ ←{L|L ∈Lσ s.t. ∄L′ ∈Lσ s.t. in(L)⊏ in(L′)}
5 return Lσ

Before giving the properties of these algorithms, let us focus on two key elements of Algo-
rithm 2:

• ComputePartRAFLabs: this function contains the call to an external solver able to compute
the labellings of a given RAF. Such a trivial solver could be defined in three steps: (1)
translation of any RAF into an AF using the flattening proposed in [18] then (2) computation
of the labellings of this AF using any solver defined for AF (as the ones used for the
ICCMA competition [21]) and finally (3) computation of the RAF labellings from these
AF labellings using the properties that give the links between these AF labellings and
the labellings of the initial RAF (see [18]). Another kind of solver could be built in two
steps: (1) direct translation of a RAF into a logical base then (2) computation of the RAF
semantics using the logical models of this base (see [22, 23]).
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• ReunifyComp: this function is in charge of aggregating the labellings obtained for each
cluster in order to obtain the labellings of the component containing these clusters (see
Section 4.4). This aggregation, called reunification, must respect the compatibility of the
resulting labellings; this is done in two steps: (1) creation of a CSP, then (2) resolution of
this CSP using any CSP solver. The precise definition of this CSP is given in [19].10

The RAFDivider algorithm gives all the expected labellings (so it is complete) and only good
labellings (it is sound) for the complete, stable and preferred semantics. The proof of the following
proposition is given in [19]. It is very similar to the proofs given for AFDivider in [18].

Proposition 2. Algorithms 2 and 1 are complete and sound for the stable, complete and preferred
semantics.

6. A Clustering Method

The main idea of the clustering presented in this section is to ensure that the Strongly Connected
Components (SCC)11 are not split into different clusters. The following method is inspired by
those proposed in [12, 18] for testing the AFDivider algorithms. Given a RAF, the so-called
“USCC-clustering” forms clusters as follows (each cluster being an USCCra f , see Definition 8).
First, the set of SCC is computed. Then neighbour SCC singletons are joined together in order to
form a cluster using the following definition of neighbourhood:

Definition 15. Let RAF = ⟨A,K,s, t⟩. Let x and y be two elements of RAF . x and y are considered
as neighbour iff: either [x ∈ K and (y = s(x) or y = t(x))] or [x ∈ A and y ∈ K and (s(y) = x or
t(y) = x)].

In the third step, each SCC that is not a singleton is joined with its neighbour SCC singletons
(those that are neighbours with at least an element in the non-singleton SCC) producing a cluster.
This merging must respect the following constraint (the idea is to put the attacks and their source
in the same cluster in order to have all the necessary elements for identifying the status of the
target):

Definition 16. Let USCCra f be a cluster. Let x be a singleton SCC that is a neighbour of USCCra f .
x will be joined with USCCra f if either x ∈ K and s(x) ∈USCCra f or x ∈ A and ∃y ∈USCCra f

s.t. s(y) = x.

The last step is to join clusters together so that there are not too many clusters of little size.
This is done in an iterative way. The smallest group is merged to its smallest neighbour group,
and that continues until there is no group of less than a certain number of arguments. Some
experiments would be necessary in order to identify this threshold wrt the RAF that we take into
account.

Using this method, we can retrieve the clustering proposed in Section 4.2 for the component˜︂raf 2 (two clusters: {λ , i, ι ,m,ρ,h,κ,ψ} and {k,π, l,o,ξ}, see Figure 5).

10Note that this CSP contains two types of variables: one variable for each cluster and one variable for each input of
these clusters. The domains of these variables correspond to their possible labellings. The constraints express the
links between the labellings of the clusters and the labellings of their inputs.

11See in [18] the details about the definition of the SCCs for a RAF.
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7. Conclusion and Future Works

This paper presents RAFDivider, one of the first algorithms for the enumeration of acceptable sets
in a Recursive Argumentation Framework (RAF), an argumentation framework enriched with
higher-order attacks. This algorithm, proven sound and complete, is based on a cutting of the
framework which allows a distributed and parallel computation, technique successfully used for
the enumeration of acceptable sets in an AF by AFDivider. An example of a clustering method,
USCC-clustering, which can be used with this algorithm, is provided. An implementation of
RAFDivider is to come with an experimental evaluation of such algorithms.

The extension of the algorithmic approach to other kinds of enriched argumentation frameworks
may be investigated: argumentation frameworks which consider support interactions in addition
to attacks, notably (see [24] for an overview of such enrichments).

To go further, such algorithms for argumentation frameworks with higher-order attacks may
encourage the extension to RAFs of the reasoning tasks proposed for AFs at the International
Competition on Computational Models of Argumentation (ICCMA) [21]. It would be the
opportunity to define some benchmarks adapted to the higher-order frameworks that could be
taken into account in the experimental evaluation previously mentioned.
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