
HAL Id: hal-03773263
https://ut3-toulouseinp.hal.science/hal-03773263v1

Submitted on 9 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MINOTAuR: a Timing Predictable RISC-V Core
Featuring Speculative Execution

Alban Gruin, Thomas Carle, Christine Rochange, Hugues Cassé, Pascal
Sainrat

To cite this version:
Alban Gruin, Thomas Carle, Christine Rochange, Hugues Cassé, Pascal Sainrat. MINOTAuR: a
Timing Predictable RISC-V Core Featuring Speculative Execution. IEEE Transactions on Computers,
2023, 72 (1), pp.183-195. �10.1109/TC.2022.3200000�. �hal-03773263�

https://ut3-toulouseinp.hal.science/hal-03773263v1
https://hal.archives-ouvertes.fr

1

MINOTAuR: a Timing Predictable RISC-V Core
Featuring Speculative Execution

Alban Gruin, Thomas Carle, Christine Rochange, Hugues Cassé and Pascal Sainrat
IRIT - Univ. Toulouse 3 - CNRS

Toulouse, France
name.surname@irit.fr

Abstract—
We present MINOTAuR, an open-source RISC-V core designed to be timing predictable, i.e. free of timing anomalies: this property
enables a compositional timing analysis in a multicore context. MINOTAuR features speculative execution: thanks to a specific design
of its pipeline, we formally prove that speculation does not break timing predictability while sensibly increasing performance. We
propose architectural extensions that enable the use of a return address stack and of any cache replacement policy, which we
implemented in the MINOTAuR core. We show that a trade-off can be found between the efficiency of these components and the
overhead they incur on the die area consumption, and that using them yields a performance equivalent to that of the baseline RISC-V
Ariane core, while also enforcing timing predictability.

Index Terms—timing predictability, processor architecture.

✦

1 INTRODUCTION

The ever-growing performance requirements of embed-
ded real-time systems lead to implement them on multi-
core platforms. These platforms include several cores (which
may feature out-of-order execution, dynamic branch pre-
diction, speculative execution, private L1 caches) that share
resources such as L2 and L3 cache memories, or the memory
bus. However, their complexity challenges the analysis of
execution and response times, which is required to schedule
tasks in such a way that they all meet their deadlines (real-
time constraints). The difficulty comes from the fact that
tasks running simultaneously on different cores compete
to access shared resources, which engenders delays that
must be taken into account within the timing analysis. To
cope with the explosion of the number of possible execu-
tion scenarii where co-running tasks generate interleaved
accesses to shared resources, it is now commonly admitted
that a compositional approach [9] that decouples the analyses
of intra- and inter-core behaviors, i.e. execution time in
isolation on the one hand, and delays induced by task in-
terference on the other hand, is desirable. Estimating delays
due to interference means, for example, upper bounding the
demands of tasks to shared resources so as to estimate the
amount of delay a co-running task can suffer. These delays
can then be added to the local worst-case execution time
that is evaluated assuming the task is running in isolation.

However, when execution cores are complex, this ap-
proach might not be valid. This is due to so-called timing
anomalies [21]: a local best case situation (e.g. a cache hit)
does not necessarily lead to the global worst case (that is
the worst-case execution time of the task under analysis).
Timing anomalies are mainly related to possible instruction

This work was partially funded by the French National Research Agency
(ANR) under the “Investissements d’Avenir” ANR-11-LABX-0040 reference.

reordering within the pipeline. The consequence of the risk
of timing anomalies is that any additional delay due to task
interference should be precisely identified: the instruction
impacted by the delay should be known. This does not fit
compositional approaches that, instead of considering every
possible interleaving of tasks accessing a shared resource
(which is intractable due to the huge number of possibili-
ties), have a global view of the amount of conflicts and of the
total resulting delay. To summarize, timing anomalies are
a serious obstacle to the implementation of compositional
approaches and question the feasibility of accurate timing
analysis for multicore-based real-time systems.

