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Abstract12

Decision theory and game theory are both interdisciplinary domains that focus on modelling13

and analyzing decision-making processes. On the one hand, decision theory aims to account14

for the possible behaviors of an agent with respect to an uncertain situation. It thus provides15

several frameworks to describe the decision-making processes in this context, including that of16

belief functions. On the other hand, game theory focuses on multi-agent decisions, typically with17

probabilistic uncertainty (if any), hence the so-called class of Bayesian games. In this paper, we18

use the Coq/SSReflect proof assistant to formally prove the results we obtained in [29]. First, we19

formalize a general theory of belief functions with finite support, and structures and solutions20

concepts from game theory. On top of that, we extend Bayesian games to the theory of belief21

functions, so that we obtain a more expressive class of games we refer to as Bel games; it makes it22

possible to better capture human behaviors with respect to lack of information. Next, we provide23

three different proofs of an extended version of the so-called Howson–Rosenthal’s theorem, showing24

that Bel games can be turned into games of complete information, i.e., without any uncertainty.25

Doing so, we embed this class of games into classical game theory and thus enable the use of existing26

algorithms.27
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2 Bel-Games: A Formal Theory of Games of Incomplete Information

1 Introduction38

From a mathematical perspective, measure theory is a fundamental domain to learn and use,39

notably given its direct application to integration and probability theory. Several works thus40

focused on formalizing measure theory in type theory, e.g., relying on reference textbooks [14].41

Next, probability play a key role in the context of game theory, gathering several multi-agent42

frameworks that can model situations in many application areas such as economics, politics,43

logics, artificial intelligence, biology, and so on. In particular, the framework of Bayesian44

games (a class of games of incomplete information), has been well-studied by the decision45

theory community [13, 25]. However, using probability and additive measures appears to be46

unsatisfactory to model subtle decision-making situations with uncertainty.47

In this work, we aim to show that the belief function theory also is amenable to formal48

proof, and makes it possible to formally verify the correctness of three state-of-the-art49

algorithms. In [11, 29], we introduced the notion of Bel games, which faithfully models50

games of incomplete information where the uncertainty is expressed within the Dempster-51

Shafer theory of belief functions. This framework naturally encompass Bayesian games, as52

belief functions generalize probability measures. Also, we generalized the Howson-Rosenthal53

theorem to the framework of Bel games and proposed three transforms which make it54

possible to cast any Bel game into an equivalent game of complete information (without any55

uncertainty). Furthermore, these transforms preserve the space complexity of the original56

Bel game (they produce a game with a succinct representation, corresponding to the class of57

so-called hypergraphical games).58

Contributions. In the present paper, we consolidate the mathematical results previously59

published in [29], presenting a formal verification of our algorithms using the Coq proof60

assistant [6]. First, we formalize a general theory of belief functions. Then, we formalize61

structures and solution concepts for “standard” games, Bayesian games, and Bel games, and62

we formally prove the correctness of the three transform algorithms, in order to provide63

strong confidence on these results. The software artifact obtained was released under the64

MIT license and is available within the official Coq projects OPAM archive. Our formalization65

effort also resulted in more background lemmas, integrated in the MathComp library. To66

the best of our knowledge, it is the first time the theory of belief functions is mechanized in67

a formal proof assistant, and applied to the domain of (formal) game theory of incomplete68

information.69

Related works. Several formalization efforts have been carried out in game theory since70

2006, each focusing on a somewhat different fragment: Vestergaard [34] then Le Roux [30],71

formalizing Kuhn’s existence of a Nash equilibrium in finite games in extensive form, using72

Coq; Lescanne et al. [21], studying rationality of infinite games in extensive form, using Coq;73

Martin-Dorel et al. [23], studying the probability of existence of winning strategies in Boolean74

finite games, using Coq; Bagnall et al. [4], formalizing well-known results of algorithmic75

game theory, using Coq; Dittmann [8], proving the positional determinacy of parity games,76

using Isabelle/HOL; Le Roux et al. [19], proving that a determinacy assumption implies77

the existence of Nash equilibrium in 2-player games, using Coq and Isabelle/HOL; this78

result being combined with that of Dittmann, using Isabelle/HOL [20]. Game theory aside,79

numerous works have been carried out in proof assistants to formalize probability and/or80

measure theory. Regarding the Coq proof assistant, we can mention the recent works by81

Affeldt et al. (on information theory based on discrete probability theory [2]; and measure82

theory based on MathComp [1]) and Boldo et al. [5], focusing on Lebesgue’s integral theory.83

Paper outline. We start by introducing a motivating example, for which the Bayesian84
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approach fails but the Dempster-Shafer approach succeeds. Then, we incrementally present85

the Coq formalization of Bel games, giving successively the main mathematical definitions86

and lemmas and their formal Coq counterpart, throughout the paper: Section 3 presents the87

Dempster-Shafer theory of belief functions; then Section 4 focuses on complete-information88

games (including hypergraphical games) while Section 5 deals with Bel games; then Section 689

is devoted to our formalization of Howson-Rosenthal’s generalized theorem in the scope of90

n-player Bel games. Finally, Section 7 gives concluding remarks and perspectives.91

2 Motivating Example: the Murder of Mr. Jones92

▶ Example 1 (Inspired by the Murder of Mr. Jones, [33]). Two players, named Player 1 and93

Player 2, are independently looking for an association, with either Peter (P ), Quentin (Q),94

or Rose (R). The point is that a crime has been committed, for which these three people95

only are suspected. Furthermore, a poor-quality surveillance video allows to estimate that96

there is a 50% chance that the culprit is a man (P or Q), and a 50% chance that it is a97

woman (R). As to the interest of the associations, making the deal with an innocent people98

leads to a payoff of $6k, to be shared between the people making the deal (that is, $2k or99

$3k depending on if the players choose the same partner or not); associating with the culprit100

produces no payoff ($0k). Moreover, Player 1 is investigating about P and will know whether101

he is guilty before making the decision. Similarly, Player 2 will know whether R is guilty.102

The Bayesian approach (claiming any knowledge shall be described by a single subjective103

probability) is not well-suited here. Assume Player 1 learns that P is innocent. It should104

not impact the evidence of 50% chance per sex, so the probability of guilt should become105

1/2 for Q and 1/2 for R. However, in a purely Bayesian view, a prior probability must be106

made explicit (e.g. by equiprobability assumption: 1/4 for P , 1/4 for Q and 1/2 for R), so107

after conditioning the posterior probability would not give 50% chance per sex anymore:108

equiprobability and conditioning “given ¬P” yields 1/3 for Q and 2/3 for R: learning that109

P is innocent would increase the odds against R! In the sequel, we will reuse this example110

to highlight how the framework of belief functions better captures uncertain knowledge.111

3 Formalization of Belief Functions for Mono-Agent Decision Making112

Modelling mono-agent decision making under uncertainty involves three main tasks. First,113

knowledge has to be expressed in a well-suited representation, encoding what is known114

without making extra assumptions. Then, if the agent may learn or observe some event115

before the decision, one shall identify the relevant conditioning rule. Finally, the agent’s116

preferences must be captured by a compatible decision rule. In this work, we focus on117

real-valued utility-based decision rules, which evaluate uncertain outcomes so that the agent118

prefers outcomes with a bigger score. For example, modelling well-known variable phenomena119

can perfectly be captured in a probabilistic setting: a probability represents the variability;120

conditional probability updates knowledge; and preferences over uncertain outcomes may be121

captured by expected utility. Still, this approach may be unsuccessful to model other kinds122

of uncertainty.123

In the sequel, we rely on belief function theory, which generalizes probability theory124

and enables capturing both variability and ignorance. In this section, we focus on a single125

decision maker, while the material from Section 4 will deal with multi-agent decision making.126
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3.1 Belief functions127

