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Abstract. Adaptive Multi-Agent Systems (AMAS) transform dynamic
problems into problems of local cooperation between agents. We present
smapy, an ensemble based AMAS implementation for mobility predic-
tion, whose agents are provided with machine learning models in addition
to their cooperation rules. With a detailed methodology, we propose a
framework to transform a classification problem into a cooperative tiling
of the input variable space. We show that it is possible to use linear clas-
sifiers for online non-linear classification on three benchmark toy prob-
lems chosen for their different levels of linear separability, if they are
integrated in a cooperative Multi-Agent structure. The results obtained
show a significant improvement of the performance of linear classifiers
in non-linear contexts in terms of classification accuracy and decision
boundaries, thanks to the cooperative approach.

Keywords: Adaptative Multi-Agent System · Ensemble learning · Non-
linear classification.

1 Introduction

Supervised classification problems have been extensively addressed using ma-
chine learning algorithms called classifiers. These problems are generally not
linearly separable (i.e. the point clouds of the different classes are not separable
by hyperplanes). Moreover, in so-called dynamic problems, new classes appear
and disappear and the behavior of individuals evolves in time and space (e.g.
management of smart cities and the appearance of new transport modes and
behavior). Dynamic problems are often associated with ambient environments
in which new devices may appear or disappear dynamically [12, 16]. Many clas-
sifiers are themselves composed of multiple linear classifiers (i.e. whose decision
function is a linear combination of input variables) that they aggregate.

After positioning smapy with respect to machine learning techniques for clas-
sifier aggregation in section 2, we detail its operation in section 3. In section 4.2,
we show that our MAS is able, thanks to a space exploration by four types of
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linear classifiers and cooperation rules, to linear toy classification problems with
different levels of linear separability from the literature. We show through
this experiment that it is possible to transform a classification prob-
lem into a cooperation problem through the exploration of the space of
input variables. The results presented in section 5 are discussed in section 6.

The main contributions of this paper are:

– Smapy, an ensemble Multi-Agent System (MAS) for online non-linear clas-
sification based on the AMAS framework

– An experiment on three two-dimensional problems from litterature to eval-
uate the performance of our MAS for different levels of linear separability

2 Related work

In this section, we situate our approach among other machine learning meth-
ods based on aggregation of classifiers. After presenting their advantages and
weaknesses, we show that the AMAS approach is a constructivist and ensem-
ble learning method. We then detail how our approach meets the objectives of
online solving of dynamic problems through cooperative tiling of the input
variable space.

2.1 Aggregation of classifiers

Many non-linear classifiers aggregate several linear classifiers. We distinguish
two types of aggregation: connectionist and ensemble approaches. The resulting
algorithms can be self-constructing.

Connectionism The connectionist approach can be illustrated by a serial elec-
trical circuit. The input data passes successively through a chain of classifiers
and the decision function of the global classifier is a composition of the decision
functions of the internal classifiers. In supervised learning, the information on
the output goes back up the chain of classifiers in the opposite direction.

The connectionist approach is associated with artificial neural networks (ANN)
in which the information of the output data is fed back through the gradient
back-propagation algorithm [17]. The internal classifiers composing the neural
network are linear. A network is usually composed of several layers (multi-layer
perceptron). The multiplication of these layers is at the origin of deep learning.

The main limitation of the connectionist approach is the need for a large
number of observations to optimize the weights associated with each internal
classifier. In dynamic problems where the behavior of individuals evolves over
time, new data are generally not available in sufficient number to update the
learning model.
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Ensemble The ensemble approach is similar to a parallel electrical circuit. The
input data passes through several classifiers in parallel, and the output of the
decision function is an aggregation of the outputs of the decision functions of
each classifier.

Bagging is a learning technique combining the use of bootstraps and the
aggregation of prediction models. The assumption of bagging, inspired by the
law of large numbers, is that averaging the predictions of several independent
models reduces the variance and thus the error of the global prediction. The
Random Forest algorithm [2] uses binary decision trees by adding a random
draw of the input variables to be considered for each intermediate model.

