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Abstract11

Decision theory and game theory are both interdisciplinary domains that focus on modeling and12

studying decision-making processes. On the one hand, decision theory aims to account for the possible13

behaviors of an agent with respect to an uncertain situation. It thus provides several frameworks to14

describe the decision-making processes in this context, including that of belief functions. On the15

other hand, game theory focuses on multi-agent decisions, typically with probabilistic uncertainty16

(if any), hence the so-called class of Bayesian games. In this paper, we extend Bayesian games to17

the theory of belief functions. We obtain a more expressive class of games we refer to as Bel games;18

it make it possible to better capture human behaviors with respect to lack of information. Next, we19

prove an extended version of the so-called Howson–Rosenthal’s theorem, showing that Bel games can20

be turned into games of complete information, i.e., without any uncertainty. Doing so, we embed21

this class of games into classical game theory and thereby enable the use of existing algorithms.22

Using the Coq proof assistant, we formalize a theory of belief functions, and formally verify three23

different proofs of Howson–Rosenthal’s theorem.24
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1 Introduction36

The positioning of our work lies at the intersection of decision-making under uncertainty,37

game theory, and interactive theorem proving. While decision theory typically deals with38

single-agent decision making in an uncertain context, game theory gathers several frameworks39

that all involve several agents, and can model situations in many application areas such as40

economics, politics, logics, artificial intelligence, or biology. . . For example, Bayesian games41
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constitute one such framework in the scope of games of incomplete information (denoted42

“IGames” in the following), which has been well-studied by the community [14, 26].43

In [10, 30], we introduce the framework of Bel games (which encompasses that of Bayesian44

games) based on belief functions, and generalize Howson–Rosenthal’s 2-player theorem to45

this framework and to any number of players. More specifically, we provide three algorithmic46

transforms that turn a Bel-game into a game of complete information (denoted “CGame” in47

the following), along with a pen-and-paper proof of correctness for these three transforms.48

In this paper, we formally define Bel-games using the Coq proof assistant, and present a49

formally-verified implementation of these transforms. The objective of this formalization50

effort is twofold: provide strong guarantees on the correctness of the results as well as make51

explicit necessary conditions and improve the sequence of proof steps; and setup a generic,52

formal library that allows one to formally reason about IGames.To the best of our knowledge,53

it is the first attempt to model IGames in a formal setting. Moreover, we focus on theoretical54

foundations that go beyond the classical setting of Bayesian games, relying on Belief functions55

theory, while addressing Nash equilibria with mixed strategies.56

Related works Several formalization efforts have been carried out in game theory since 2006,57

each focusing on a somewhat different fragment: Vestergaard [38] then Le Roux [31],58

formalizing Kuhn’s existence of a Nash equilibrium in finite games in extensive form, using59

Coq; Lescanne et al. [22], studying rationality of infinite games in extensive form, using60

Coq; Martin-Dorel et al. [24], studying the probability of existence of winning strategies61

in Boolean finite games, using Coq; Bagnall et al. [2], formalizing well-known results of62

algorithmic game theory, using Coq; Dittmann [5], proving the positional determinacy63

of parity games, using Isabelle/HOL; Le Roux et al. [20], proving that a determinacy64

assumption implies the existence of Nash equilibrium in 2-player games, using Coq and65

Isabelle/HOL; this result being combined with that of Dittmann, using Isabelle/HOL [21].66

Paper outline We start in Section 2 by reviewing a typical example of reasoning under67

uncertainty, where the usual framework of Bayesian games fails. In Section 3, we recall68

background knowledge about belief functions and formalize it in the Coq proof assistant.69

In Section 4, we formalize some standard notions of game theory such as hypergraphical70

games. Then in Section 5, we formalize Bel-games (which generalize Bayesian games), as71

well as the notion of Nash equilibria for these classes of IGames. In Section 6, we formally72

prove a generalized Howson–Rosenthal’s theorem (for n-player Bel games in lieu of 2-player73

Bayesian games) for three different transforms that enjoy slightly different properties.74

Finally, we draw some conclusions and perspectives for future work in Section 7.75

2 Motivating Example: the Murder of Mr. Jones76

To illustrate and motivate our work, we use the following example inspired by the murder of77

Mr. Jones [37], where the suspects are Peter, Paul, and Mary.78

▶ Example 1 (Peter, Quentin, and Rose). Two agents, named Agent 1 and Agent 2, are79

independently looking for a business association, with either Peter (P ), Quentin (Q), or Rose80

(R). The point is that a crime has been committed, for which these three people only are81

suspected. Furthermore, a poor-quality surveillance video allow to estimate that there is a82

50% chance that the culprit is a man (P or Q), and a 50% chance that it is a woman (R). As83

to the interest of the associations, making the deal with an innocent people leads to a payoff84

of $6k (to be shared between the people making the deal), while associating with the culprit85

produces no payoff ($0k). Moreover, Agent 1 is investigating about P and will know whether86

he is guilty before making the decision. Similarly, Agent 2 will know whether R is guilty.87
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It appears the Bayesian approach is not relevant here: it does not capture the intended88

knowledge revision. Indeed, if Agent 1 learns that P is innocent, the intended behavior of89

Agent 1 is to keep 50% chances per sex, so the probability of guilt should become 1/2 for Q90

and 1/2 for R. However, in a purely Bayesian view, equiprobability would be applied and91

the prior probability of guilt would be 1/4 to P and 1/4 to Q. Then, after conditioning,92

Agent 1 would get a probability of 1/3 to Q and 2/3 to R.93

3 Formalization of Belief Functions for Individual Decision Making94

3.1 Knowledge Representation95

The theory of belief functions is a powerful toolset from decision theory and statistics, which96

generalizes probability theory. It encompasses two distinct approaches for reasoning under97

uncertainty: Dempster-Shafer theory of evidence (DS) [4, 35] and upper-lower probability98

theory (ULP) [4, 39].99

▶ Definition 2 (Basic probability assignment). A set-function m : 2Ω → [0, 1] is a basic100

probability assignment (bpa, a.k.a. mass function) iff m(∅) = 0,
∑

A⊆Ω m(A) = 1 and101

∀A ⊆ ω, m(A) ≥ 0.102

▶ Definition 3 (Belief function and plausability measure). A belief function Bel : 2Ω → [0, 1]103

is a monotonic measure which is subadditive (∀A, B distinct, Bel(A ∪ B) ≥ Bel(A) + Bel(B))104

and verifies Bel(∅) = 0 and Bel(Ω) = 1. The dual plausibility measure Pl is defined by105