The theory of belief functions is a powerful toolset from decision theory and statistics. It128

encompasses two distinct approaches for reasoning under uncertainty: the Dempster-Shafer129

theory of evidence (DS) [7, 31] and the upper-lower probability theory (ULP) [7, 35]. Both130

approaches consider a finite set of possible “states of the world” Ω = {ω1, . . . , ωn}, one of131

which being the actual state of the world ω∗, and three functions m, Bel and Pl : 2Ω → [0, 1]132

which all map subsets of Ω to real numbers. Those functions are deducible one from another.133

In the DS theory, the mass function m is the basic knowledge about the world (m(A) is134

the part of belief supporting the evidence ω∗ ∈ A: it asserts that A holds but cannot be135

refined into smaller claims). The non-additive continuous measures Bel and Pl indicate how136

much a proposition is implied by (resp. is compatible with) the knowledge. By contrast, the137

ULP theory suppose that there is an unknown probability Pr∗ which is bounded by Bel and138

Pl: ∀A, Bel(A) ≤ Pr∗(A) ≤ Pl(A); then m is just a concise representation of the family of139

compatible probabilities.140

Example 1 can be understood in both theories. In the DS theory, m({P, Q}) = m({R}) =141

1/2 directly encodes the given evidences. In the ULP theory, one rather considers the family142

of probabilities which satisfy Pr({P, Q}) = Pr({R}) = 1/2 (see Table 1).143

A ⊆ Ω ∅ {P } {Q} {R} {P, Q} {P, R} {Q, R} {P, Q, R}
m(A) 0 0 0 0.5 0.5 0 0 0
Bel(A) 0 0 0 0.5 0.5 0.5 0.5 1
Pl(A) 0 0.5 0.5 0.5 0.5 1 1 1
Prx(A) 0 x 0.5 − x 0.5 0.5 0.5 + x 1 − x 1

Table 1 Prior knowledge from Example 1 — in the DS theory, m directly describes the knowledge,
in the ULP theory, m describes a family of probability measures (Prx)x∈[0, 0.5].

In this work, we follow the DS approach and we base our formalization on the mass144

function m. To do so, we use the Coq proof assistant, relying on the MathComp library [22]145

that provides a comprehensive formalization of finite sets, functions with finite support146

(endowed with decidable equality) as well as big operators.1147

▶ Definition 1 (Frame of discernment). A frame of discernment is a finite set Ω, representing148

the possible states of the world. One of them is the actual state of the world ω∗.149

▶ Definition 2 (Events). A set A ⊆ Ω is an event which represents the proposition “ω∗ ∈ A”.150

All set functions we consider (m, Bel, Pl) map events to real numbers within [0, 1].151

The set Ω and the carrier of m, Bel and Pl are formalized in MathComp by asserting:152
153

Variable (W : finType) (R : realFieldType).154155

▶ Definition 3 (Basic probability assignment). A basic probability assignment (bpa), a.k.a.156

mass function, is a set-function m : 2Ω → [0, 1] such that157

m(∅) = 0 and
∑

A⊆Ω
m(A) = 1 and ∀A ⊆ Ω, m(A) ≥ 0. Formally: (1)158

159

1 MathComp notations: {set X} denotes finite sets over (X : finType), A:&:B = A ∩ B, A:|:B = A ∪ B,
~:A = Ac, set0 = ∅; {ffun X -> Y} denotes the type of finite support functions from (X : finType)
to (Y : Type); and for any (T : X -> Type), {ffun forall x : X, T x} denotes the type of finite
support functions with a dependently-typed codomain, mapping any (x : X) to an element of (T x).
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160
Definition bpa_axiom (m : {ffun {set W} -> R}) :=161

[&& m set0 == 0, \sum_A m A == 1 & [∀ A, m A >= 0]].162

Structure bpa := { bpa_val :> {ffun {set W} -> R} ; bpa_ax : bpa_axiom bpa_val }.163164

▶ Definition 4 (Belief function, plausibility measure). Given a bpa m over Ω, the associated165

belief function Bel : 2Ω → [0, 1] and plausibility measure Pl : 2Ω → [0, 1] are defined by:166

Bel(A) =
∑

B⊆A
m(B) and Pl(A) =

∑
B∩A̸=∅

m(B). Formally:167

168
Definition Bel (m : bpa) : {set W} -> R := fun A => \sum_(B | B \subset A) m B.169

Definition Pl (m : bpa) : {set W} -> R := fun A => \sum_(B | B :&: A != set0) m B.170171

▶ Proposition 1 (Duality). For any A ⊆ Ω, Pl(A) = 1 − Bel(Ac) and Bel(A) = 1 − Pl(AC).172

▶ Proposition 2 (Super- and sub-additivity). Bel is super-additive while Pl is sub-additive:173

for disjoint sets A, B ⊆ Ω, Bel(A ∪ B) ≥ Bel(A) + Bel(B) and Pl(A ∪ B) ≤ Pl(A) + Pl(B).174

▶ Proposition 3 (Bounds). 0 = Bel(∅) = Pl(∅) ≤ Bel(A) ≤ Pl(A) ≤ Bel(Ω) = Pl(Ω) = 1, for175

any A ⊆ Ω. These propositions have been formally proved, with the following statements:176

177
Lemma BelE (m : bpa) (A : {set W}) : Bel m A = 1 - Pl m (~:A).178

Lemma Bel_super m A B : [disjoint A & B] -> Bel m (A :|: B) >= Bel m A + Bel m B.179

Lemma Bel0 (m : bpa) : Bel m set0 = 0. (* and likewise for Pl *)180181

▶ Definition 5 (Focal elements, focal set). Given a bpa m over Ω, any subset A ⊆ Ω with a182

non-zero mass m(A) is called focal element, and the set of focal elements of m is called the183

focal set of m and denoted by Sm. Formally:184

185
Definition focal_element (m : bpa) : pred {set W} := fun A => m A > 0.186

Definition focalset (m : bpa) : {set {set W}} := [set A | focal_element m A].187188

▶ Proposition 4 (Focal elements, focal set). Given a bpa m over Ω, Definition 4 can189

straightforwardly be rephrased by rewriting the sums over the focal set:190

Bel(A) =
∑

B∈Sm
B⊆A

m(B) and Pl(A) =
∑

B∈Sm

B∩A ̸=∅
m(B). Formally:191

192

193194
Lemma Bel_focalsetE m A : Bel m A = \sum_(B in focalset m | B \subset A) m B.195

Lemma Pl_focalsetE m A : Pl m A = \sum_(B in focalset m | B :&: A != set0) m B.196197