Unlike bagging, boosting algorithms build a model sequentially from so-called
weak models. At each step, the bad points predicted by the previous model
are given a higher weight when training the current model. Adaptive Boosting
(AdaBoost) [18] uses binary decision trees with a single node and a single input
variable. In Gradient Boosting [11] and eXtreme Gradient Boosting (XGBoost)
[5], the weights of the points are no longer incremented but a cost function
minimized by gradient descent allows to aggregate intermediate models to the
global model.

Constructivism In self-constructing aggregation approach, the graph of inter-
nal classifiers (connectionist or ensemble) does not have a fixed structure. This
structure is built during the learning process and can evolve over time. When
changes to the classifier graph are made by the classifiers themselves, the system
is self-organizing.

Algorithms such as self-constructing neural networks [4] lie at the intersec-
tion of connectionism and constructivism, because the structure of the layers of
neurons is built incrementally.

Context-aware learning is a constructivist and almost ensemble approach. In
ELLSA [8], the Context agents can be seen as linear classifiers (although they
can only predict one class) with cooperative rules.

The constructivist approach allows us to design self-organizing non-linear clas-
sifiers suitable for solving dynamic problems. In this paper, we propose an en-
semble context-based learning MAS. In the following paragraphs, we situate our
contribution in the field of adaptative MAS.

2.2 Multi-Agent Systems

Multi-agent systems (MAS) are systems involving autonomous entities called
agents, capable of communicating in a common environment in which each has
its own perceptions and knowledge [10]. Each agent acts locally to get closer to
its objectives using its own skills.

Problem solving by MAS is the search for a balance in the interactions be-
tween agents. It is not the sum of the individual abilities of the agents, but rather
the product of their interactions, which leads to the emergence of new resolution
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abilities. This phenomenon of emergence is regularly invoked to justify the use
of MAS for the collective resolution of dynamic and complex problems.

Self-organization Self-organization is the capacity of a system to dynamically
modify its internal structure without external intervention [14]. Self-organization
is said to be strong when the modifications are not the consequence of a cen-
tralized decision. In the framework of MAS, the agents can modify the global
function of the system by acting on their local environment. This process of
adaptation to the dynamics of the problem is similar to machine learning when
the agents share a common goal.

The theory of adaptive multi-agent systems (AMAS) [3] proposes a cooper-
ative approach to interactions between agents. The design criteria presented for
these interactions guarantee a satisfactory, but not necessarily optimal, result in
the resolution of the problem at hand (functional adequacy theorem).

Context learning Context learning consists in exploring the space defined by
the input variables of the model using cooperating agents. The AMAS for con-
text learning (AMAS4CL) approach is based on the AMAS theory and more
particularly on the Self-Adaptive Context Learning (SACL) [1] paradigm to de-
fine the rules of cooperation between agents and proposes a structure composed
of several types of agents to explore the space of the problem variables. Algo-
rithms based on the SACL approach are used to solve various problems such as
learning by demonstration [20] or Inverse Kinematics [9] in robotics and opti-
mization of the operation of a heat pump [1]. SACL architectures are typically
composed of three types of agents:

– Context agents that define hypercubes of the input variable space. When a
new point belongs to one of these zones, the corresponding Context agent
is said to be activated and proposes a system decision according to its own
knowledge

– The Percept agents which retrieve the values of the input variables (sensors)
at each iteration and transmit them to the Context agents

– The Head agent which receives the proposals of the activated Context agents
and sends them feedbacks from oracle

A context learning MAS has two modes of operation: exploration (learning)
which consists in tiling the input variable space by instantiating and arranging
the Context agents thanks to the feedback from the Head agent, and exploitation
(prediction) which consists in taking a decision without updating the system.
The functioning of this architecture is presented in Fig. 1 for the cooperative
case in the exploration phase (i.e., the optimal functioning case). When the
behavior of the system is not optimal with respect to the user’s objectives,
the situation is said to be non-cooperative (NCS). The system must adapt to
maximize the cooperation between agents to return to the cooperative state. In
Context Learning, this cooperation is expressed in the sizes (i.e., the dimensions
of the hypercubes), positions and knowledge of the Context agents.
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Fig. 1. Cooperative operation of a SACL architecture in exploration phase

The SACL approach is adapted to dynamic problems (i.e. the system adapts
to changes in the distribution of the input data over time) and supports online
learning. Moreover, the position and size of the agents in the space of the input
variables provide additional information about the phenomenon under study and
a geometric interpretation.