Pl(A) = 1 − Bel(Ac), and is superadditive.106

▶ Definition 4 (bpa-characterization of a belief function and a plausibility measure). Both107

Bel and Pl can be encoded by a single bpa m : 2Ω → [0, 1] such that Bel(A) =
∑

B⊆A m(B)108

and Pl(A) =
∑

B,B∩A ̸=∅ m(B). Conversely, any bpa m defines a pair of dual belief and109

plausibility measures.110

We formalize these first definitions in Coq [3], relying on the MathComp library [23] that111

provides a comprehensive formalization of finite sets, functions with finite support (endowed112

with decidable equality) as well as big operators:1113

114
Variables (R : realFieldType) (W : finType).115

116

Definition bpa_axiom (m : {ffun {set W} -> R}) :=117

[&& m set0 == 0 , \sum_A m A == 1 & [∀ A, m A >= 0]].118

Structure bpa := { bpa_val :> {set W} -> R ; bpa_ax : bpa_axiom bpa_val }.119

Definition Bel (m : bpa) : {set W} -> R := fun A => \sum_(B | B \subset A) m B.120

Definition Pl (m : bpa) : {set W} -> R := fun A => \sum_(B | B :&: A != set0) m B.121

122

Lemma BelE (m : bpa) (A : {set W}) : Bel m A = 1 - Pl m (~:A).123

Lemma PlE (m : bpa) (A : {set W}) : Pl m A = 1 - Bel m (~:A).124125

▶ Definition 5 (Focal elements and focal set). Sets with a non-zero mass are called “focal126

elements”, and the set of focal elements, denoted by Sm, is called “focal set”:127

1 MathComp/SSReflect notations: finite sets over (X : finType) are typed {set X}, common notations
are: A:&:B = A ∩ B, A:|:B = A ∪ B, ~:A = Ac and set0 = ∅. Finite support functions from (X :
finType) to (Y : Type) are typed {ffun X -> Y}; and for any (Z : X -> Type), dependent ffuns,
which map any (x : X) to an element of (Z x) are typed {ffun forall x : X, Z x}.

CVIT 2016
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128
Definition focal_element (m : bpa) : pred {set W} := fun A => m A > 0.129

Definition focalset (m : bpa) : {set {set W}} := [set A | focal_element m A].130131

Of course, Bel and Pl can be directly expressed as sums over the focal set:132

133
Lemma Bel_focalsetE m A : Bel m A = \sum_(B in focalset m | B \subset A) m B.134

Lemma Pl_focalsetE m A : Pl m A = \sum_(B in focalset m | B :&: A != set0) m B.135136

Belief functions can be interpreted from the viewpoint of two different uncertainty theories:137

DS theory As in our example, knowledge is build from evidences about the actual state of138

the world ω∗. There are several “parts of beliefs” which all describe a piece of information,139

they are encoded in the bpa m: the mass m(B) is the degree of confidence on the evidence140

that support ω∗ ∈ B, but nothing more (see Table 1). Under this interpretation, Bel(B)141

(resp. Pl(B)) estimates to what extent the event B is implied by (resp. is compatible142

with) the knowledge encoded in m — m is seen as a generalized set [7].143

ULP theory Our example can also be understood in the perspective of the ULP theory,144

where Bel and Pl delimit a family of probability measures F = {Pr | ∀A, Bel(A) ≤145

Pr(A) ≤ Pl(A)}, which gathers the probability measures that may describe the partial146

knowledge (also see Table 1). In this interpretation, Bel(B) (resp. Pl(B)) is the minimal147

(resp. maximal) value of Pr(B) in the family.148

A ⊆ Ω ∅ {P } {Q} {R} {P, Q} {P, R} {Q, R} {P, Q, R}
m(A) 0 0 0 0.5 0.5 0 0 0
Bel(A) 0 0 0 0.5 0.5 0.5 0.5 1
Pl(A) 0 0.5 0.5 0.5 0.5 1 1 1
Prx(A) 0 x 0.5 − x 0.5 0.5 0.5 + x 1 − x 1

Table 1 Prior knowledge from Example 1 — in the DS theory, m directly describes the knowledge,
in the ULP theory, m describes a family of probability measures (Prx)x∈[0, 0.5].

Next, we recall a “complexity” definition, which is used to characterize probability measures:149

▶ Definition 6 (k-additivity). A belief function is said to be k-additive iff the cardinality of150

its focal elements is at most k.151

152
Definition k_additivity m := \max_(B in focalset m) #|B|.153

Notation "k '.-additive' m" := (k_additivity m <= k) ((*technicalities omitted*)).154155

▶ Proposition 7 (Probabilitiy). If a belief function is 1-additive, i.e. if all focal elements are156

singletons, then Bel = Pl is a probability measure whose distribution is x 7→ m({x}).157

158
Structure proba := { proba_val :> bpa ; proba_ax : 1.-additive proba_val }.159

Lemma PrE (p : proba) : Bel p =1 Pl p.160

Definition dist (p : proba) := fun w => p [set w].161

Lemma Pr_distE (p : proba) A : Bel p A = \sum_(w in A) dist p w.162163

Belief functions thus encompass probabilities. Though the following example makes it164

clearer how the use of a belief-function model can be “weaker”, and thereby, more expressive.165

▶ Example 8 (Knowledge representation). In our running example, the prior knowledge is just166

m({P, Q}) = m({R}) = 1/2. It is expressible “as is” using belief functions, but expressing it167

with a probability distribution requires to make the “equiprobability assumption” (Figure 1).168
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R

Q

P

m = 0.5

m = 0.5

R

Q

P

p = 0.5

p = 0.25

p = 0.25

Figure 1 Prior knowledge expressed by a belief function (left, circles denote focal elements)
and the same knowledge expressed by a probability distribution (right, to assign probabilities to
singletons, the equiprobability assumption has to be made).