Next, we recall a standard “complexity definition” about belief functions, that will prove198

useful to characterize probability measures:199

▶ Definition 6 (k-additivity). Given a bpa m over Ω and k ∈ N∗, we say that the bpa m is200

k-additive iff the cardinality of its focal elements is at most k. Formally:201

202
Definition k_additivity m := \max_(B in focalset m) #|B|.203204

▶ Proposition 5 (Probability measure). Given a bpa m over Ω, if m is 1-additive, i.e. if all205

focal elements are singletons, then Bel = Pl is a discrete probability measure, associated with206

the distribution x ∈ Ω 7→ m({ω}). Formally:207

208
Structure proba := { proba_val :> bpa ; proba_ax : k_additivity proba_val == 1 }.209

Lemma PrE (m : proba) (A : {set W}) : Bel m A = Pl m A.210

Definition dist (m : proba) := fun w => m [set w]. (*[set w] corresponds to {w} *)211

Lemma Pr_distE (m : proba) A : Bel m A = \sum_(w in A) dist m w.212213
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3.2 Conditioning in the Belief Function Theory214

Conditioning is the operation that captures knowledge revision (fact learning) as well as215

focusing (hypothesis) [10, 9, 12]. By turning a prior bpa into a posterior “given an event216

C”, one updates the knowledge so it now asserts that C is certain. Several conditioning217

rules for belief functions have been proposed, depending on the DS or ULP interpretation218

(cf. Section 3.1) and on the kind of update it involves. Starting from the same prior bpa,219

they yield distinct posteriors—they indeed capture distinct operations.220

Before dealing with conditional events (· | C)—read “given C”—a precondition happens221

to be necessary: on the technical side, it avoids division-by-zero, and on the semantics222

side, it means one cannot learn that an impossible event holds. Since the definition of223

this precondition is specific to each conditioning rule, we abstract it away in the form of a224

revisable predicate, which indicates whether an event can be assumed.225

▶ Definition 7 (Conditioning). Given a bpa m , a predicate revisablem : Ω → {1, 0} and an226

event C ⊆ Ω such that revisablem(C) holds, a conditioning turns m into the bpa m(· |cond C)227

such that Bel(Cc |cond C) = 0. Formally:228

229
Definition conditioning_axiom (revisable : bpa -> pred {set W})230

(cond : ∀ m C, revisable m C -> bpa) :=231

∀ m C (Hrev : revisable m C), Bel (cond m C Hrev) (~:C) = 0.232233

In other words, assuming the event C is revisable implies that if one learns that C holds,234

then one also learns that no evidence for the complement can hold. Next, we formalize235

a conditioning structure that encapsulates the revisable predicate, the conditioning236

algorithm itself—which turns a revisable prior in its posterior “given C”—and a proof of237

the conditioning_axiom:238

239
Structure conditioning := { revisable : bpa -> pred {set W} ;240

cond_val :> ∀ m C, revisable m C -> bpa ;241

cond_ax : conditioning_axiom cond_val }.242243

The most common conditioning is the so-called Dempster’s conditioning [7], which captures244

knowledge revision (i.e., fact learning). In the DS framework, it is understood as a transfer245

of parts of beliefs: learning that C holds, m(B) is transferred to B ∩ C if it is not empty, or246

discarded otherwise (then the posterior has to be renormalized due to Equation (1)). That is,247

the evidence now concerns B ∩ C, the only possible states of the world “given that C holds”.248

In the ULP framework, it is understood as a max-likelihood conditioning: the posterior249

probability family delimited by Bel(· | C) and Pl(· | C) is the conditioning of those prior250

probabilities which assign the maximal probability to event C, that we now know for sure.251

▶ Definition 8 (Dempster’s conditioning). For any bpa m and any event C such that Pl(C) ̸= 0,252

Dempster’s conditioning defines the bpa: m(A |D C) =
∑

B∩C=A ̸=∅ m(B)/ Pl(C).253

254
Definition Dempster_revisable m C := Pl m C != 0.255

Definition Dempster_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>256

if A == set0 then 0257

else \sum_(B : {set W} | (B \in focalset m) && (B :&: C == A)) m B / Pl m C].258

Program Definition Dempster_cond m C (Hrev : Dempster_revisable m C) : bpa :=259

{| bpa_val := Dempster_fun m C ; bpa_ax := _ |}.260

Program Definition Dempster_conditioning : conditioning :=261

{| cond_val := Dempster_cond ; cond_ax := _ |}.262263

▶ Example 2 (Knowledge revision, follow-up of Example 1/Table 1). Dempster’s conditioning is264

the conditioning approach fitting our example (see [9] for details). Suppose e.g. the murderer265
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is Q; Player 1 learns ω∗ /∈ {P}, i.e., ω∗ ∈ {Q, R}. From this viewpoint, the evidence266

concerning men now only concerns Q: the knowledge becomes m({Q}) = m({R}) = 0.5267

(Fig. 1, center). Player 2 learns ω∗ /∈ {R}, i.e., ω∗ ∈ {P, Q}. From this viewpoint, the268

evidence about women is discarded: the knowledge becomes m({P, Q}) = 1 (Fig. 1, right).

R

Q

P

m = 0.5

m = 0.5

R

Q

P

m = 0.5

m = 0.5

R

Q

Pm = 1

Figure 1 Prior (left) and posteriors given {Q, R} (center) and given {P, Q} (right). White and
gray areas denote possible and impossible events – circles denote focal elements.269

▶ Proposition 6 (Dempster’s conditioning, Pl). For any bpa m and any event C such that270

Pl(C) ̸= 0, we have Pl(A |D C) = Pl(A ∩ C)/ Pl(C). Formally:271

272
Lemma Demspter_condE m C (Hrev : revisable m C) :273

∀ A, Pl (Dempster_conditioning m C Hrev) A = Pl m (A :&: C) / Pl m C.274275

Two other rules have been proposed and called strong (resp. weak) conditioning [28]; the276

former, also known as geometrical conditioning [32], is another rule capturing knowledge277

revision; the latter is seldom used since it yields non-intuitive results (e.g., it may happen278

that Bel(C | C) < 1). We also formalize these two rules below.279

▶ Definition 9 (Strong conditioning). For any bpa m and any event C such that Bel(C) ̸= 0,280

the weak conditioning is defined by the bpa m(A |S C) = m(A)/ Bel(C) if A ⊆ C, 0 otherwise.281

282
Definition Strong_revisable m C := Bel m C != 0.283

Definition Strong_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>284

if (A != set0) && (A \subset C) then m A / Bel m C else 0].285

Program Definition Strong_cond m C (Hrev : Strong_revisable m C) : bpa :=286

{| bpa_val := Strong_fun m C ; bpa_ax := _ |}.287

Program Definition Strong_conditioning : conditioning :=288

{| cond_val := Strong_cond ; cond_ax := _ |}.289290

▶ Proposition 7 (Strong conditioning, Bel). For any bpa m and any event C such that291

Bel(C) ̸= 0, we have Bel(A |S C) = Bel(A ∩ C)/ Bel(C). Formally:292

293
Lemma Strong_condE m C (Hrev : revisable m C) :294

∀ A, Bel (Strong_conditioning m C Hrev) A = Bel m (A :&: C) / Bel m C.295296

▶ Definition 10 (Weak conditioning). For any bpa m and any event C such that Pl(C) ̸= 0,297

the weak conditioning is defined by the bpa: m(A |W C) = m(A)/P l(B) if A ∩ B ̸= ∅,298

