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Abstract—Earth observation through satellite images is crucial
to help economic activities as well as to monitor the impact of
human activities on ecosystems. Current satellite systems are
subjected to strong computational complexity constraints. Thus,
image compression is perfomed onboard with specifically tailored
algorithms while image denoising is performed on the ground.
In this letter, we intend to address satellite image compression
and denoising with neural networks. The first proposed approach
uses a single neural architecture for joint onboard compression
and denoising. The second proposed approach sequentially uses
a first neural architecture for onboard compression and a second
one for on ground denoising. For both approaches, the onboard
architectures are lightened as much as possible, following the
procedure proposed in [1]. The two approaches are shown
to outperform the current satellite imaging system and their
respective pros and cons are discussed.

I. INTRODUCTION

Remote sensing data provides essential information that
helps in various applications such as meteorology, oceanogra-
phy, geology, natural disaster management, biodiversity con-
servation, cartography and military surveillance [2]. The in-
struments embedded onboard new-generation satellites enable
the acquisition of images with ever-increasing spectral and
spatial resolutions. The counterparty is an increasing amount
of data to be processed onboard and transmitted to the ground.
Image compression is thus essential to maximize the scientific
return and to reduce transmission time [3]. The currently
embedded compression algorithms, such as the Consultative
Committee for Space Data Systems (CCSDS) compression
standard 122.0-B-2 [4], has been designed to reach a com-
promise between performance and computational complexity,
due to strong onboard constraints.

The acquired images are affected by an instrumental noise,
with well-known statistics and particularly a pixel-dependent
variance [5].Thus, the French Space Agency (CNES) devel-
oped a variant of the CCSDS standard 122.0-B-2 [4] that
avoids coding the noise by performing a low-complexity
onboard hard-denoising. Moreover, onboard compression in-
troduces artifacts modelled as a structured colored noise [6].

Consequently, denoising becomes necessary to recover a
noise-free image from the noisy uncompressed image. Cur-
rently, denoising is carried out on the ground due to its
prohibitive complexity [7]. Denoising is one of the oldest
problems in image processing, for which numerous highly
efficient model-based algorithms have been proposed. Among
them, non-local filters are particularly efficient because they
exploit the similarities in textures or structures that can be
located in distant patches. The Non-Local Bayes algorithm
(NL-Bayes) [8] improves the non-local filter techniques by
performing Bayesian estimation through the estimation of
the covariance matrices of the patches. The NL-Bayes is
adopted in the satellite imaging system [7] due to its parameter
setting simplicity, its high performance and relatively high
computation efficiency. Although the model-based image de-
noising algorithms have demonstrated excellent performance,
they present two main disadvantages: they require the manual
setting of multiple parameters and they are designed for
standard additive noise models. However, the instrumental
noise that affects satellite images during acquisition is a non-
standard semi-multiplicative noise. Thus, in the CNES cur-
rent satellite imaging system, a variance stabilizing transform
(VST) [9] is used before the denoising algorithm that assumes
noise additivity. Note that compression noise is also non-
standard. Compression artifacts removal thus requires some
pre-processing such as dequantization [10], [11] or, in the
CNES satellite imaging system, an instrumental noise resti-
tution that restores its statistics modified by compression [7].

Notably, convolutional neural networks (CNNs) have been
successful in many computer vision applications [12] such
as classification [13], object detection [14], [15], segmenta-
tion [16], lossy image compression [17], [18], denoising [19]
and compression artifacts removal [20]. Recently, end-to-
end CNNs [17], [18] were shown to outperform traditional
compression schemes regarding the rate-distortion trade-off,
however, at the cost of high computational complexity. Based
on the model proposed in [18], we presented in our previous
paper [1] a satellite image compression variant with reduced



complexity and competitive performance. Furthermore, de-
noising CNNs can adapt to any non-standard noise statistical
model as soon as it can be learned from a representative
training data set.

In this work, we take advantage of CNNs to address satellite
image compression and denoising. We aim to outperform the
current satellite imaging system [7] both in compression and
denoising without manual parameter setting, without a priori
knowledge on the noise statistical model and without tricky
procedures (like VST or instrumental noise restitution) to
fit the noise to a given model. Besides, we aim to propose
possible onboard denoising whereas it is currently mainly
performed on ground as a post-processing. We first propose
an onboard joint compression and denoising approach with a
single neural architecture based on [18]. Second, we propose
a modular neural architecture, that performs sequentially on-
board compression based on [18] and on ground denoising
based on [21]. This sequential approach allows to lighten the
onboard computational load if required, especially since it is
compatible with every complexity reduction proposed in [1].
This letter addresses a hot topic since neural networks are
likely to run onboard the next generation imaging satellites.