3.2 Conditioning in the Belief Function Theory169

Several conditioning rules for belief functions have been proposed, depending on the DS or170

ULP interpretation, and more generally on the kind of knowledge at work. All those condi-171

tionings generalize the Bayesian conditioning, however starting from the same “prior” bpa,172

they yield distinct “posteriors”: they indeed capture distinct operations such as knowledge173

revision, updating, focusing [8, 6, 13].174

To formalize conditional events (· | C) — read “given C” —, a precondition is necessary:175

on the technical side, it avoids division-by-zero, and on the semantics side, it means one cannot176

learn that an impossible event holds. Since it depends on the conditioning rule, we abstract177

this precondition in a predicate revisable. Furthermore, every conditioning rule has to178

verify the conditioning_axiom Bel(C | Cc) = 0, that is, if one learns that C holds, then one179

also learns that no evidence for Cc can hold. Formally speaking, we define a conditioning180

structure which encapsulates the precondition, the conditioning algorithm itself (which turns181

a revisable prior in its posterior “given C”) and a proof of the conditioning_axiom:182

183
Definition conditioning_axiom (revisable : bpa -> pred {set W})184

(cond : ∀ m C, revisable m C -> bpa)185

:= ∀ m C (HC : revisable m C), Bel (cond m C HC) (~:C) = 0.186

Structure conditioning := { revisable : bpa -> pred {set W} ;187

cond_val m C :> revisable m C -> bpa ;188

cond_ax : @conditioning_axiom revisable cond_val }.189190

The most common conditioning is the so-called Dempster’s conditioning [4], which191

captures knowledge revision (i.e. fact learning). In the DS framework, it is understood as192

a transfer of parts of beliefs: m(B) is transferred to B ∩ C if it is not empty, or discarded193

otherwise (then the posterior had to be renormalized). That is, the evidence now concerns194

B ∩C, the only possible worlds “given that C holds”. In the ULP framework, it is understood195

as a max-likelihood conditioning: the posterior probability family delimited by Bel(· | C) and196

Pl(· | C) is the conditioning of those prior probability measures which assign the maximal197

probability to the event C, that we now know for sure.198

199
Definition Dempster_revisable m C := Pl m C != 0.200

Definition Dempster_f (m : bpa) (C : {set W})201

:= [ffun A : {set W} => if A == set0 then 0202

else \sum_(B : {set W} | (B \in focalset m) && (B :&: C == A)) m B / Pl m C].203

Lemma Dempster_bpa_ax m C (HC: Dempster_revisable m C): bpa_axiom (Dempster_f m C).204

Definition Dempster_cond m C (HC : Dempster_revisable m C) : bpa205

:= {| bpa_val := Dempster_fun m C ; bpa_ax := Dempster_bpa_ax HC |}.206

207

Lemma Dempster_cond_axiom: @conditioning_axiom Dempster_revisable Dempster_cond.208

Definition Dempster_conditioning : conditioning209

:= {| cond_val := Dempster_cond ; cond_ax := Dempster_cond_axiom |}.210211

CVIT 2016



1:6 Bel-Games: A Formal Theory of Games of Incomplete Information

▶ Example 9 (Knowledge revision). Dempster’s conditioning is the conditioning approach212

at work in our example (see [6] for details). Say ω∗ denote the actual state of the world,213

which agents don’t know. Now, consider the case of Agent 1 learning that P is not the214

murderer: Agent 1 learns that ω∗ /∈ {P}, i.e., ω∗ ∈ {Q, R}. In this case, the evidence215

concerning men now only concerns Q, so from the viewpoint of Agent 1, the knowledge216

becomes m({Q}) = m({R}) = 0.5, thus excluding P without changing the given odds217

depending on the sex of the murderer (Figure 2, center, the mass assigned to {P, Q} was218

transferred to {P, Q} ∩ {Q, R} = {Q}). On the contrary, now consider that Agent 2 learns219

that R is not the murderer: Agent 2 learns ω∗ /∈ {R}, i.e., ω∗ ∈ {P, Q}. In this case, the220

evidence concerning women has to be discarded, so the knowledge becomes m({P, Q}) = 1,221

thus excluding R, and now expressing nothing more than the murderer is a man (Figure 2,222

right, the mass assigned to {R} was discarded since {R} ∩ {P, Q} = ∅).

R

Q

P

m = 0.5

m = 0.5

R

Q

P

m = 0.5

m = 0.5

R

Q

Pm = 1

Figure 2 Prior (left) and posteriors given {Q, R} (center) and given {P, Q} (right). White and
gray areas denote possible and impossible events – circles denote focal elements.

223

Two other rules have been proposed and called strong and weak conditioning [29]; the224

former, also known as geometrical conditioning [36], is another “revision” rule; the latter is225

seldom used since it yields strange results (as for example it may be Bel(C | C) < 1)226

227
Definition Strong_revisable (m : bpa) := fun C : {set W} => Bel m C != 0.228

Definition Strong_cond (m : bpa) (C : {set W}) (HC : Strong_revisable m C) : bpa.229

exists (fun A : {set W} =>230

if (A != set0) && (A \subset C) then m A / Bel m C else 0). (*[...]*)231

Lemma Strong_cond_axiom : @conditioning_axiom Strong_revisable Strong_cond.232

Definition Strong_conditioning : conditioning233

:= {| cond_val := Strong_cond ; cond_ax := Strong_cond_axiom |}.234235

236
Definition Weak_revisable (m : bpa) := fun C : {set W} => Pl m C != 0.237

Definition Weak_cond (m : bpa) (C : {set W}) (HC : Weak_revisable m C) : bpa.238

exists (fun A => if A :&: C != set0 then m A / Pl m C else 0). (*[...]*)239

Lemma Weak_cond_axiom : @conditioning_axiom Weak_revisable Weak_cond.240

Definition Weak_conditioning : conditioning241

:= {| cond_val := Weak_cond ; cond_ax := Weak_cond_axiom |}.242243

Another well-known rule is Fagin-Halpern conditioning ([9, 16], already in [4]), which is244

a “focusing” rule suited for the ULP interpretation. The FH-conditioning of a bpa (which245

delimits a family of prior probabilities) leads to the bpa delimiting the family of posterior246

probabilities. At the time we are writing this paper, we did not focused on formalizing this247

conditioning, even if it could be interesting as a future work.248

3.3 Informed Decision249

A classical way to model decision processes is to use utility functions [32, 25]. Say there are250

several possible choices (a.k.a. actions); let A denote the set of all these actions. Depending251

on the actual state of the world ω∗ ∈ Ω, an action a ∈ A may lead to different outcomes, so252
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that the decision maker may be satisfied or not. Let u : A × Ω → R be an utility function,253

assigning to any action a ∈ A and to any state of the world ω ∈ Ω, the degree of satisfaction254

of the decision maker. Their preferences are captured by “scoring function”, which aggregates255

all ω’s, considering of course the knowledge expressed over Ω by a bpa – the action which256

has the best score is the best action to be chosen (from the decision maker’s point of view).257