3 Smapy

In our contribution, we provide each Context agent with an internal machine
learning model, linear or not, with the only requirement to support online learn-
ing. Each internal model is trained on the points that have activated the cor-
responding Context agent and thus constitutes a local modeling (in the sense
of the space of input variables) of the underlying function of the problem to
solve. This context learning MAS, smapy, has been implemented in python for
the industrial needs of the research project.

3.1 General principle

Like other SACL type architectures, smapy has two modes of operation:

– The exploration during which the mapping of the space of the input variables
is modified according to new available labelled observations

– The operation during which the system uses its coverage of the space of
input variables to classify a new point

In both cases, the operation of the system is iterative, and each cycle starts
with a new observation. During the exploration, the activated Context agents
update their internal model with the last observation after they have proposed
an output class to the Head agent and received feedback (positive or not). The
feedback received by a Context agent allows it to update its perception of itself
within the collective through a performance metric explained in the section 3.3.
It also allows him to know if he has a non-cooperative behavior with respect to
the objective of the system and, if necessary, to act on itself or its neighbors to
return to a cooperative state (c.f. section 3.4).
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3.2 Agents

In this section, we present the three types of agents involved in our SACL archi-
tecture, whose relationships have been described in Fig. 1.

Percept The p Percept agents collect the values of the p input variables of
each new observation and pass them to the Context agents. They also store the
observed extrema for each variable.

Context A Context agent l defines a hypercube in the p-dimensional space of
input variables. For each dimension j, it has two parameters rtl,j,0 and rtl,j,1 that
define the lower and upper bounds of an activation interval at iteration t. The
agent can compute at any time vl(T ), the volume of its activation hypercube at
iteration T , according to the following formula:

vl(T ) =

p∏
j=1

(rtl,j,1 − rtl,j,0) (1)

The Context agent also has a confidence level cl(T ) at iteration T , depending on
its history HT

l (set of its activation cycles since its creation), its class proposals
ŷtl t for observations yt on this history, and two external parameters F+ and F−
that respectively weight the positive and negative feedbacks of the agent Head:

cl(T ) =
∑
t∈HT

l

(F+ ∗ ⊮ŷt
l=yt − F− ∗ ⊮ŷt

l ̸=yt) (2)

From its two terms, we define the score sl(T ) of a Context agent at iteration T
using a normalization function Nc which is an external parameter of smapy :

sl(T ) = Nc ◦ cl(T ) (3)

Finally, the Context agent has an internal classification model learned from the
observations that activated it. The python implementation of smapy makes it
possible to use models in the scikit-learn fashion if they support online learning
to adapt the agent to new observations. For the rest of this paper, we define
several properties of Context agents:

Definition 1. (Expansion/retraction) A Context agent expands (resp. re-
tracts) by a factor α when it increases (resp. decreases) its boundaries to multiply
its volume by 1 + α (resp. 1− α).

Definition 2. (Push) A Context agent l1 pushes a Context agent l2 when l2
retracts so that the previous intersection of l1 and l2 is completely outside l2
(and thus contained only within l1).

Definition 3. (Absorption) A Context agent l1 absorbs a Context agent l2
when l1 expands to completely contain the area covered by l2 and the agent l2 is
destroyed.
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Definition 4. (Point exclusion) A Context agent l1 excludes an observation
y when l1 retracts so that y ends up outside l1. Point exclusion is controlled by
an external Boolean parameter E.

Definition 5. (Overlapping index) The overlapping index ol1,l2 is the ratio
of the volume of the intersection of two Context agents l1 and l2 to the minimum
of the volumes of these agents:

ol1,l2 = ol2,l1 =
vl1∩l2

min(vl1 , vl2)
(4)

Head The Head agent supervises the cooperation of the Context agents. At
each iteration, it selects the class proposed by the activated Context agent with
the highest score (and proceeds by vote in case of a tie) and sends feedbacks to
all the agents activated during the exploration phase (c.f. section 3.3). The Head
agent can also create new Context agents in case of system incompetence (c.f.
section 3.4).