To overcome these difficulties, the strictly in-order (SIC)
core [10] approach proposes (i) structural modifications
that suppress the risk of timing anomalies in an in-order
processor design and (ii) a modelling framework to formally
prove the good timing properties of the modified design.
The key idea in this approach is to impose a strict execution
order in which the progression of any instruction in the
pipeline depends only on how the previous instructions in
the code have already progressed. In-order pipelines that
enforce this property and do not implement speculative ex-
ecution are proven to be free of timing anomalies and timing
compositional: considering only the local worst cases leads
to a safe WCET, and delays due to multi-core interference
can be statically bounded and safely added to the WCET
of the interfering tasks. This allows trading off between the
precision and efficiency of the WCET analysis while keeping
its outcome sound. The SIC core is about 7% slower than the
original core.

Our objective in this paper is to leverage this approach
and its formal framework to a more complex core with a
higher baseline performance than the one used in [10]: the
open source RISC-V Ariane [27] core, which implements the

2

RISC-V instruction set and features some advanced mech-
anisms such as dynamic branch predictors and multiple
functional units that allow instruction parallelism. We call
our modified core the Mostly IN-Order Timing predictAble
pRocessor: MINOTAuR.

The key contributions are the following:
• we provide a formal model of the MINOTAuR core

obtained by applying some restrictions from the SIC on
the Ariane core, while keeping features such as branch
prediction. We prove its timing predictability and we
evaluate its performance on an FPGA: the loss is less
than 2% compared to Ariane.

• we introduce a design extension for caches and return
address stacks to support timing predictable specula-
tive execution.

This paper is an extension of [8]. The key differences are
the following:

• we present a modification of the Ariane core that makes
it faster. It also reduces the overhead between Ariane
and MINOTAuR. The modification is introduced in
Section 3.1, highlighted in Figure 1 and taken into
account in the model of Figure 3.

• we introduce novel mechanisms to handle LRU caches
and a Return Address Stack during speculative execu-
tion (Section 4.3). We also have synthesized our pro-
cessor onto an FPGA and present measured instead of
simulated performance. This also allows us to provide
information on LUT usage and maximum achievable
frequency for our core (Section 5).

The rest of the paper is organized as follows. Section 2
presents related work on timing predictable processors and
introduces the SIC approach in more details. Section 3
describes the architecture of the Ariane core and shows an
example of a timing anomaly. In Section 4, we introduce
the MINOTAuR core, prove its timing predictability, and
present hardware extensions for caches and return address
stacks. We evaluate our design in Section 5. Finally, Section 6
concludes the paper and presents some perspectives.

2 RELATED WORK

2.1 Timing predictability

A processor is said timing predictable when there are no
timing anomalies and it is timing compositional [10].

A timing anomaly is a situation where a local worst case
(e.g. conservatively considering a cache access as a miss)
does not lead to the global worst case (i.e. the execution
time with that assumption is not the longest one) [17].
This makes the timing analysis more complex since all the
possible situations have to be considered. Several authors
have investigated this, putting forward several definitions
and means to detect whether a processor is prone to such
timing anomalies [1], [4], [6], [21], [25]. It turns out that
most of off-the-shelves cores, even the simplest ones, may
suffer from timing anomalies. This motivates the design of
timing-anomalies-free processors (see Section 2.2).

Timing compositionality simplifies the timing analysis
of a multi-core system [13]. It avoids a very complex fully-
integrated system analysis in favor of a combination of
analyses of individual components. An approach to sound

and precise compositional timing analysis for multicore
systems is proposed in [9].

2.2 Timing predictable processor architectures

Several ways have been considered to favor timing pre-
dictability in hardware platforms [2], [19], [20].

The Kalray MPPA-256 processor [3] has been designed
with timing predictability in mind. In addition to its VLIW
architecture (initially motivated by energy considerations),
architectural features are supposed to fit the capabilities of
WCET analysis: LRU-replacement caches, in-order execu-
tion, prevention of pipeline hazards, and absence of branch
prediction.

PTARM [15] is an implementation of a precision-timed
(PRET) machine [16]. It employs a repeatable thread-
interleaved pipeline. Timing predictability is achieved at
the cost of degraded performance for individual threads,
while the instruction throughput is maintained over the set
of active threads.