In a probabilistic setting, the classical “scoring function” is the expected utility.258

A very common scoring function for belief functions is the Choquet discrete integral,259

which leads to the minimal expected utility, i.e., the minimal degree of satisfaction the260

decision maker can expect [33, 12]. Another line of thought is to consider that belief functions261

are particular cases of capacity measures, and to compute the global merit based on its262

Choquet value [11, 34]. It is easily defined using the bpa by:263

CEU(a) =
∑

B∈Sm

m(B) × min
ω∈B

u(a, ω) =
∑

B∈Sm

m(B) × fCEU
u(a,·)(B)264

This expression is a weighted sum indexed by focal elements, and it is correct to use min265

since a focal element cannot be empty. The function fCEU
u is formalized as:266

267
Definition ceu_fun (u : W -> R) : {set W} -> R268

:= fun B => match minS u B with Some r => r | None => 0 end.269270

Another rule, axiomatized by Jaffray [17, 18], is a kind of Hurwicz criterion (i.e., a linear271

combination over the minimal and maximal utility reached for each focal element) – the272

coefficient αB may vary, depending on the minimal and maximal utility values over B.273

JEUα(a) =
∑

B∈Sm

m(B)×
(

αB × min
ω∈B

u(a, ω) + (1 − αB) × max
ω∈B

u(a, ω)
)

=
∑

B∈Sm

m(B)×fJEUα

u(a,·) (B)274

275
Definition jeu_fun (alpha : R -> R -> R) (u : W -> R) : {set W} -> R276

:= fun B => match minS u B, maxS u B with277

| Some rmin, Some rmax => let a := alpha rmin rmax in278

a * rmin + (1-a) * rmax279

| _, _ => 0 end.280281

Last, in the Transferable Belief Model [37], the decision rule is made by recovering a “pignistic”282

probability distribution BetP, at the very moment where the decision is made (i.e., the283

equiprobability assumption is made, but after conditionings, if any). It is also expressible as284

a weighted sum over focal elements:285

TBEU(a) =
∑

B∈Sm

m(B) ×
∑

ω∈B u(a, ω)
|B|

=
∑

B∈Sm

m(B) × fTBEU
u(a,·) (B)286

287
Definition tbeu_fun (u : W -> R) := fun B => \sum_(w in B) u w / #|B|%:R.288289

We express those three scoring functions as weighted sums of some “set-utility function”290

f . It makes it possible to abstract them by XEU(a) =
∑

B∈Sm
m(B) × fXEU

u(a,·)(B).291

292
Definition XEU (m : bpa) (f : {set W} -> R) := \sum_(B in focalset m) m B * f B.293294

For any two extentionally equal function u and v, fXEU
u and fXEU

v also are extentionally295

equal. For the sake of the proof, we endow ceu_fun (resp. jeu_fun, tbeu_fun) with a296

Boolean predicate asserting this property, into the structure CEU (resp. JEU, TBEU).297

It can be noted that CEU, JEU and TBEU generalize the expected utility criterion: using a298

1-additive bpa (i.e., a probability measure), they all lead to the expected utility value:299

CVIT 2016



1:8 Bel-Games: A Formal Theory of Games of Incomplete Information

300
Lemma CEU_EU (p : proba) u : XEU (CEU u) p = \sum_w dist p w * u w.301

Lemma JEU_EU alpha (p : proba) u : XEU (JEU alpha u) p = \sum_w dist p w * u w.302

Lemma TBEU_EU (p : proba) u : XEU (TBEU u) p = \sum_w dist p w * u w.303304

4 Formalization of Several Classes of Games of Complete Information305

Game theory aims to model and study multi-agent decision making [25, 26]. In this paper, we306

focus on strategic (or simultaneous) games: agents make their own decision without knowing307

others’ choices, but where the outcome of the game depends on every agent’s choices.308

4.1 Games of Complete Information309

Let us first consider a situation where there is no uncertainty: each agent knows all the other310

agents involved, their possible actions and the utility they have depending on the chosen311

actions. One such CGame is defined by a tuple G =
(
I, (Ai, ui)i∈I

)
where I is a finite set312

of agents, then for each agent i, Ai is the set of their actions and ui : A → R is an utility313

function, assigning an utility value to each “profile” a = (a1, . . . , an) ∈ A = A1 × · · · × An.314

Agent i prefers the profile a to a′ iff ui(a) > ui(a′). We formalize such “profiles-for-CGames”315

(a ∈
∏

i∈I Ai) using MathComp’s dependently-typed finite support functions; a CGame is316

then simply encoded by its utility functions:317

318
Variables (R : numFieldType) (I : finType) (A : ∀ i : I, eqType).319

Definition cprofile {I : finType} (A : I -> finType) := {dffun ∀ i : I, A i}.320

Definition cgame := cprofile A -> I -> R.321322

One of the most prominent solution concept in game theory is that of Nash equilibria [27],323

that is, profiles such that no agent has any incentive to move to another action:324

325
Definition change_strategy I A (p : cprofile A) (i : I) (ai : A i) : cprofile A326

:= [ffun j => match boolP (i == j) with327

| AltTrue h => eq_rect _ A ai _ (eqP h)328

| AltFalse _ => p j end].329

Definition Nash_equilibrium (G : cgame) (a : cprofile A) : bool :=330

[∀ i : I, [∀ ai : A i, ~~ (G a i < G (change_strategy a ai) i)]].331

Definition Nash_equilibrium_prop (G : cgame) (a : cprofile A) : Prop :=332

∀ i : I, ∀ ai : A i, ~ (G a i < G (change_strategy a ai) i).333

Lemma Nash_equilibriumP G a :334

reflect (Nash_equilibrium_prop G a) (Nash_equilibrium G a).335336

▶ Example 10. Consider Example 1, but say it is known P is the murderer. It is then captured337

by the CGame G = (I, (Ai, ui)i∈I where I = {1, 2} is the set of agents, Ai = {Pi, Qi, Ri} is338

the set of actions of Agent i (choosing P , Q or R) and ui’s are given in Table 2. In this game,339

both (Q1, R2) and (R1, Q2) are Nash equilibria: no agent has any incentive to change.