The remaining of the letter is organized as follows. Section
II recalls the background regarding compression and denoising
with neural networks. Section III details the proposed joint and
sequential approaches. Section IV, devoted to the experiments,
compares the performance of both approaches to that of the
CNES satellite pipeline. Section V concludes the letter.

II. BACKGROUND
A. Compression with Neural Networks

When devoted to lossy image compression, autoencoders
learn a representation with low entropy after quantization [17],
[18]. In this work, we focus on the reference architecture [18]
displayed on Fig. 1. It is composed of a main autoencoder and
a side autoencoder described below.
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Fig. 1. Architecture of the variational autoencoder [18].

In the main autoencoder (Fig. 1 left), an analysis transform
(G,) is applied to the input image I to produce a learned
representation y = G, (I). Then y is quantized at the bot-
tleneck, for further entropy coding, leading to the quantized
representation y. Afterwards, the synthesis transform (Gy) is
applied to the § to reconstruct the input image I = G,(9).
The analysis and synthesis transforms are performed through
multiple convolutional layers composed of filters followed by
non-linear activation functions. N denotes the number of filters
in each layer, except in the last layer before the bottleneck

composed by M filters. Indeed, the so-called wide bottleneck
strategy advocates M > N [18]. Activation functions called
generalized divisive normalizations (GDN) (resp. inverse gen-
eralized divisive normalizations (IGDN)) allow to implement
a local adaptive normalization. The learned representation is
multi-channel and non-linear. The autoencoder parameters (the
filter weights and the GDN/IGDN parameters) as well as the
probability distribution of the learned representation, the so-
called entropy model py (§) (required for coding purpose), are
jointly learned through the minimization of a loss function that
establishes a trade-off between the rate R(y) and the distortion
D(I,1) between the original image T and the reconstructed
image I ¥ can be losslessly compressed using entropy coding
algorithms, such as arithmetic coding [22]. The rate accounts
for the expected code length of the compressed representation.
The distortion measure D stands for the image quality and
usually defaults to the mean square error (MSE). The rate-
distortion criterion then writes as the weighted sum:

J =AD(LI) + R(y), (1)
where parameter A\ tunes the rate-distortion trade-off. This
loss function is minimized through gradient descent with
back-propagation [12] on a representative image training set.
The bit-rate is minimized if py(§) is equal to the actual
distribution of the learned image representation. The side
autoencoder (Fig. 1 right) estimates the hyper-parameters of
the image representation distribution [18]. This estimation is
performed individually for each image, during the learning
process and during the operational phase. This model takes
into account possible spatial dependency in each input image
representation. We have shown, in the specific case of satellite
images, that the representation coefficients can be beneficially
modeled as uncorrelated Laplacian variables [1]. Then, the
computationally expensive side autoencoder [18] has been sub-
stituted with the simple estimation of the Laplace distribution
scale parameter in [1].

B. Denoising with Neural Networks

CNNs have also shown high performance in image de-
noising. Denoising CNN (DnCNN) adopted residual learning
(RL) and batch normalization (BN) to improve the denoising
performance [19]. RL estimates the noise, which is expected
to be easier to learn than the denoised image [23]. BN
facilitates training convergence [24]. The more recent batch-
renormalization denoising network (BRDNet) [25] adopted RL
similarly to [19], batch renormalization (BRN) [26] to deal
with small mini-batch convergence issues and dilated convolu-
tions to afford lower complexity [27]. Indeed, networks involv-
ing dilated convolution attain the same receptive field as those
involving conventional ones, with fewer layers and thus fewer
parameters. BRDNet combines two sub-networks in parallel
for improved denoising performance [21] (Fig. 2). BRDNet
outperforms state-of-the-art denoising architextures [25], e.g.,
DnCNN [19], but also the fast and flexible denoising network
(FFDNet) [28] and the image-restoration CNN (IRCNN) [29].
At the end of the day, denoising-dedicated architectures in-
volves RL, BN or BRN and are significantly deep. The



architectures dedicated to compression artifacts removal [20]
are quite similar, and in particular involve RL. However, the
compression-dedicated architectures are significantly different:
they do not involve RL nor BN and are relatively shallow [17],
[18]. This exemplifies the difficulty of conceiving a unique
architecture that jointly performs compression and denoising.
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Fig. 2. Architecture of the BRDNet network [25].
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III. COMBINING COMPRESSION AND DENOISING