Patmos [23] features a statically-scheduled (VLIW) dual-
issue pipeline and specific timing analysable caches, such as
the method and stack caches. It has been used to build a real-
time-aware multicore system in the T-CREST project [22].
Although it has been designed to be timing predictable, this
has not been formally proven to the best of our knowledge.

In [10], [11], Hahn and Reineke introduce SIC, a strictly
in-order core, and show that it is free of timing anomalies
and timing compositional. Their formal framework used to
prove these two properties is summarized in Section 2.3. SIC
is a simple 5-stage in-order pipelined processor in which
the instruction fetch is gated in order to guarantee that an
instruction can never be delayed by a younger instruction.

2.3 A formal framework to prove timing predictability

A framework to express the concrete semantics of a pro-
cessor pipeline is proposed in [12]. It relies on the concept
of progress of an instruction within the pipeline, defined as
the pipeline stage the instruction resides in and the number
of cycles remaining to complete the stage. If S is the set
of pipeline stages, the progress of an instruction belongs to
P := S × N0. A pipeline state can then be described by the
subset C ⊆ I → P , where I is the sequence of executed
instructions. With a partial order ⊏S on S , it is possible to
define an order ⊑P on P :

∀(sa, na), (sb, nb) ∈ P,

(sa, na) ⊑P (sb, nb) :⇔ sa ⊏S sb ∨ (sa = sb ∧ na ≥ nb)

Considering the execution of a given sequence of instruc-
tions I , pipeline state cb has at least the progress of ca if
every instruction in I has a better (or same) progress in cb
than in ca :

ca ⊑ cb :⇔ ∀i ∈ I . ca(i) ⊑P cb(i)

where c(i) denotes the progress of instruction i in state c.
The behaviour of the pipeline is specified by the function
cycle : C → C that relates a pipeline state to its successor.

In [10], this framework is used to model the behaviour
of the SIC pipeline. The progress of an instruction i after
one clock cycle is specified as a function of the current

3

pipeline state c: the instruction may remain in its current
stage or advance to the next stage (s = c.nstg(i)) when it is
ready to (c.ready(i)) and if that stage is clear of any previous
instruction (c.free(s))

Based on this model, the authors prove the following
major property for the SIC processor.

Property 1. Update Enable. Let ca and cb be two pipeline states,
i ∈ I be an instruction with equal progress in ca and cb (ca(i) =
cb(i)), and all instructions j < i have progressed more in cb than
ca (ca(j) ⊑P cb(j)). If i advances to the next pipeline stage in
ca, it advances in cb as well:{

ca.ready(i) ⇒ cb.ready(i)
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

Several lemmas and theorems follow from this sole
property and are thus valid for any processor that meets the
property. We reformulate them below to reflect that. Proofs
can be found in [10].

Lemma 1. Progress Dependence. When Property 1 holds, the
progress of an instruction i only depends on the progress of
previous instructions (and never on the progress of subsequent
instructions):

∀ca, cb ∈ C : [∀i : (∀j ≤ i :

ca(j) = cb(j)) ⇒ cycle(ca)(i) = cycle(cb)(i)]

Lemma 2. Positive Progress. When Property 1 holds, the
successor of a pipeline state c has more progress than c:

∀c ∈ C : c ⊏ cycle(c)

where ∀ca, cb ∈ C, ca ⊏ cb ⇔ ca ⊑ cb ∧ ¬(cb ⊑ ca)

This formulation is a generalization of Lemma 2 in [10]
to any in-order pipeline that enforces Property 1. The proof
arguments of [10] hold in this more general context.

Theorem 1. Monotonicity. The cycle behavior of a processor
that satisfies Property 1 is monotonic:

∀ca, cb ∈ C : ca ⊑ cb ⇒ cycle(ca) ⊑ cycle(cb)

Theorem 2. Let i ∈ I be an arbitrary instruction, and pipeline
states ca, cb ∈ C be such that ca ⊑ cb. Then:

f(ca, i) ≥ f(cb, i)

where f(c, i) is the finish time of instruction i starting from
pipeline state c recursively defined as:

f(c, i) :=

{
0 : c(i) = (post, 0)
1 + f(cycle(c), i) : otherwise

with post being a fictive pipeline stage that contains all the
instructions that have left the pipeline.