P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3)
Q1 (3, 0) (2, 2) (3, 3)
R1 (3, 0) (3, 3) (2, 2)

Table 2 Utility functions of Example 10 (it is known that P is the murderer).

340
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When there is some variability regarding action choices (e.g., for repeated games), it is341

meaningful to use mixed strategies. A mixed strategy ρi of Agent i is a probability over342

Agent i’s actions, and a mixed strategy profile ρ = (ρ1, . . . , ρn) is a vector of mixed strategies:343
344

Definition mixed_cprofile := cprofile (fun i => proba_eqType R (A i)).345346

A mixed strategy profile ρ defines a probability over the set of pure strategy profiles, namely347

pρ(a) =
∏

i∈I ρi(ai). We then embed it in a proba structure:348
349

Definition mk_prod_proba (p : ∀ i : X, proba R (A i)) : {ffun cprofile A -> R}350

:= [ffun a : cprofile A => \prod_i dist (p i) (a i)].351

Definition prod_proba (p : ∀ i : I, proba R (A i)) (i0 : I) : proba R (cprofile A).352353

Last, the utility of a mixed strategy profile is the expected utility w.r.t. the probability over354

pure strategy profiles, and the notion of Nash equilibria extends straightforwardly:355
356

Definition ms_utility (G : cgame R A) (mp : mixed_cprofile) (i : I) : R357

:= \sum_(p : cprofile A) (dist (prod_proba mp witnessI mp) p) * (G p i).358

Definition ms_Nash_equilibrium (G : cgame R A) (mp : mixed_cprofile) : Prop359

:= ∀ i : I, ∀ si : proba R (A i),360

~ ms_utility G mp i < ms_utility G (change_strategy mp si) i.361362

We can also use the “mixed extension” of a game (i.e., a game where agents’ actions are363

mixed strategies) and thereby recover previous definitions [19]:364
365

Definition mixed_cgame (G : cgame R A) : cgame R (fun i => proba_eqType R (A i))366

:= fun mp i => ms_utility G mp i.367

Lemma mixed_cgameE G mp i : ms_utility G mp i = (mixed_cgame G) mp i.368

Lemma ms_NashE (G : cgame R A) (mp : mixed_cprofile) :369

ms_Nash_equilibrium G mp <-> Nash_equilibrium_prop (mixed_cgame G) mp.370371

4.2 Hypergraphical Games372

Some CGames can be expressed succinctly as hypergraphical games [28, 40], where the utility373

is not defined globally, but locally, split in several local games. It produces an hypergraph,374

where vertices denotes agents and hyperedges denote local games. Formally, a hypergraphical375

game is defined by a tuple G =
(
I, E, (Ai)i∈I(ue

i )e∈E,i∈e

)
, where I is the set of agents,376

E ⊆ 2I is the set of local games (in any local game e = {i, j, k, . . . }, agents i, j, k . . . are377

playing), Ai is the set of actions of agent i and ue
i : Ae → R is the utility function of agent i378

in the local game e (Ae =
∏

i∈e Ai is the set of local profiles corresponding to e’s players). A379

hypergraphical game with 2-player local games is called a polymatrix.380

In our formalization, local games are indexed by the finite type (localgame : finType);381

players playing a local game (lg : localgame) are those who verify the boolean predicate382

(plays_in lg). That is, plays_in denotes a family of sets of agents.383
384

Variables (R : numFieldType) (I : finType) (A : ∀ i : I, finType).385

Variables (localgame : finType) (plays_in : localgame -> pred I).386387

For any local game, the type of local profiles is defined by:388
389

Definition localprof (A : I -> eqType) (lg : localgame)390

:= {ffun ∀ s : {i : I | plays_in lg i}, A (val s)}.391392

In hypergraphical games, each agent chooses one action, and plays it in every local game393

they are involved in. The global utility of an agent is the sum of the locally obtained utilities:394

ui(a) =
∑

e∈E
i∈e

ue
i (ae), where ae ∈ Ae is the restriction of a to indices of e.395
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396
Definition hg_game (u : ∀ lg, localprof lg -> {i : I & plays_in lg i} -> R) : cgame397

:= fun a i => \sum_(s : {lg : localgame | plays_in lg i})398

u (tag s) [ffun i => a (val i)] (exist _ i (tagged s)).399400

4.3 Games of Incomplete Information401

Harsanyi had proposed [14] a model for decision-making situations where some agents have402

some uncertainty about other agents, their actions, their utility functions, and more generally403

about any parameter some agents know and some don’t. To model such situations, the404

partially known parameters are expressed by “types”: each agent i has a “type” θi which405

encodes the parameters’ values. Agent i knows (or learns) θi, but the other agents may406

ignore it. Harsanyi defined the model of IGames in a probabilistic setting, hence the so-called407

Bayesian games. In this setting, a probability measure expresses the knowledge on “type”408

configurations (it is the frame of discernment). IGames already had been extended to a409

possibilistic setting by Ben Amor et al. [1], and we extend it to the framework of belief410

functions (so it generalizes Bayesian games) in the next section.411

Since agents know their own type before choosing their action, a pure strategy of Agent i412

becomes a function σi : Θi → Ai which assigns the chosen action to Agent i’s “type” –413

Agent i, knowing that θi, will play σi(θi) ∈ Ai. A strategy profile σ = (σ1, . . . , σn) is a vector414

of such functions, telling which action every agent will play depending on their actual “type”:415