0 otherwise. Formally:299

300
Definition Weak_revisable m C := Pl m C != 0.301

Definition Weak_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>302

if A :&: C != set0 then m A / Pl m C else 0].303

Program Definition Weak_cond m C (Hrev : Weak_revisable m C) : bpa :=304

{| bpa_val := Weak_fun m C ; bpa_ax := _ |}.305

Program Definition Weak_conditioning : conditioning :=306

{| cond_val := Weak_cond ; cond_ax := _ |}.307308

▶ Proposition 8 (Weak conditioning, Bel). For any bpa m and any event C such that309

Pl(C) ̸= 0, we have Bel(A |W C) = (Bel(A) − Bel(A \ C))/ Pl(C). Formally:310

311
Lemma Weak_condE m C (Hrev : revisable m C) :312

∀ A, Bel (Weak_conditioning m C Hrev) A = (Bel m A - Bel m (A :\: C)) / Pl m C.313314
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3.3 Decision Making with Belief Functions315

Consider a single agent decision involving several actions; let A denote the set of all these316

actions. Also, assume that the outcome of choosing any a ∈ A is not certain: it may lead317

to several oucomes depending on the actual state of the world ω∗. The agent’s preferences318

on outcomes (which are left implicit here) are expressed by a real-valued utility function319

u : A×Ω → R: u(a, ω) > u(a′, ω′) would mean the agent prefers the outcome of a when320

ω∗ = ω to the outcome of a′ when ω∗ = ω′. For any action a, let ua : Ω → R denote the321

partial application of u: ua provides the utility of a depending on the state of the world ω.322

Preferences under uncertainty are then defined on ua’s: a relation ua ≻ ua′ would encode323

the fact the agent prefers a to a′. In a probabilistic setting, it is meaningful to consider324

ua’s expectation w.r.t. the probability (hence the name expected utility). Using bpa’s,325

several approaches were defined, each modelling various preferences when facing ignorance.326

In [29], we analyzed three standard functions that generalize expected utility. They provide327

real values, and thus lead to completely ordered preferences over actions (since every two328

actions are directly comparable from their score). We denoted them CEU, JEU, and TBEU,329

respectively, for Choquet–, Jaffray–, and Transferable Belief–Expected Utility. We have330

shown they are all expressible as the integration of a particular φXEU
ua

function (resp. φCEU
ua

,331

φJEU
ua

, and φTBEU
ua

) over the powerset 2Ω. Those φXEU
ua

functinos are themselves parametrized332

by ua = ω 7→ u(a, ω), that is, by the utility function when a is chosen. As a result, these333

three scoring functions can be captured by instances of a single higher-order function, which334

we named XEU.335

▶ Definition 11 (Generalized expected utility). For any bpa m, any utility function u :336

A × Ω → R, and any a ∈ A, let us pose ua = ω 7→ u(a, ω). Let φ : (Ω → R) →
(
2Ω → R

)
be337

a parameter function. We then consider the following generalized expected utility of a:338

XEU(m)(φ(ua)) =
∑

B∈Sm

m(B) × φ(ua)(B). Formally:339

340
341

Definition XEU (m : bpa) (phi_u_a : {ffun {set W} -> R}) : R :=342

\sum_(B in focalset m) m B * phi_u_a B.343344

Let us review these φXEU functions, their underlying intuition and formal definition in Coq.345

A very common scoring function for belief functions is the Choquet discrete integral346

(CEU). It models a somehow pessimistic agent. In the ULP interpretation, Bel and Pl347

delimit a family of probabilities; the CEU computes the minimal expected utility that the348

family allows. In the DS interpretation, each mass is an evidence supporting an event, for349

which the CEU only consider its worst-case utility if the considered choice is made.350

▶ Definition 12 (Choquet expected utility). For any bpa m, any utility function u : A×Ω → R351

and any action a ∈ A, the Choquet expected utility of ua : Ω → R is:352

CEU(m)(ua) =
∑

B∈Sm

m(B) × minω∈B ua(ω) = XEU(m)(φCEU(ua)),353

with φCEU(ua)(B) = minω∈B ua(ω).354

This expression is a weighted sum indexed by the set of focal elements, which is nonempty:355

using the min operator is legit. Formally, the functions φCEU and CEU are defined as follows:356

357
Definition fCEU (u_a : W -> R) : {set W} -> R :=358

fun B => match minS u_a B with Some r => r | None => 0 end.359

Definition CEU (m : bpa) (u_a : W -> R) := XEU m (fCEU u_a).360361

Another rule, axiomatized by Jaffray [16, 17], is a kind of Hurwicz criterion (i.e., a linear362

combination over the min. and max. utility reached for each focal element). The parameter363

coefficients make it possible to locally modulate the pessimism of the modelled agent.364
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▶ Definition 13 (Jaffray expected utility). For any bpa m, any utility function u : A × Ω → R365

and any action a ∈ A, the Jaffray expected utility of ua : Ω → R is parameterized by a family366

of coefficients α(x∗,x∗) ∈ [0, 1] for each possible utility values x∗ ≤ x∗. For any B ̸= ∅, let us367

pose B∗ = minω∈B ua(ω) and B∗ = maxω∈B ua(ω). The Jaffray expected utility of ua is:368

JEUα(m)(ua) =
∑

B∈Sm

m(B)×
(
α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗)

= XEU(m)(φJEUα

(ua)),369

with φJEUα(ua)(B) = α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗. Formally:370

371
Definition fJEU (α : R -> R -> R) (u_a : W -> R) : {set W} -> R :=372

fun B => match minS u_a B, maxS u_a B with373

| Some rmin, Some rmax => let alp := α rmin rmax in alp * rmin + (1-alp) * rmax374

| _, _ => 0 end.375

Definition JEU α (m : bpa) (u_a : W -> R) := XEU m (fJEU α u_a).376377

Last, in the Transferable Belief Model [33], the decision rule is made by recovering a378

“pignistic” probability distribution2 BetP (namely, a probability that serves only for the379

choice) at the very moment where the decision is made (so, the equiprobability assumption is380

made, but after conditionings, if any). The score of an action is then the expected utility w.r.t.381

BetP : ω 7→
∑

B∈Sm
ω∈B

m(B)/|B|, that we show to be equivalent to the following definition.382

▶ Definition 14 (Transferable Belief Model expected utility). For any bpa m, any utility383

function u : A × Ω → R and any action a ∈ A, the TBEU of ua : Ω → R is defined by:384

TBEU(m)(ua) =
∑

B∈Sm

m(B) ×
∑

ω∈B
ua(ω)