Following these theorems, the authors of [10] demon-
strate that the SIC processor is free of timing anomalies
with respect to uncertain cache behaviour, and timing-
compositional with respect to uncertain cache behaviour
and uncertain latency to the main memory. Uncertainties
are reflected in the processor model by:

• ichit(i) (resp. dchit(i)): true if instruction i results in an
instruction (resp. data) cache hit

• memlatf/d: memory latency in case of an instruction
(resp. data) cache miss for instruction i

Theorem 3. Anomaly freedom with respect to cache uncer-
tainty. Let two valuations of dchit (or ichit) be given that differ
for an arbitrary instruction i ∈ I . The valuation that predicts a
cache miss, i.e. the local worst case, will lead to a finishing time
at least as high as the valuation that predicts a cache hit, i.e. the
local best case.

We reformulate the proof of this theorem here to make it
more general.

Proof. Let c be the state that splits upon the cache uncer-
tainty of instruction i, leading to the hit-case successor state
cb and miss-case successor cw. Without loss of generality, we
consider a data cache miss. We need to show that cw ⊑ cb,
which, with Theorem 2, proves Theorem 3.

• Due to Lemma 1, the progress of instructions j < i
does not depend on the uncertainty of instruction i, so
cb(j) = cw(j).

• For instruction i, we know that cw(i) ⊑P cb(i). In
practice, if s is the pipeline stage where the access
to the cache is performed, cb(i) = (s, lathit) and
cw(i) ⊑P (s, latmiss) with lathit < latmiss. Note that
cw.stg(i) ⊏S s is possible if accessing the memory to
load data into the cache upon a miss is stalled by an
older instruction, e.g. a store.

• For instructions k > i, cw(k) ⊑P cb(k) follows from the
fact that cb.ready(k) is true if cw.ready(k) is true. Thus
if k has progressed in cw, it has progressed in cb as well.

Theorem 4. Compositionality with respect to latency pro-
longation. Let two valuations of memlatd (or memlatf) be
given that differ by p cycles for an arbitrary instruction i ∈ I , e.g.
due to shared bus blocking. The valuation that predicts a longer
latency leads to a finishing time at most p cycles higher than the
valuation that predicts the shorter latency.

The proof does not depend on the processor (provided it
fulfills Property 1) and is given in [10].

Theorem 5. Compositionality with respect to cache uncer-
tainty. Let two valuations of dchit (or ichit) be given that differ
for an arbitrary instruction i ∈ I . The valuation that predicts a
cache miss will lead to a finishing time at most p cycles higher
than the valuation that predicts a cache hit. For the SIC processor,
p is twice the memory latency for a data cache miss with a
write-through policy and five times the memory latency for an
instruction cache miss.

The proof given in [10] is specific to the SIC processor.

2.4 Hardware state buffering mechanisms
In Section 4.3 we present hardware mechanisms to save the
state of the Return Address Stack and of the instruction
cache during speculative execution. These mechanisms rely
on backup copies that are later committed or discarded
when the corresponding branch instruction is resolved. Sim-
ilar mechanisms were suggested in [14] but, to the best of
our knowledge, they were not implemented. InvisiSpec [26]
is an alternative mechanism that stores speculative loads
in a buffer, but is suited for data caches in out-of-order
processors, committing the loaded values step by step after
each load. Our solution targets instruction caches instead,

4

PC

CO

fqueue iqueue

squeue

EX
IF ID IS ALU

MUL1

CSR

DIV

LSU

MUL2

LU

SU

mqueue

ST

Fig. 1: Model of the Ariane+ core pipeline.

and protects the age of the cache blocks as well as their
contents. Moreover, in our solution, commits occur only
when speculative branches are resolved.

3 A BASELINE RISC-V CORE

Our baseline core is a slightly modified version of the Ariane
core [27], a 6-stage in-order RISC-V processor.