416
Definition iprofile I (T : I -> finType) (A : I -> eqType)417

:= cprofile (fun i => [eqType of {ffun T i -> A i}]).418419

If the actual type configuration is θ = (θ1, . . . , θn), then for any strategy profile σ we denote420

σθ =
(
σ1(θ1), . . . , σn(θn)

)
:421

422
Definition proj_iprofile I (T : I -> finType) A (p : iprofile T A)423

:= fun theta => [ffun i => p i (theta i)].424425

In the sequel, we will also need to “flatten”2 an iprofile T A that assigns to any i ∈ I a426

strategy σi ∈ (Θi → Ai), to get a cprofile (fun i_ti : {i : I & T i} => A (val i)),427

assigning to any dependent pair (i, θi) the strategy σi(θi) ∈ Ai:428

429
Definition iprofile_flatten I (T : I -> finType) A (p : iprofile T A)430

:= [ffun i_ti => p (projT1 i_ti) (projT2 i_ti)].431432

In Bayesian games, the utility of Agent i having the “type” θi is given by the expected433

utility w.r.t. the conditioned probability distribution “given θi”. If one considers mixed434

strategies, then the two probability distributions (over type configurations and pure strategy435

profiles) are merged, so the utility becomes the expectation over the joint distribution.436

5 Bel-Games437

Bel games are IGames where the knowledge is expressed by a belief function – so it generalizes438

Bayesian games. Mathematically, a Bel game is defined by a tuple G =
(
I, (Ai, Θi, ui)i∈I , m

)
:439

I is the finite set of agents;440

2 For example, in an IGame with two players and two types per agents, σ = (σ1, σ2) is flattened to
(σ1(θ1), σ1(θ′

1), σ2(θ2), σ2(θ′
2))
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Ai is the set of actions of Agent i;441

Θi is the finite set of “types” of Agent i442

ui : A × Θ → R is the utility function of Agent i, it depends on the joint action443

(a1, . . . , an) ∈ A and on the type configuration; (θ1, . . . , θn) ∈ Θ444

m : 2Θ → [0, 1] is a bpa which describes the prior knowledge on type configurations.445

The utility of Agent i having the “type” θi is the XEU value w.r.t. the posterior knowledge446

“given θi” (i.e., given the event {θ′ | θ′
i = θi} ⊆ 2Θ). That is, the utility depends on both the447

conditioning and the decision rule. For instance, it may be:448

CEU(i,θi)(σ) =
∑

B⊆2Θ m(B | θi) × minθ′∈B u(σ(θ′), θ′).449

▶ Example 11 (Bel game). We now are able to express Example 1 by a Bel game G =450

(I, (Ai, Θi, ui)i∈I , m). The set of agents is = {1, 2}, their action sets are Ai = {Pi, Qi, Ri}.451

Agent 1 will learn either that P is the murderer (ω∗ ∈ {P}) or that he is not (ω∗ ∈ {Q, R}):452

Agent 1’s “type” set is Θ1 = {P, P̄}. Similarly, Agent 2 will learn either that R is the murderer453

(ω∗ ∈ {R}) or that she is not (ω∗ ∈ {P, Q}), so Θ2 = {R, R̄}. The knowledge is expressed over454

Θ = Θ1 × Θ2: since (P, R̄) ≡ P , (P̄, R̄) ≡ Q, (P̄, R) ≡ R and (P, R) is impossible, the knowledge455

is m
(
{(P, R̄), (P̄, R̄)}

)
= m

(
{(P̄, R)}

)
= 0.5. Finally, utility functions are given in Table 3.

P2 Q2 R2 P2 Q2 R2 P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3) P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)
Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 3) (0, 0) (2, 2) Q1 (3, 3) (2, 2) (3, 0)
R1 (3, 0) (3, 3) (2, 2) R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 3 Utility functions of Example 11 for θ = (P, R̄) (left, P is the murderer), θ = (P̄, R̄)
(center, Q is the murderer) and θ = (P̄, R) (right: R is the murderer). The configuration θ = (P, R) is
impossible

.
456

▶ Example 12 (IGame’s strategy). Let σ = (σ1, σ2) be defined by σ1(P) = Q1, σ1(P̄) = P1,457

σ2(R) = Q2, σ1(R̄) = R2. σ is a pure strategy encoding that Agent 1 will choose Q when458

learning that P is the murderer, and choose P otherwise, and that Agent 2 will choose Q459

when learning that R is the murderer, and choose R otherwise. Since no agent, whatever is460

their type, has incentive to move to another strategy, σ is a Nash equilibrium.461

Formally speaking, a Bel-Game is fully defined by two elements: the prior knowledge and462

agents’ preferences, that is, the bpa and the utility functions. The other parameters (types463

for agents I, their actions A and their “types” T) are just parameters of this pair:464

465
Definition belgame (I : finType) (A : I -> eqType) (T : I -> finType) :=466

(bpa R (cprofile T) * (cprofile A -> cprofile T -> agent -> R))%type.467468

For the sake of readability, we introduce two short-hands: Tconfig, the type for “type”469

configurations; and event_ti := θi 7→ {θ′ | θ′
i = θi}:470

471
Notation Tconfig := [finType of {dffun ∀ i : I, T i}].472

Definition event_ti i (ti : T i) := [set t : Tconfig | t i == ti].473474

In a Bel-game, agents know their own “type” but may ignore others’ ones. For them to475

reason and evaluate their utility, they will need to consider all possible “types” of other476

players, and their respective knowledge. So, the prior has to be revisable w.r.t. all possible477

“types” – what we call a proper Bel-Game. We thus define the following Boolean predicate:478
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479
Definition proper_belgame A T (G : belgame A T) (cond : conditioning R Tconfig)480

:= [∀ i : agent, [∀ ti : T i, revisable cond G.1 (event_ti ti)]].481482

In a proper Bel-game, the utility of a given iprofile for Agent i whose “type” is θi, is the483