/
|B| = XEU(m)(φTBEU(ua))385

with φTBEU(ua)(B) =
∑

ω∈B ua(ω)
/

|B|. Formally:386

387
Definition fTBEU (u_a : W -> R) := fun B => \sum_(w in B) u_a w / #|B|%:R.388

Definition TBEU (m : bpa) (u_a : W -> R) := XEU m (fTBEU u_a).389390

▶ Proposition 9. CEU, JEU, and TBEU all generalize the expected utility criterion: if the bpa391

m is 1-additive (i.e., it is a discrete probability measure), all these instances of XEU yield392

the same value as that of the expected utility:393

394
Lemma CEU_EU (p : proba) u_a : CEU p u_a = \sum_w dist p w * u w.395

Lemma JEU_EU alpha (p : proba) u_a : JEU alpha p u_a = \sum_w dist p w * u w.396

Lemma TBEU_EU (p : proba) u_a : TBEU p u_a = \sum_w dist p w * u w.397398

In these formal proofs, the key ingredient is the fact that the criteria satisfy the natural399

property that ∀u, ∀ω ∈ Ω, φ(u)({ω}) = u(ω).400

4 Formalization of Several Classes of Games of Complete Information401

Game theory is a subdomain of multi-agent decision making [24, 25]. In this paper, we focus402

on simultaneous games, in which players make their choice (called action or pure strategy)403

without knowing others’ choices in advance; the outcome of an action depends on the choices404

of other agents. A typical problem amounts to identifying which actions are relevant from405

the viewpoint of a player, assuming others don’t cooperate but strive to increase their own406

utility. In this section, we consider situations where there is no uncertainty.407

2 The names “pignistic” and BetP are references to classical Bayesian justification in decision theory,
where both utilities and beliefs are elicited by considering limits of agent’s agreement to a panel of bets.
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4.1 Games of Complete Information408

▶ Definition 15 (Game of complete information). A CGame is a tuple G =
(
I, (Ai, ui)i∈I

)
409

where I is a finite set of players; for each Player i, Ai is the set of their actions; ui : A → R410

is an utility function, assigning an utility value to each “action profile”, i.e., a vector of411

actions, also called “pure strategy profile” a = (a1, . . . , an) ∈ A = A1 × · · · × An. Player i412

prefers the outcome of profile a to that of a′ iff ui(a) > ui(a′).413

We formalize such “profiles-for-CGames” (a ∈
∏

i∈I Ai) using MathComp’s dependently-typed414

finite support functions, hence:415
416

Definition cprofile (I : finType) (A : I -> eqType) := {ffun ∀ i : I, A i}.417

Definition cgame (I : finType) (A : I -> eqType) := cprofile A -> I -> R.418419

One of the most prominent solution concept in game theory is that of Nash equilibrium [26]:420

▶ Definition 16 (Nash equilibrium). A pure Nash equilibrium is a profile such that no player421

has any incentive to “deviate”. For any pure strategy profile a and any Player i, let a−i be the422

restriction of a to the actions of Players j ̸= i, a′
i an action of Player i, then a′

i.a−i denotes423

the profile a where the strategy of Player i has been switched to a′
i (called change_strategy424

a a’_i in Coq). A profile a is a pure Nash equilibrium iff ∀i, ∀a′
i, ui(a) ≮ ui(ai.a−i):425

426
Definition change_strategy (p : cprofile A) (i : I) (a'_i : A i) : cprofile A427

Definition Nash_equilibrium (G : cgame) (a : cprofile A) : bool :=428

[∀ i : I, [∀ a'_i : A i, ~~ (G a i < G (change_strategy a a'_i) i)]].429430

▶ Example 3. Consider Example 1 anew; suppose one knows P is the murderer. The431

situation is captured by the CGame G = (I, (Ai, ui)i∈I) where I = {1, 2} is the set of players,432

Ai = {Pi, Qi, Ri} the set of actions of Player i (choosing P , Q or R) and the ui’s of Table 2.
P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3)
Q1 (3, 0) (2, 2) (3, 3)

R1 (3, 0) (3, 3) (2, 2)
Table 2 Utility functions of Example 3 (it is known that P is the murderer). The pair

(u1(a1.a2), u2(a1.a2)) is read at the intersection of line a1 and column a2.

433
Here, both (Q1, R2) and (R1, Q2) are Nash equilibria.434

When there is some variability regarding action choices (e.g., for repeated games), it is435

meaningful to look for mixed strategies. A mixed strategy ρi of Player i is a probability over436

Ai, and a mixed strategy profile ρ = (ρ1, . . . , ρn) is a vector of mixed strategies:437
438

Definition mixed_cprofile := cprofile (fun i => [eqType of proba R (A i)]).439440

A mixed strategy profile ρ defines a probability over the set of pure strategy profiles, namely441

pρ(a) =
∏

i∈I ρi(ai). We package this data in a proba structure:442

443
Definition mk_prod_proba (p : ∀ i : X, proba R (A i)) : {ffun cprofile A -> R} :=444

[ffun a : cprofile A => \prod_i dist (p i) (a i)].445

Definition prod_proba (p : ∀ i : I, proba R (A i)) (i0 : I) : proba R (cprofile A).446447

Last, the utility of a mixed strategy profile is the expected utility w.r.t. the probability over448

pure strategy profiles, and the notion of Nash equilibrium extends straightforwardly:449
450

Definition ms_util (G : cgame R A) (mp : mixed_cprofile) (i : I) : R :=451

\sum_(p : cprofile A) (dist (prod_proba mp witnessI mp) p) * (G p i).452

Definition ms_Nash_equilibrium (G : cgame R A) (mp : mixed_cprofile) : Prop :=453

∀ i (si : proba R (A i)), ~ ms_util G mp i < ms_util G (change_strategy mp si) i.454455
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A standard reduction [18, Def. 4.6.1] amounts to viewing a mixed equilibrium of a game456

(N, (Ai, ui)i∈N ) as a pure equilibrium in the mixed extension (N, (Ai, ui)i∈N ), where Ai is457

the set of mixed strategies over Ai. Formally:458
459

Definition mixed_cgame (G:cgame R A) : cgame R (fun i => [eqType of proba R (A i)])460

:= fun mp i => ms_util G mp i.461

Lemma mixed_cgameE G mp i : ms_utility G mp i = (mixed_cgame G) mp i.462

Lemma ms_NashE (G : cgame R A) (mp : mixed_cprofile) :463

ms_Nash_equilibrium G mp <-> Nash_equilibrium (mixed_cgame G) mp.464465

4.2 Hypergraphical Games466

Some games of complete information can be expressed succinctly as hypergraphical games467

[27, 36], where the utility is not defined globally but locally (namely, split in several “local468

games”). This yields an hypergraph, where vertices denotes players and hyperedges denote469

local games. Formally, a hypergraphical game is a tuple G =
(
I, E, (Ai)i∈I , (ue

i )e∈E,i∈e

)
,470

where I is the set of players, E ⊆ 2I is the set of local games (in any local game e =471

{a, b, c, . . . }, Players a, b, c . . . are playing), Ai is the set of actions of Player i and ue
i : Ae → R472

is the utility function of Player i in the local game e (Ae =
∏

i∈e Ai is the set of local profiles473

related to e’s players). A hypergraphical game with 2-player local games is called a polymatrix.474

In our formalization, local games are indexed by the finite type (localgame : finType);475

players playing a local game (lg : localgame) are those who verify the Boolean predicate476

(plays_in lg); plays_in thus formalizes E as a family of sets of players:477
478

Variables (localgame : finType) (plays_in : localgame -> pred I).479480

For any local game lg, local profiles are profiles that involve only players which plays_in lg:481
482

Definition localprof (lg : localgame) :=483

{ffun ∀ s : {i : I | plays_in lg i}, A (val s)}.484485

In hypergraphical games, every player chooses one action, and plays it in every local game486

they are involved in. The global utility of a player is the sum of the locally obtained487

utilities: ui(a) =
∑

e∈E
i∈e

ue
i (ae), where ae ∈ Ae is the restriction of a to indices of e. Thus, an488

hypergraphical game is a CGame that is specified by its local utility functions:489
490