Currently, as recalled in the introduction, the compression
is performed onboard the satellite whereas the denoising is
performed on ground, because of its prohibitive computational
cost [7]. However, the evolution of satellite computing capaci-
ties enables onboard denoising to be reasonably envisioned [7].
This work adopts data-driven approaches for satellite image
compression and denoising, possibly both performed onboard.
The aim is to attain high performance while dispensing with
manual parameter setting, with a priori knowledge of the
noise model or with tricky intermediary steps (like VST or
instrumental noise restitution). The first proposed approach
takes advantage of the compression-dedicated architecture,
proposed in [18] and adapted to satellite in [1], to jointly
perform compression and denoising onboard. The second
proposed approach sequentially combines a compression-
dedicated architecture and a denoising-dedicated one. Thanks
to its modular structure, this sequential approach allows to
choose the best architectures for compression [18] and for
denoising [25] respectively. Moreover, this approach facilitates
consideration of the onboard hardware constraints since all the
complexity-reductions proposed in [1] can be applied to the
compression-dedicated architecture in this case. The question
of computational complexity is less crucial for the on ground
denoising-dedicated architecture. Finally, note that whether
the joint or the sequential approach are expected to suppress
compression artifacts together with instrumental noise [7]. In
the following, I, denotes the noisy image produced by the
acquisition device. Indeed, the instrumental noise is dependent
on the ideal noise-free image, denoted as I,,¢. The transmission
is assumed not to introduce additional degradations [30].
Realistic simulation of satellite images provide both I,, and
I,¢ for the same scene, which makes architecture training and
validation possible. Note that simulation is commonly used in
remote sensing image neural processing, in particular due to
the lack of raw data [31].

A. Joint compression and denoising

The joint compression and denoising approach, denoted as
CD-H in the following, exploits the compression-dedicated

architecture displayed in Fig. 1 [18], with the number of
filters reduction proposed in [1]. The input is the noisy
acquired image (I,,). In order to jointly perform denoising and
compression, the architecture parameters are learned through
the optimization of a specific loss function (different from the
one used in [1], [18]): the rate R(y) is the same but the
distortion D(Ins, Gs(Go(In))) now measures the similarity
between the reconstructed image Ins = G4 (Gq(I,)) and the
reference noise-free image I,¢ (instead of the input image).
The reconstructed image is thus expected to be denoised.

B. Sequential compression and denoising

The sequential compression and denoising approach exploits
two architectures: the compression-dedicated one detailed
in II-A (with two versions denoted respectively C-H when
featuring the hyperprior [18] and C-L when featuring the
Laplacian entropy model [1]), and the denoising-dedicated
architecture BRDNet, detailed in II-B ( [25]), from which we
expect also compression artifact reduction.

C. Denoising as a post-processing after joint compression and
denoising

Finally, the BRDNet denoising-dedicated architecture was
applied on ground to images that have already been jointly
compressed and denoised on board. This post-processing aims
at removing the remaining noise and the compression artifacts.

IV. EXPERIMENTS

To assess the relevance of the proposed approaches, experi-
ments were reconducted using Tensorflow. The CNES imaging
system [7] serves as a baseline for compression and denoising
performance.

A. Reference CNES imaging system

In the CNES imaging system, the acquired noisy image
I, is compressed onboard the satellite using a customized
version [32] of the CCSDS 122.0-B-2 standard [4], denoted
as C-CNES in the following. The compressed noisy image
is then transmitted to an Earth station, decompressed on
ground leading to I,, and then denoised. After decompres-
sion, the instrumental noise, which has been modified by
the quantization during compression, is restored [7]. The
VST [9] is then applied to the renoised image to transform the
signal dependent noise into an additive one. These operations
increase the performance of the subsequent customized NL-
Bayes denoising algorithm [5], which strongly depends on the
noise model. Finally, the inverse VST is applied [9].

B. Experimental setup

1) Datasets: Our training (resp. test) dataset is composed
of 112 (resp. 16) pairs of noise-free (I,¢) and noisy (I,) 12-bit
simulated Pléiades panchromatic images (of size 586 x 586)
covering various landscapes, provided by the CNES. The
instrumental noise is simulated according to [7]. For learning
the proposed compression-dedicated architectures, patches (of
size 256 x 256) randomly cropped from the noisy images (I,,)
of the training dataset are put at the network input and serve



as a reference for the distortion derivation. For learning the
proposed joint compression and denoising architectures, the
patches at the input of the network are the same as before
whereas homologous patches cropped from the noise-free
image I,,r serve as the reference for distortion derivation. For
learning the denoising-dedicated architectures, that proceed a
post-processing after compression (resp. after joint compres-
sion and denoising), patches of size 50 x 50, randomly cropped
from the noisy uncompressed images i, (resp. denoised un-
compressed images i,¢) are put at the network input wherea
homologous patches cropped from I, ¢ serve as the referenc
for the distortion derivation. Performance assessment of thes
three types of architectures uses the same configurations a
for their respective learning, however considering full image
of the test dataset, instead of patches.