XEU value of this iprofile w.r.t. the revised knowledge:484

485
Definition belgame_utility A T (G : belgame A T) (cond: conditioning R Tconfig)486

(xeu : xeu_box R Tconfig) (HG : proper_belgame G cond) (p : iprofile T A) (i :487

agent) (ti : T i) : R488

:= let kn := cond G.1 (event_ti ti) (is_revisable HG ti) in489

XEU kn (xeu (fun t => G.2 (proj_iprofile p t) t i)).490491

For Bel-games, the definition of Nash equilibria holds: an iprofile is a Nash equilibrium iff492

no agent with whatever “type”, has any incentive to change strategy:493

494
Definition BelG_Nash_equilibrium_prop A T (G : belgame A T) (cond : conditioning R495

Tconfig) (u : xeu_box R _) (H : proper_belgame G cond) (p : iprofile T A)496

:= ∀ i : I, ∀ ti : T i, ∀ ai : A i,497

~ (belgame_utility u H p ti < belgame_utility u H (change_istrategy p ti ai) ti).498499

6 Howson-Rosenthal-like transforms500

Howson–Rosenthal’s theorem asserts the correctness of a transform, which casts a 2-player501

Bayesian game into an equivalent polymatrix (of complete information) [15]. This makes it502

possible to benefit from both theoretical and algorithmic results of classical game theory.503

In the following, we formally define and prove the correctness of three Howson-Rosenthal-504

like transforms that we had devised in previous work [10, 30]. All these transforms cast505

n-player Bel-games into hypergraphical games; the produced games all have the same utility506

values, though different hypergraphs. These transforms can be applied depending on the507

conditioning and on the decision rule (cf. Table 4).

Transform Conditioning XEU Space Time
Direct transform Dempster’s c. any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
Conditioned transform any any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
TBM transform any TBEU O

(
k × Size(G)

)
O

(
Size(G)

)
Table 4 Transforms, conditioning and XEU they are suited for, and their worst-case complexity

w.r.t the k-additivity of the bpa and the size of the input Bel-game (from [30])

508

The three transforms all follow the same approach: starting from a Bel game G, we509

construct the equivalent hypergraphical game G̃, the vertices of which represent every “type”510

of every agent, denoted by dependent pairs (i, θi), with action set Ai. Its local games511

correspond to focal elements, so we benefit the hypergraphical game structure to compute512

an XEU (recall that global utility is the sum of local utilities, as XEU value is the weighted513

sum of utility w.r.t. focal elements). For all those transforms, let G be the input Bel-game514

and G̃’s vertices be the dependent pairs (i, θi) with action set Ai:515

516
Variables (R : realFieldType) (I : finType) (A : I -> eqType) (T : I -> finType)517

(G : belgame R A T).518

Definition HR_agent : finType := [finType of {i : I & T i}].519

Definition HR_action (i_ti : HR_agent) : eqType := A (projT1 i_ti).520521
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6.1 Direct transform522

The direct transform holds only for Dempster’s conditioning, which is made on-the-fly on523

prior focal elements. It is suited for any XEU.524

Starting from a Bel Game, we construct a local game gB for each prior focal element B.525

Vertex (i, θi) plays in B iff θi is possible in B, that is, if ∃θ′ ∈ B, θi = θ′
i. Its local utility526

in gB is the “part of XEU” computed over B′, the subset of B on which the mass shall be527

transferred during Dempster’s conditioning. Formally:528

▶ Definition 13 (Direct transform of a Bel game). The direct transform of a Bel game G =529 (
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =

(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
:530

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi},531

Ẽ = (eB)B⊆Sm
, where eB = {(i, θi) | θ ∈ B, i ∈ I},532

Ã(i,θi) = Ai,533

For each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let ṽσ̃
i (θ) = ui(σ̃θ, θ) in:534

ũeB

(i,θi)(σ̃eB
) = m(B) × fXEU

ṽσ̃
i

(B ∩ {θ′ | θ′
i = θi})/ Pl({θ′ | θ′

i = θi}).535

First, let G be a proper Bel-game w.r.t. Dempster’s conditioning, xeu be any of the XEU:536

537
Variable (proper_G : proper_belgame G (Dempster_conditioning R Tconfig))538

(xeu : XEU R Tconfig).539540

Then let G̃’s local games be indexed by focal elements, that is, sets of type configurations. A541

vertex (i, θi) plays in the local game gB iff θi is possible in B:542

543
Definition HRdirect_localgame := [finType of {set Tconfig}].544

Definition HRdirect_plays_in (lg : HRdirect_localgame) (i_ti : HR_agent) : bool545

:= [exists t : Tconfig, [&& t \in lg & t (projT1 i_ti) == projT2 i_ti]].546547

Then, the local utility functions are expressed using HRcond_mkprofile bookkeeping func-548

tion, which constructs from a local profile p and a “type” configuration θ the cprofile549

(p(1,θ1), . . . , p(n,θn)). Local utility in a local game gB is the part of the XEU computed from550

the prior focal element B. Note that Dempster’s conditioning transfers masses from B551

to B ∩ {θ′ | θ′
i = θi} = B∩(event_ti θi), so the local utility correspond to an on the fly552

Dempster’s conditioning. The resulting HG game is finally build from local utility functions:553

554
Definition event_ti i (ti : T i) := [set t : Tconfig | t i == ti].555

Definition HRdirect_mkprofile lg i_ti (Hi_ti : HRdirect_plays_in lg i_ti)556

(p : HRdirect_localprof lg) (t : Tconfig) : profile.557

Definition HRdirect_u : ∀ lg, HRdirect_localprof lg -> HRdirect_localagent lg -> R558

:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in559

G.1 lg * xeu R _ (fun t => G.2 (HRdirect_mkprofile Hi_ti p t) t i)560

(lg :&: (event_ti ti)) / Pl G.1 (event_ti ti).561

Definition HRdirect_transform: cgame R HR_action := hg_game HRdirect_u.562563

Finally, we prove the correctness of this transform: it preserves utility values, thus also pre-564

serves Nash equilibria. For any iprofile σ, XEU(i,θi)(σ) = ũ(i,θi)(iprofile_flatten(σ)):565

566
Theorem HRdirect_transform_correct (i : I) (ti : T i) (p : iprofile T A) :567

belgame_utility xeu proper_G p ti568

= HRdirect_transform (iprofile_flatten p) (existT _ i ti).569

Theorem HRdirect_eqNash (p : iprofile T A) :570

BelG_Nash_equilibrium_prop xeu proper_G p571

<-> Nash_equilibrium_prop HRdirect_transform (iprofile_flatten p).572573
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6.2 Conditioned transform574