Definition hg_game (u : ∀ lg, localprof lg -> {i : I & plays_in lg i} -> R) : cgame491

:= fun a i => \sum_(s : {lg : localgame | plays_in lg i})492

u (tag s) [ffun i => a (val i)] (exist _ i (tagged s)).493494

5 Bel Games495

Harsanyi has proposed [13] a model for decision-making situations where players may have496

some uncertainty about other players, their actions, their utility functions, or more generally497

about any parameter of the game. To model such situations, the partially known parameters498

are expressed by so-called types:3 each Player i has a set of possible types Θi. Each type499

θi ∈ Θi represents a possible parameter describing Player i’s characteristics and knowledge.500

Every Player i knows (or learns) their own type θi ∈ Θi at the time of choosing an action. It501

may or may not be correlated with other players’ types, so it is possible to model players502

that are not aware of other players’ type as well as players with some knowledge about them.503

3 Thus, type can refer to a type-theory concept or a game-theory one. Context will allow to disambiguate.



12 Bel-Games: A Formal Theory of Games of Incomplete Information

Harsanyi defined the model of games of incomplete information where players’ knowledge504

is given by a subjective probability and preferences agree with the expected utility: the505

so-called class of Bayesian games. In this setting, a probability measure expresses the506

knowledge on type configurations (the frame of discernment being the cartesian product of507

all players’ types, that is, Ω =
∏

i∈N Θi = Θ). Games of incomplete information already508

were extended to a possibilistic setting by Ben Amor et al. [3], and we extend it further to509

Belief functions (so generalizing both Bayesian games and possibilistic games) [11, 29].510

▶ Definition 10 (Bel game). A Bel game [29] is defined by a tuple G =
(
I, (Ai, Θi, ui)i∈I , m

)
:511

I is the finite set of players;512

Ai is the set of actions of Player i; Θi is the finite set of types of Player i;513

ui : A → Θ → R is the utility function of Player i; it depends on the joint action514

(a1, . . . , an) ∈ A :=
∏

i∈I Ai and on the type configuration (θ1, . . . , θn) ∈ Θ :=
∏

i∈I Θi;515

m : 2Θ → [0, 1] is a bpa which describes the prior knowledge.516

Formally speaking, a Bel game is fully defined by two elements: the bpa (prior knowledge)517

and the utility functions (the players’ preferences). This pair is parameterized by three types518

I, the players; A, the family of actions (Ai)i; and T, the family of types (Θi)i:519
520

Definition belgame (I : finType) (A : I -> eqType) (T : I -> finType) :=521

(bpa R (cprofile T) * (cprofile A -> cprofile T -> player -> R)).522523

▶ Example 4 (Bel game). We now are able to endow Example 1 with a Bel game G =524

(I, (Ai, Θi, ui)i∈I , m). The set of players is = {1, 2}, their action sets are Ai = {Pi, Qi, Ri}.525

Player 1 will learn either that P is the murderer (ω∗ ∈ {P}) or that he is not (ω∗ ∈ {Q, R}):526

Player 1’s type set is Θ1 = {P, P̄}. Similarly, Player 2 will learn either that R is the murderer527

(ω∗ ∈ {R}) or that she is not (ω∗ ∈ {P, Q}), so Θ2 = {R, R̄}. The knowledge is expressed over528

Θ = Θ1 × Θ2: since (P, R̄) ≡ P , (P̄, R̄) ≡ Q, (P̄, R) ≡ R and (P, R) is impossible, the knowledge529

is m
(
{(P, R̄), (P̄, R̄)}

)
= m

(
{(P̄, R)}

)
= 0.5. Finally, utility functions are given in Table 3.

P2 Q2 R2 P2 Q2 R2 P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3) P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)
Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 3) (0, 0) (2, 2) Q1 (3, 3) (2, 2) (3, 0)
R1 (3, 0) (3, 3) (2, 2) R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 3 Utility functions of Example 4 for θ = (P, R̄) (left, P is the murderer), θ = (P̄, R̄) (center,
Q is the murderer) and θ = (P̄, R) (right, R is the murderer). Configuration θ = (P, R) can’t occur.

530

Since players know their own type before choosing their action, a pure strategy of Player i531

becomes a function σi : Θi → Ai: having the type θi, Player i will play σi(θi) ∈ Ai. Next, a532

strategy profile σ = (σ1, . . . , σn) is a vector of such functions:533
534

Definition iprofile I A T := cprofile (fun i => [eqType of {ffun T i -> A i}]).535536

If the actual type configuration is θ = (θ1, . . . , θn), then for any strategy profile σ we denote537

by σθ =
(
σ1(θ1), . . . , σn(θn)

)
∈ A the action profile that will actually be played:538

539
Definition proj_iprofile I A T (p : iprofile A T) : cprofile A :=540

fun theta => [ffun i => p i (theta i)].541542

In the following, we denote by ui,σ : Θ → R the function mapping states of the world ω to543

the corresponding utility of σ for Player i. It is defined by ui,σ(θ) = ui(σθ, θ).544

In Bayesian games, the global utility of a strategy profile σ for Player i with type θi is the545

expected utility w.r.t. the conditioned probability distribution “given θi”. In Bel games, both546

expectation and conditioning have to be made explicit, to properly model agents’ preferences547

and knowledge updates. For example, studying a Bel game with Dempster’s conditioning and548
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CEU expectation implies that the utility of a given strategy profile σ for Agent i with type549

θi is
∑

B⊆Ω m(B |D θi) × minθ′∈B ui(σθ′
, θ′). Doing so, we need to ensure that conditioning550

is meaningful and technically possible, that is, the bpa is revisable given any type of any551

player. For the sake of readability, we now introduce two shorthands: Tn, representing the552

set Θ gathering all type configurations; and event_ti := θi 7→ {θ′∈ Θ | θ′
i = θi}:553

554
Notation Tn := [finType of {dffun ∀ i : I, T i}].555

Definition event_ti i (ti : T i) := [set t : Tn | t i == ti].556557

A proper Bel games, in which conditioning is safe, shall satisfy the predicate:558
559

Definition proper_belgame A T (G : belgame A T) (cond : conditioning R Tn) : bool560

:= [∀ i : player, [∀ ti : T i, revisable cond G.1 (event_ti ti)]].561562

▶ Definition 11 (Utility in a Bel game). For any Bel game G =
(
I, (Ai, Θi, ui)i∈I , m

)
, any563

conditioning cond for which G is proper and any XEU parameter φXEU : (Θ → R) → 2Θ → R,564

the utility of the pure strategy profile σ for Player i having type θi ∈ Θi, is the integration of565

ui,σ = θ 7→ ui(σθ, θ), i.e., XEU
(
m(· |cond θi)

)(
φXEU(ui,σ)

)
.566

567
Definition belgame_utility A T (G : belgame A T) (cond: conditioning R Tn)568

fXEU (HG : proper_belgame G cond) (p : iprofile A T) (i : player) (ti : T i) : R569

:= let kn := cond G.1 (event_ti ti) (is_revisable HG ti) in570

XEU kn (fXEU (fun t => G.2 (proj_iprofile p t) t i)).571572

Also, for Bel games, the definition of Nash equilibrium applies: an iprofile is a Nash573

equilibrium iff no player, whatever is this player’s type, has any incentive to deviate:574
575