2) Architecture dimensioning: For CD-H and C-H, N = 6.
and M = 320 for the main and side autoencoders (Fig. 1
according to the number of filter reduction proposed in [1].Th
filter kernel size is 5 x 5. C-L uses the same size main auto
encoder but the Laplacian entropy model [1] instead of th
side autoencoder. The convolutional layers of the denoising
dedicated architecture are composed of 64 filters with kerne
size 3 x 3 [25].

3) Training parameters: For learning the compression-
dedicated and the joint compression and denoising architec-
tures, the batch size was set to 8 and up to 2 million iterations
were performed. For learning the denoising-dedicated architec-
ture, the batch size was set to 20 and up to 500000 iterations
were performed [25]. MSE was used as the distortion metric
for training.

C. Performance analysis

1) In terms of rate distortion: The joint compression and
denoising architecture CD-H, the sequential compression and
denoising approach, C-H or C-L followed by BRDNet, and
the baseline, C-CNES followed by CNES-customized NL-
Bayes [5], are compared. Fig. 4 shows the rate-distorsion
performance averaged over the test dataset. The distorsion
is measured in terms of peak signal-to-noise ratio (PSNR)
(dB) between the output image inf and the noise-free im-
age I,¢. These experiments show that the proposed joint
compression and denoising architecture CD-H outperforms
the CNES baseline over the considered bit range between
2 and 3.7 bits/pixel. The advantage of the proposed joint
compression and denoising method reduces at higher rates.
Note that this architecture was also tested when replacing the
hyperprior autoencoder by the simpler uncorrelated Laplacian
entropy model proposed in [1], but without success. Indeed,
although the learned features are mostly Laplacian distributed,
the assumption of spatial independence is no longer valid.
Note however that the considered CD-H architecture [1] is
an already highly simplified architecture with respect to [18].
The sequential compression and denoising approaches (C-H
or C-L followed by BRDNet) performs similarly and even
better than the joint compression and denoising approach (CD-
H), particularly for the highest bit rates. The approach that

performs denoising as a post-processing to joint compression
and denoising (CD-H followed by BRDNet), performs slightly
better for rates between 2.2 and 3.2 bits/pixel. Besides, for this
bit rate range, it outperforms all the other approaches whereas
it performs similarly as the sequential approaches at high
rates. Finally, note that, simply replacing NL-Bayes algorithm
by BRDNet architecture on ground, in the CNES satellite
imaging system, leads to a gain in performance, without any
modification onboard.
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Fig. 4. Rate-distorsion curves (distorsion measured in terms of PSNR(dB)
between the output image I,¢ and the noise-free image I,,¢).

2) In terms of subjective image quality: Fig. 3 provides an
example of the uncompressed and denoised image, obtained
with the CNES baseline and with the proposed approaches for
similar rates. Even if all the methods perform satisfactorily,
the image obtained with the joint compression and denois-
ing approach CD-H is visually the closest to the noise-free
reference whereas the sequential approach (C-H followed by
BRDNet) tends to produce a slightly smoothed image. Note
that the current CNES pipeline also adds noise in areas where
intensity is low, as is not the case for the proposed approaches.

3) In terms of complexity: The complexity of the onboard
embedded architecture, involved in CD-H, C-H and C-L, has
been discussed in details in [1]. Concerning the denoising-
dedicated architecture, we will focus on time complexity. It
is indeed the more critical criterion on ground since it deter-
mines the pipeline throughput. BRDNet denoises in average
2.192 x 106 pixels per second on an NVIDIA Tesla V100
GPU with 32 GB onboard memory, whereas the reference
CNES-customized NL-Bayes denoises on average 0.073 x 105
pixel per second on an Intel i7-6700 HQ (2.6-3.5GHz) CPU
with 8 GB RAM [5]. Finally BRDNet, benefiting from the
GPU massively parallel architecture, denoises approximately
30 times faster than the CNES-customized NL-Bayes.

V. CONCLUSION

This letter proposed different learned approaches for satel-
lite image compression and denoising. On one side, the joint
approach performs compression and denoising with a single
architecture. One advantage is that intermediary steps existing
in the current CNES imaging system [7] can be eliminated.
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Fig. 3. Example result on a test image. (a) CNES—-C+NL-Bayes [7]. (b) C-H+BRDNet. (¢) CD-H. (d) Noise-free image (I,¢).

This approach is of interest for commercial applications
since it provides noise-free images without on ground post-
processing. On the other side, the sequential approach allows
to consider a splitting compatible with all the architecture
simplifications designed for onboard compression [1]. The
proposed approaches were shown to outperform the CNES
baseline in terms of rate-distortion, visual quality and compu-
tational time.
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