The conditioned transform holds for any conditioning and XEU.575

Starting from a Bel Game G, all the conditioning “given θi” are pre-computed, let S∗ be576

the union of all posterior focal sets (i.e. the set of all possible focal elements given any θi).577

Each B ∈ S∗ leads to a local game. As for the direct transform, a vertex (i, θi) plays in gB if578

θi is possible in B. Its utility in gB is the part of XEU computed over the posterior focal579

element B. Note that (i, θi)’s local utility in B may be 0, if B is not focal in the posterior580

“given θi”. Formally:581

▶ Definition 14 (Conditioned transform). The conditioned transform of a Bel game G =582 (
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =

(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
:583

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi},584

Ẽ = (eB)B∈S∗ , where eB = {(i, θi) | θ ∈ B, i ∈ I},585

Ã(i,θi) = Ai,586

For each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let ṽσ̃
i (θ) = ui(σ̃θ, θ) in587

ũeB

(i,θi)(σ̃eB
) = m(B | θi) × fXEU

ṽσ̃
i

(B).588

First let xeu be any XEU, cond any conditioning and G be a proper belgame w.r.t cond:589

590
Variables (xeu: XEU R Tconfig) (cond : conditioning R Tconfig)591

(proper_G: proper_belgame cond).592593

After similar definitions for HRcond_localgame and HRcond_plays_in, let:594

595
Definition HRcond_u : ∀ lg, HRcond_localprof lg -> HRcond_localagent lg -> R596

:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in597

let kn := cond G.1 (event_ti ti) (is_revisable proper_G ti) in598

kn lg * xeu (fun t => G.2 (HRcond_mkprofile Hi_ti p t) t i) lg.599

Definition HRcond_transform : cgame R HR_action := hg_game HRcond_u.600601

Finally, we prove the correctness of the conditioned transform:602

603
Theorem HRcond_transform_correct (i : I) (ti : T i) (p : iprofile T A):604

belgame_utility proper_G p ti605

= HRcond_transform (iprofile_flatten p) (existT _ i ti).606

Theorem HRcond_eqNash (p : iprofile T A),607

BelG_Nash_equilibrium_prop xeu proper_G p608

<-> Nash_equilibrium_prop (HRcond_transform) (iprofile_flatten p).609610

6.3 TBM-transform611

The TBM-transform is designed for the Transferable Belief Model [37], in which knowledge is612

first revised using Dempster’s conditioning, then at the moment of deciding, a pignistic prob-613

ability distribution BetP is deduced from the posterior bpa (according to the equiprobability614

assumption) and the decision is made according to the Expected Utility criterion. Here we615

benefit BetP’s 1-additivity to produce a low-complexity hypergraph: local games correspond616

to single states of the world, that is, they all involve only n players.617

▶ Definition 15 (TBM- transform). The TBM transform of a Bel game G =
(
I, (Ai, Θi, ui)i∈I , m

)
618

is the hypergraphical game G̃ =
(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
:619

Ĩ =
{

(i, θi) | i ∈ I, θi ∈ Θi

}
,620

Ẽ =
[
Players({θ}) | θ ∈ Θ

]
,621
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Ã(i,θi) = Ai,622

ũeθ

(i,θi)(σ̃e) = BetP(i,θi)(θ) × ui(σ(θ), θ).623

First let cond be a conditioning and G be a proper Bel-game w.r.t. cond. G̃’s local games624

are indexed by “type” configurations, and (i, θi) plays in gθ′ iff θi = θ′
i:625

626
Variables (cond : conditioning R Tconfig) (proper_G: proper_belgame cond).627

Definition HRTBM_localgame : finType := Tconfig.628

Definition HRTBM_plays_in : HRTBM_localgame -> pred HR_agent629

:= fun lg i_ti => lg (projT1 i_ti) == projT2 i_ti.630631

Local utility is computed w.r.t. the “pignistic” distribution BetP:632

633
Definition HRTBM_u : ∀ lg, HRTBM_localprof lg -> HRTBM_localagent lg -> R634

:= fun lg p x => let (i_ti, _) := x in let (i, ti) := i_ti in635

let betp := BetP (cond G.1 (event_ti ti) (is_revisable proper_G ti)) in636

dist betp lg * G.2 (HRTBM_mkprofile p) lg i.637

Definition HRTBM_transform : cgame R HR_action := hg_game HRTBM_u.638639

Finally, we prove the correctness of the TBM transform:640

641
Theorem HRTBM_transform_correct (i : I) (ti : T i) (p : iprofile T A) :642

belgame_utility (TBEU _ _) proper_G p ti643

= HRTBM_transform [ffun j_tj => p (projT1 j_tj) (projT2 j_tj)] (existT _ i ti).644

Theorem HRTBM_eqNash (p : iprofile T A),645

BelG_Nash_equilibrium_prop (TBEU _ _) proper_G p646

<-> Nash_equilibrium_prop HRTBM_transform (iprofile_flatten p).647648

7 Conclusion and Perspectives649

In addition to the “Bel game” model and the three transforms definition, the main contribution650

of this article is its formal verification in the Coq proof assistant. On the one hand, it651

provides strong guaranties on the correctness of the results, and allow to identify subtleties652

that where left implicit on the paper proof. Moreover, it helps to improve the proofs, both653

in their flow and in their prose. On the other hand, we provide a structured library for belief654

functions and hypergraphical games, as for some generic lemmas which we aim to propose655

for integration in MathComp/SSReflect library.656

This work opens several research directions, both on the theoretic side and on the formal657

verification side. On one side, we aim at extending this result to other decision-theoretic658

approaches, as for instance partially-ordered utility aggregations for belief function and other659

non-additive-measure approaches (Choquet capacities of order 2, RDU). On the other side,660

we aim to formalize Fagin-Halpern’s conditioning rule, as for the Moebius inverse and more661

generally the points we left aside as they were not necessary for this result. Furthermore we662

like to encompass this work into a larger library on decision under uncertainty, as it helps663

model extension as much as reusability.664
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