3.1 The original Ariane architecture
The structure of the Ariane core is depicted in Figure 1. The
address of the next instruction to be fetched is computed in
the first stage (PC). The instruction fetch (IF) stage hosts a
branch predictor composed of a branch history table (BHT),
a branch target buffer (BTB), a return address stack (RAS),
and a static predictor (forward branches are predicted not
taken, backward branches are predicted taken) which is
used if the counter in the BHT has never been updated.
The BHT and the BTB are updated each time a branch is
resolved by the branch unit (i.e. when it reaches the end
of the execution stage). Fetched instructions enter a 4-slot
instruction queue (fqueue) which they exit in the instruction
decode (ID) stage.

An 8-slot scoreboard holds all decoded instructions until
they are committed. The issue stage (IS) inserts instructions
into the scoreboard and dispatches them to the appropriate
functional unit (FU)

The execution stage consists of a load-store unit (LSU),
an ALU, a multiplier/divider and a CSR unit (that executes
the instructions that access Control/Status Registers). The
last three units are seen as a single functional unit by
the issue stage: the Fixed Latency Unit (FLU)1. The ALU
executes instructions in one cycle. Conditional branches are
handled by a branch unit that uses the ALU to perform
comparisons. The multiplier/divider is composed of a 2-
stage multiplier and a non-pipelined, variable latency (2 to
64 cycles) divider.

The LSU is in front of a load unit (LU) and a store unit
(SU). All memory instructions spend at least one cycle in
the queue (mqueue which can hold at most 2 instructions)
of the LSU before being dispatched to the LU or the SU. The
LU sends a request to the data cache as soon as it receives
a valid instruction whereas the SU keeps instructions in a

1. Even though the divider has a variable latency.

4-slot store buffer. Additionally, atomic operations are kept
in a separate buffer (AMO) of size one.

This design allows executing multiple instructions in
parallel with the following restrictions:

• they do not depend on each other
• their functional units do not share the same bus to write

their results to the scoreboard, which prevents conflicts
by design. The LU and SU share a bus, and the rest of
the FUs share another bus.

• ALU, multiplier/divider and CSR instructions cannot
be dispatched as long as a CSR instruction is pending

• the SU cannot accept any instruction as long as the
AMO buffer is not empty. The LU cannot accept any
instruction as long as the AMO and store buffers are
not empty.

An instruction is allowed to enter the IS stage only if it is
guaranteed that its FU will be available in the next cycle.

When an instruction has completed its execution, it
remains in the scoreboard until it is the oldest instruction
there. It is then processed by the commit stage (CO): results
are written back to the register file, accesses to the CSR
register file are performed, and entries in the store buffer
are allowed to be written to the memory.

The baseline version of Ariane that we use implements
the RV32IMAC instruction set [24]. It does not rename
registers, has no MMU, no FPU, and has a single commit
port.

Releasing constraints on the functional units bus: Ariane+

As mentioned earlier in this section, the functional units
composing the FLU do not have the same latency. To avoid
collisions on their shared bus (to write their results to
the scoreboard), the scoreboard prevents instructions from
entering the IS stage if they may spend more than one cycle
in it (because their functional unit is currently in use) or
whenever there is a risk that they request the bus at the
same time as a pending instruction in the FLU units. This
causes a slight decrease in performance.

We reduced the performance impact of this design by
allowing instructions to enter the IS stage as long as the
scoreboard is not full. In order to prevent collisions, we
added a new write port to the scoreboard as well as a new
bus dedicated to the ALU and the CSR, thus allowing the
ALU or the CSR and the MUL/DIV units to write their
results in parallel if needed. This mechanism guarantees that
instructions leaving their functional unit cannot be delayed
by younger instructions. In the remainder of the paper,
we call Ariane+ the version of the core that includes these
modifications.

3.2 Memory bus conflicts in the Ariane+ core
A source of timing anomalies for in-order cores is when an
instruction (e.g. a load or a store) that needs to access the
memory bus is delayed by a subsequent instruction (typi-
cally when the code of this instruction is fetched from the
memory) [13]. We refer to this phenomenon as an inversion.

We illustrate how inversions can lead to timing anoma-
lies in Figure 2. This figure displays the execution timing of
a simple sequence composed of 6 instructions in the pipeline
of Ariane+. We added a retire (RE) stage in order to show

5

IF
ID
IS

FLU
LSU
CO
RE

EX

1 2 3 4 5

MISS MISS

DIV.