3.3 Feedback

When the Context agents are activated, they propose a prediction to the Head
agent. The latter selects the prediction of the agent with the highest score.
During the exploration phase (learning), the Head agent sends feedbacks to the
Context agents which have proposed a prediction:

– If the prediction is good (with respect to the label of the new point), then
the confidence of the context agent increases by F+ and it expands by a
factor α (external parameter)

– If the prediction is bad, then the confidence of the context agent decreases
by F−. If point exclusion is allowed (i.e., E is true), then the context agent
excludes the new point. Otherwise, the Context agent’s local model is fine-
tuned with the new point (in the sense of online learning), and it retracts by
a factor α

3.4 Non-cooperative situations

The objective of AMAS is to transform the initial problem into a problem of
cooperation between agents. Non-cooperative situations (NCS) are states during
which the behavior of the system must evolve to reach the goal set by the user.
In context learning, this results in the rearrangement of the Context agents to
improve the tiling of the input variable space. In this section, we present and
schematize in Fig. 2 the three types of NCS that can occur during the operation
of smapy and their resolution.
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Fig. 2. Schematic of NCS (top row) and their resolution (bottom row) for Context
agents l1, l2 and l3 predicting classes A and B

Incompetence Incompetence occurs when no Context agent has been acti-
vated:

– Exploration: a new Context agent is created around the new point and any
NCS generated are resolved. The initial radius of the new agent is controlled
by an external parameter R

– Exploitation: the closest Context agent to the new point (in the sense of the
Euclidean distance between the point and the agent’s boundary) proposes
its prediction

Competition Competition occurs during the exploration phase when two acti-
vated Context agents propose the same prediction (in this case, the same class):

– If an overlapping threshold is defined through the external parameter O, and
if the overlapping index of the two agents is greater than this threshold, the
agent with the higher score absorbs the other

– Otherwise, the Context agent with the higher score pushes the other agent

Conflict Conflict occurs during the exploration phase when two activated Con-
text agents propose different predictions. The agent with the higher score then
pushes the other agent.

4 Comparison of linear classifiers alone with context
learning approach

In this section, we present the experiment of comparing four types of linear
classifiers and instances of smapy with these same models inside Context agents.
The linear classifiers used in this paper are :

– Logistic regression (ridge [13], LASSO [19] or ElasticNet [21])
– Linear Support Vector Machine (SVM) [7]
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– Passive Agressive algorithms [6] (PA-I and PA-II)

The motivation of this experiment is to verify if the transformation of a classi-
fication problem into a multi-agent cooperation problem allows to improve the
performances of the latter.

4.1 Input data

The experiment is conducted on three two-dimensional binary classification toy
datasets included in the scikit-learn library [15] and regularly used for model
comparison purposes:

– Moons: Two interleaved point clouds explained by the two variables (noise=0.3)
– Circles : A circular point cloud embedded in another ring-shaped cloud

(noise=0.2, factor=0.5)
– Linearly separable : Two point clouds with a linear boundary explained by

only one of the two variables

Each data set contains 100 points. They are centered and reduced using the
scikit-learn StandardScaler model before learning.

4.2 Experimental protocol

Table 1. List of value grids for the search
of optimal combinations of parameters of
the studied linear models (scikit-learn im-
plementation)

Parameter Grid of values

Logit & Linear SVM
alpha 0.0001 0.001 0.01
penalty l1 l2 ElasticNet

PA-I & PA-II
C 0.5 1.0 2.0

Table 2. List of value grids for finding the
optimal combinations smapy parameters

Parameter Grid of values

R 0.1 0.2 0.5
O 0.2 0.5
E False True
Nc Sigmoid
α 0.0 0.1 0.2
F+ 1.0
F− 0.5 1.0 2.0

Step 1 First, we search for the optimal combination of parameters for each of
the four linear classifiers among a grid of parameters presented in the table 1
using a five-fold cross validation.
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Step 2 Once these combinations are obtained, we search for the optimal combi-
nation of smapy parameters for each linear classifier among a grid of parameters
presented in the table 2 with a five-fold cross validation. The Context agents
of the smapy instances have as internal model the corresponding linear model,
trained with the parameters of its previously obtained optimal combination.