Definition BelG_Nash_equilibrium A T (G : belgame A T) (cond : conditioning R Tn)576

fXEU (H : proper_belgame G cond) (p : iprofile A T) :=577

∀ i : I, ∀ ti : T i, ∀ ai : A i,578

~ (belgame_utility u H p ti < belgame_utility u H (change_istrategy p ti ai) ti).579580

▶ Example 5 (Utility of a strategy). Let σ = (σ1, σ2) be defined by σ1(P) = Q1, σ1(P̄) = P1,581

σ2(R) = Q2, σ1(R̄) = R2. σ is a pure strategy asserting that Player 1 will choose Q when582

learning that P is the murderer, and choose P otherwise, and that Player 2 will choose Q583

when learning that R is the murderer, and choose R otherwise.584

Considering Dempster’s conditioning, the Choquet expected utility of σ for Player 1 with585

type P̄ is the integration of φCEU(ui,σ) w.r.t. the posterior bpa m(· | P̄). Recall Example 2,586

the posterior bpa “given P̄” has two focal elements: {Q} and {R}, both with mass 1/2.587

Considering type configurations, those focal elements are {(P̄, R̄)} and {(P̄, R)}.588

XEU
(
m(· |D P̄)

)
(φCEU(u1,σ)

)
=

∑
B∈Sm(·|D P̄)

m(B |D P̄) × min
θ∈B

u1(σθ, θ)589

= 0.5 × u1((P1, Q2), (P̄, R)) + 0.5 × u1((P1, R2), (P̄, R̄)) = 3.590
591

592
One may check that for every player and type, σ’s CEU equals 3, the best possible score.593

Since no player, whatever is their type, has incentive to deviate, σ is a Nash equilibrium.594

6 Howson-Rosenthal-like transforms595

Howson–Rosenthal’s theorem asserts the correctness of a transform, which casts a 2-player596

Bayesian game into an equivalent polymatrix game (of complete information) [15]. Bayesian597

games thus benefit from both theoretical and algorithmic results of classical game theory.598

In the following, we formally define and prove correct three Howson-Rosenthal-like599

transforms that we have devised in previous work [11, 29]. All these transforms cast n-player600

Bel games into hypergraphical games; the games so obtained all have the same utility values,601
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though different hypergraphs. These transforms can be applied safely, depending on the602

conditioning and on the decision rule (cf. Table 4): Dempster’s conditioning is hard-coded603

into the Direct transform while the TBM transform’s low complexity comes from properties604

of the distribution BetP considered by the TBEU.605

Transform Conditioning XEU Space Time
Direct transform Dempster’s c. any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
Conditioned transform any any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
TBM transform any TBEU O

(
k × Size(G)

)
O

(
Size(G)

)
Table 4 Transforms, conditioning and XEU they are suited for, and their worst-case complexity

w.r.t. the k-additivity of the bpa and the size of the input Bel game (taken from [29]).
The three transforms all follow the same approach: starting from a Bel game G, they606

build the equivalent hypergraphical game G̃, with pairs (i, θi) as “abstract” players (i.e.,607

G̃’s vertices), denoting every type of every player of G. The local games correspond to608

focal elements, so Player (i, θi) plays in a local game lg iff the type θi is possible in the609

corresponding focal element. Doing so, we benefit from the hypergraphical game structure610

to compute an XEU (recall that global utility is the sum of local utilities and that the XEU611

value is the weighted sum of utilities w.r.t. focal elements). For all those transforms, let612

(G : belgame A T) be the input Bel game that has to be turned into a hypergraphical game613

named G̃. G̃’s players are pairs (i, θi), their action sets still are Ai:614
615

Definition HR_player : finType := [finType of {i : I & T i}].616

Definition HR_action (i_ti : HR_player) : eqType := A (projT1 i_ti).617618

Strategy profiles of G and of G̃ are in one-to-one correspondance. Every strategy profile619

σ : iprofile A T of G, that is, σ :
∏

i∈I(Θi → Ai), is flattened to σ̃ : cprofile (fun620

i_ti : {i : I & T i} => A (val i)) in G̃, that is, σ̃ :
∏

(i,θi)∈I×Θi
Ai. E.g. in a 2-player621

game with 2 types per player, σ = (σ1, σ2) is flattened to (σ1(θ1), σ1(θ′
1), σ2(θ2), σ2(θ′

2)).622

This “dependent uncurrying” is performed by the following function:623
624

Definition flatten I (T : I -> finType) A (sigma : iprofile A T) :=625

[ffun i_ti => sigma (projT1 i_ti) (projT2 i_ti)].626627

6.1 The Direct Transform628

The direct transform only holds for Dempster’s conditioning, which is made on-the-fly on629

prior focal elements. It is suitable for any XEU. Starting from a Bel game G, we construct a630

local game eB for each prior focal element B. Vertex (i, θi) plays in B iff θi is possible in B,631

that is, if ∃θ′ ∈ B, θi = θ′
i. Its local utility in eB is the “part of XEU” computed over B′,632

the subset of B on which the mass shall be transferred during Dempster’s conditioning.633

▶ Definition 17 (Direct transform of a Bel game). The direct transform of a Bel game G =634 (
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =

(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
:635

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B⊆Sm , eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,636

for each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let us pose ṽσ̃
i (θ) = ui(σ̃θ, θ) in:637

ũeB

(i,θi)(σ̃eB
) = m(B) ×

(
φXEU(ṽσ̃

i )(B ∩ {θ′ | θ′
i = θi})

)
/Pl({θ′ | θ′

i = θi}).638

Formally, let G be a proper Bel game w.r.t. Dempster’s conditioning and fXEU a φ function:639
640

Variable (proper_G : proper_belgame G (Dempster_conditioning R Tn))641

(fXEU : {ffun Tn -> R} -> {ffun {set Tn} -> R}).642643

Then, let G̃’s local games be indexed by focal elements, i.e., sets of type configurations:644
645

Definition HRdirect_localgame := [finType of {set Tn}].646647

A vertex (i, θi) plays in the local game eB iff θi is possible in B:648



P. Pomeret-Coquot, H. Fargier and É. Martin-Dorel 15

649
Definition HRdirect_plays_in (lg : HRdirect_localgame) (i_ti : HR_player) : bool650

:= [∃ t : Tn, [&& t \in lg & t (projT1 i_ti) == projT2 i_ti]].651652

Then, local utility functions are given by a function which constructs from a local profile p653

and a type configuration θ, the cprofile (p(1,θ1), . . . , p(n,θn)). This function has type:654
655

Definition HRdirect_mkprofile lg i_ti (Hi_ti : HRdirect_plays_in lg i_ti)656

(p : HRdirect_localprof lg) (t : Tn) : profile.657658

Local utility in a local game eB is the part of the XEU computed from the prior focal element659

B. Note that Dempster’s conditioning transfers masses from B to B ∩ {θ′∈ Θ | θ′
i = θi}660

= B∩(event_ti θi) so the local utility amounts to an on-the-fly Dempster’s conditioning.661

The resulting HG game is finally built from local utility functions:662
663

Definition HRdirect_u : ∀ lg, HRdirect_localprof lg -> HRdirect_localplayer lg -> R664

:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in665

G.1 lg * fXEU [ffun t => G.2 (HRdirect_mkprofile Hi_ti p t) t i]666

(lg :&: (event_ti ti)) / Pl G.1 (event_ti ti).667

Definition HRdirect : cgame R HR_action := hg_game HRdirect_u.668669

▶ Theorem 12 (Correctness of the direct transform). For any proper Bel game G, Player i670

with type θi, XEU function φXEU, and profile σ, we have XEU
(
m(· |D θi)

)(
φXEU(ui,σ)

)
=671

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:672

673
Theorem HRdirect_correct (i : I) (ti : T i) (p : iprofile A T) :674

belgame_utility fXEU properG p ti = HRdirect (flatten p) (existT _ i ti).675

Theorem HRdirect_eqNash (p : iprofile A T) :676

BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium HRdirect (flatten p).677678

6.2 The Conditioned Transform679

The conditioned transform holds for any conditioning and XEU. Starting from a Bel game680

G, all the conditioning “given θi” are pre-computed, let S∗ be the union of all posterior focal681

sets (i.e., the set of all possible focal elements given any θi). Each B ∈ S∗ leads to a local682

game. As in the direct transform, a vertex (i, θi) plays in eB if θi is possible in B. Its utility683

in eB is the part of XEU computed over the posterior focal element B. Note that (i, θi)’s684

local utility in B may be 0, if B is not focal in the posterior “given θi”. Formally speaking:685

▶ Definition 18 (Conditioned transform). The conditioned transform of a Bel game G =686 (
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =

(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
:687

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B∈S∗ , eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,688

for each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let us pose ṽσ̃
i (θ) = ui(σ̃θ, θ) in:689

ũeB

(i,θi)(σ̃eB
) = m(B | θi) × fXEU

ṽσ̃
i

(B).690

Formally, let fXEU be any φXEU, cond any conditioning, and G be proper w.r.t. cond:691
692

Variables (fXEU: (Tn -> R) -> {set Tn} -> R)693

(cond : conditioning R Tn) (proper_G : proper_belgame G cond).694695

After similar definitions for HRcond_localgame and HRcond_plays_in, we define:696
697

Definition HRcond_u : ∀ lg, HRcond_localprof lg -> HRcond_localplayer lg -> R698

:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in699

let kn := cond G.1 (event_ti ti) (is_revisable proper_G ti) in700

kn lg * fXEU [ffun t => G.2 (HRcond_mkprofile Hi_ti p t) t i] lg.701

Definition HRcond : cgame R HR_action := hg_game HRcond_u.702703
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▶ Theorem 13 (Correctness of the conditioned transform). For any proper Bel game G, Player i704

with type θi, conditioning c, XEU function φXEU, profile σ: XEU
(
m(· |c θi)

)(
φXEU(ui,σ)

)
=705

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:706

707
Theorem HRcond_correct (i : I) (ti : T i) (p : iprofile A T):708

belgame_utility fXEU proper_G p ti = HRcond (flatten p) (existT _ i ti).709

Theorem HRcond_eqNash (p : iprofile A T),710

BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium (HRcond) (flatten p).711712

6.3 The TBM Transform713

The TBM transform is designed for the Transferable Belief Model [33], in which knowledge714

is first revised using Dempster’s conditioning, then decision is eventually made w.r.t. a715

probability distribution BetP which is deduced from the bpa m (Definition 14). Here we716

benefit from BetP’s 1-additivity to produce a low-complexity hypergraph: local games717

correspond to single states of the world, that is, they all involve only n players.718

▶ Definition 19 (TBM transform). Let G =
(
I, (Ai, Θi, ui)i∈I , m

)
be a Bel game; it is TBM-719

transformed into the hypergraphical game G̃ =
(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
s.t.:720

Ĩ =
{

(i, θi) | i ∈ I, θi ∈ Θi

}
, Ẽ =

(
Players(θ)

)
θ∈Θ, Ã(i,θi) = Ai,721

ũeθ

(i,θi)(σ̃e) = BetP(i,θi)(θ) × ui(σθ, θ).722

Formally, let cond be a conditioning and G be a proper Bel game w.r.t. cond; G̃’s local723

games are indexed by type configurations, and (i, θi) plays in eθ′ iff θi = θ′
i:724

725
Variables (cond : conditioning R Tn) (proper_G : proper_belgame cond).726

Definition HRTBM_localgame : finType := Tn.727

Definition HRTBM_plays_in : HRTBM_localgame -> pred HR_player :=728

fun lg i_ti => lg (projT1 i_ti) == projT2 i_ti.729730

Local utilities are computed w.r.t. the “pignistic” distribution BetP:731
732

Definition HRTBM_u : ∀ lg, HRTBM_localprof lg -> HRTBM_localplayer lg -> R :=733

fun lg p x => let (i_ti, _) := x in let (i, ti) := i_ti in734

let betp := BetP (cond G.1 (event_ti ti) (is_revisable proper_G ti)) in735

dist betp lg * G.2 (HRTBM_mkprofile p) lg i.736

Definition HRTBM : cgame R HR_action := hg_game HRTBM_u.737738

▶ Theorem 14 (Correctness of the TBM transform). For any proper Bel game G, Player i with739

type θi, conditioning c, and profile σ, TBEU
(
m(· |c θi)

)(
φTBEU(ui,σ)

)
= ũ(i,θi)(flatten(σ)).740

Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:741
742

Theorem HRTBM_correct (i : I) (ti : T i) (p : iprofile A T) :743

belgame_utility fTBEU proper_G p ti = HRTBM (flatten p) (existT _ i ti).744

Theorem HRTBM_eqNash (p : iprofile A T),745

BelG_Nash_equilibrium fTBEU proper_G p <-> Nash_equilibrium HRTBM (flatten p).746747

7 Conclusion and Perspectives748

In this paper, a Coq/SSReflect formalization of Bel games has been presented. It provides a749

generic class of games of incomplete information, built upon the Dempster-Shafer theory of750

belief functions. This framework makes it possible to capture (lack of) knowledge better than751

usual game models based on probability. Following Howson’s and Rosenthal’s approach, three752

different algorithms transforming such incomplete games into standard complete-information753

games have been formalized, and the fact that these transforms preserve equilibria (as long754
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as we comply with Table 4) has been formally verified. Thus, Bel games can ultimately be755

solved using state-of-the-art, effective algorithms for complete games.756

This work provides strong guaranties on the correctness of the transforms, so that757

game theorists may rely on them without any concern about correctness. Furthermore, the758

formalization allowed us to identify subtleties that were left implicit in the definitions (e.g.,759

the conditioning precondition), as well as to help improving the proofs, both in their flow760

and in their prose. Last, generic lemmas that proved useful during our formalization effort761

have been proposed for integration in the MathComp library.762

This work opens several research directions, both on the theoretical side and on the763

formal verification side. On the one hand, we aim at extending this result with other764

decision-theoretic approaches, e.g., partially-ordered utility aggregations for belief function765

and other non-additive-measure approaches (Choquet capacities of order 2, RDU). On the766

other hand, we would like to focus on complexity proofs which, albeit not safety-critical,767

play a key role when choosing one transform over the other. Eventually, we would like to768

encompass this work into a larger library of decision under uncertainty, fostering further769

developments on related models and proofs.770
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