6MISS

t0 35 37
RE
CO
LSU
FLU

IS
ID
IF

EX

1 2 3 4 5 6MISS

H MISS

DIV.

2 cycles

Fig. 2: Example of a timing anomaly on the Ariane processor.

that the instructions are retired in order. Instructions 1 and
4 are memory loads, instruction 5 is a division and a data
dependency exists between instructions 4 and 5 (one of the
operands of the division is loaded by instruction 4). The
rest of the instructions (2, 3 and 6) are integer additions.
We assume that instruction 6 leads to a cache miss in the
FE stage and that instruction 4 leads to a cache miss in the
MEM stage.

At the top of Figure 2, we display the execution timing
of the sequence if instruction 1 leads to a miss in the
data cache (in the MEM stage). This miss blocks the fetch
of instruction 6 (because instruction 6 leads to a miss in
the instruction cache). When instruction 1 leaves the MEM
stage, instruction 4 enters it and also produces a miss in
the data cache. This miss further postpones the fetch of
instruction 6, because in case of simultaneous access, the
data cache has priority over the instruction cache on their
shared bus.

At the bottom of Figure 2, we display the execution of
the same instruction sequence when instruction 1 leads to
a hit in the data cache. Instruction 6 leads to a miss in the
instruction cache at cycle 5. Then, instruction 4 must wait for
instruction 6 to free the bus before it can enter the memory
stage: this is an inversion. Since instruction 5 depends on
the value loaded by instruction 4, it cannot enter the issue
stage until cycle 21.

This example shows a timing anomaly in the Ariane
core: a data cache miss for instruction 1 leads to an exe-
cution time of 35 cycles for the sequence, while a cache hit
for the same instruction leads to an execution time of 37
cycles. Note that an inversion does not necessarily generate
a timing anomaly in practice, but the fact that inversions
happen makes it difficult to prove the absence of timing
anomalies.

We added a new hardware counter (CSR) to the Ariane+

processor to count for inversions and used the methodology
described in Section 5.1. Over 52 TACLe benchmarks, 20 had
inversions during their execution on the FPGA. This reveals
that Ariane+ is subject to timing anomalies and motivates
our work to make it timing predictable.

4 MINOTAUR: A TIMING PREDICTABLE CORE

4.1 Enforcing timing predictability

The MINOTAuR processor is obtained from the Ariane+

core by applying some restrictions to the pipeline. As stated
earlier, the key idea to enforce timing predictability is to
ensure that no instruction can be delayed by subsequent
instructions. In Ariane+, this amounts to suppressing in-
versions on the memory bus. To do so, we modified the
IF stage so that it blocks instruction fetches when they
are not already in the instruction cache and there is a
pending memory instruction in the pipeline. Additionally,
speculative execution is also blocked at the IF stage, unless
the instruction is already in the instruction cache. This way,
the instruction cache cannot send a request on the memory
bus speculatively or when a memory instruction is already
in the pipeline: we can guarantee the absence of inversions
on the bus while tolerating a certain level of speculative
execution.

We start by providing the formal model of MINOTAuR,
and then prove its timing predictability in the presence of
speculative execution.

4.2 Formal model and proofs

4.2.1 Definitions
Each instruction i ∈ I is characterized by its category
opc(i) ∈ {branch, store, load, atomic,mul, div, csr} and by
predicates that reflect the outcome of the cache analysis:
ichit(i) (resp. dchit(i)) is true if the cache analysis has
determined that instruction i resides in the instruction cache
(resp. the data accessed by instruction i resides in the data
cache).

The complete formal model of the MINOTAuR core is
shown in Figure 3. This model specifies the pipeline struc-
ture2 and the cycle function with the help of the following
auxiliary predicates and functions that are defined for a
given pipeline state c ∈ C:

• c.isnext(i, s): true if instruction i is the oldest in stage s

2. The pre (resp. post) stage hosts instructions that have not yet
entered (resp. have left) the pipeline.

6

• c.nstg(i): next pipeline stage for instruction i. It de-
pends on its current stage and sometimes on its cate-
gory.