This protocol is repeated for each dataset to obtain 12 smapy instances and
12 corresponding linear classifier instances, all of which have been optimized by
cross-validation. The optimized smapy instances are then compared with the
linear classifiers using two evaluation metrics:

– Classification accuracy (multi-class) averaged over the five iterations of cross-
validation (step 1 for linear models, step 2 for smapy)

– Decision boundaries of the models (linear or smapy) trained with the best
parameter combinations obtained by cross-validation

5 Results

In this section, we present comparative results between linear classifiers alone
and smapy instances according to the two metrics introduced previously (section
4.2).

5.1 Classification accuracy

Table 3. Comparison of the classification accuracies obtained for each classifier alone
or inside smapy

Moons Circles Linearly Separable

Alone MAS Alone MAS Alone MAS

Logit 0.83 0.89 0.49 0.83 0.92 0.91
Linear SVM 0.86 0.89 0.53 0.83 0.90 0.91
PA-I 0.82 0.89 0.53 0.83 0.89 0.90
PA-II 0.84 0.87 0.53 0.83 0.89 0.89

Table 3 shows no significant difference in accuracy after switching to MAS
with the dataset Linearly separable. The linear classifiers already achieve a high
score despite the noise in the data.

For the other two datasets, we observe an improvement of the accuracy with
the smapy instances. In particular, we observe a ∼ 30% improvement for the
dataset Circles, for which the linear classifiers alone give a result close to chance
(50%). The poor performance of these classifiers is explained by the low lin-
ear separability of the dataset. However, we see that the integration of these
classifiers in an SMA allows to approach the quadratic boundary of the dataset.
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The accuracies obtained on the dataset Moons (intermediate case in terms
of linear separability) are slightly better with the MAS approach, but the linear
classifiers alone allow to obtain satisfactory scores.

5.2 Decision boundaries

Fig. 3. Decision boundaries and classification accuracy obtained for each dataset (rows)
and for each linear classifier alone or in a smapy instance (columns)

Fig. 3 shows that linear classifiers alone give linear boundaries that are suit-
able for the classification problem for the datasets Moons and Linearly separable.
The MAS approach on these two datasets reproduces this linear behavior in the
boundaries.

On the other hand, with the dataset Circles, the linear models alone are
unable to separate the two enclosed point clouds, contrary to the MAS approach.

6 Discussion

Using a MAS approach, the initial classification problem is solved locally at the
Context agent level. Thus, even if the agents have linear internal classifiers, they
have positioned and sized each other in such a way as to locally approximate a
non-linear boundary thanks to the various cooperation mechanisms presented in
the section 3.

However, the Context agents may have over-specialized locally by observing
homogeneous groups of individuals (in the sense of the class). The existence of
the point exclusion mechanism, although often selected by cross validation, tends
to reinforce this over-specialization of agents by excluding new class points from
their activation zones.

Nevertheless, the ideal behavior sought for smapy is to build Context agents
that cover homogeneous areas of the explored input variable space, notably for
reasons of explicability. There is therefore a trade-off between the geometric
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interpretability of the layout of the Context agents and the generalization of the
system to dynamic problems in which new classes may appear.

7 Conclusion

Our contribution lies at the intersection of the constructivist SACL pattern and
ensemble learning methods. Our contribution provides each Context agent with
an internal supervised classification model, as well as rules for cooperation with
other agents. By choosing linear models for the Context agents, we show that it
is possible to simplify a non-linear classification problem by transforming it into
a local cooperation problem within a context learning MAS. Our experimental
methodology allows us to observe a significant improvement of the classification
accuracy on non linearly separable datasets.

The next step is the use of smapy for dynamic real-world problems such
as smart city management with the guarantee of an interpretable prediction
compared to other state-of-the-art algorithms.

Our main research direction on smapy is the possibility to use different algo-
rithms in the internal models of the Context agents. The idea is to exploit the
strengths and weaknesses of different known algorithms to optimize prediction
quality at specific locations in the space where certain models perform best.

Finally, improvements in the operating rules of smapy are needed to avoid
over-specialization of the Context agents while maintaining the explicability and
stability of the system. For this purpose, the "severity" of the NCS correction
mechanisms can evolve according to the convergence of the agents’ layout to-
wards a supposedly optimal layout.
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