• c.cnt(i): number of cycles that instruction i still has to
spend in the stage it currently resides in.

• c.nlat(i): latency of instruction i in its next pipeline
stage. Only memory instructions and divisions have a
non-zero latency in their functional unit. The latency of
an instruction fetch is determined by the latency to the
main memory in case of a cache miss.

• c.pending(i, op): true if an instruction of category op
and older than i has not been completely processed
in a given stage defined by lstg(op). lstg(op) maps
each category of instruction op to the last stage before
committing such an instruction. Stores and atomic in-
structions are pending until they have been sent to the
memory (in stage ST). Instructions accessing hardware
counters (csr) are pending until they are committed.
All other instructions are pending until they have been
processed by their functional units.

• c.ready(i): true if instruction i is ready to advance to
the next pipeline stage. For most of the pipeline stages,
an instruction is ready when it has been completely
processed by the stage and when it is the oldest one in
the stage (this condition is required for stages that host
several instructions). In addition, there are restrictions
to advance from PC to IF (no pending branch, and if the
instruction misses in the cache, no pending memory
instruction), from ID to IS (the instruction is stalled if a
csr instruction is pending, or if a dependency exists with
a previous instruction – modelled by the dep(i1, i2)
predicate – which has not reached the CO stage yet),
and from LSU to LU or SU (loads are stalled by pending
stores, and loads and stores are stalled by pending atomic
instructions).

• c.slot(s): for any pipeline stage s that inserts instruc-
tions in a queue/buffer, true when the queue/buffer
will have a free slot in the next clock cycle. This is
determined by counting the number of instructions that
reside between the entering and leaving pipeline stages
and by checking whether an instruction that is already
in the queue will leave it and release a slot. The size
of the fqueue (resp. mqueue , iqueue , squeue) is denoted
fq size (resp. mq size, iq size, sq size) in the model.

• c.free(s): true if stage s can accept a new instruction in
the next clock cycle. Some of the stages always accept
instructions, either because they can host several of
them or because they keep instructions for a single
cycle. Other stages insert instructions in a queue, and
it must be guaranteed that this queue has a free slot.
Finally, for other stages, one checks whether the instruc-
tion they currently host will be able to advance to its
next stage.

The MINOTAuR core features several instructions
queues that improve its throughput. We model them by
considering that an instruction that resides in a queue stays
in a given pipeline stage when it is not currently processed.
For example, fetched instructions are inserted in the fqueue
in stage IF and remain there until they enter the ID stage. The
scoreboard is represented by the iqueue which instructions

enter in IS and leave in stage CO. Similarly, memory instruc-
tions enter the mqueue in stage LSU and leave it when they
advance to the LU/SU unit. The store buffer is modeled as
an instruction queue, squeue , and a fictive store stage (ST)
that represents the actual sending of write requests to the
memory. All this means that we allow several instructions
to reside in the same stage, even if only the youngest one
is effectively processed by the stage. We keep track of the
number of instructions in each stage using set cardinals (#).
Pipeline stages that can host several instructions (one being
effectively processed and the other being only hosted) are
shown in light red in Figure 1.

4.2.2 Timing predictable speculative execution

As pointed out in Section 3, MINOTAuR features a branch
predictor which is the support for speculative execution. We
say that an instruction is speculated if the pipeline contains
an older, still unresolved branch. We say that the instruction
is misspeculated if the unresolved branch has been mispre-
dicted, i.e. if the instruction belongs to the wrong path.
In order to deal with mispredictions, we introduce a new
predicate, pwrong(i) that works in the same way as ichit(i)
and dchit(i). The predicate pwrong(i) is true whenever
instruction i is misspeculated. Using this predicate, any mis-
speculated instruction that has already entered the pipeline
is directly flushed to the post stage (i.e. exits the pipeline
without being executed or committed) as soon as the branch
has been resolved. In the ready function, an instruction i is
allowed to enter the IF stage even speculatively as long as
ichit(i) is true. On the contrary, if the instruction is going to
cause a miss in the instruction cache, it is stalled in the PC
stage as long as a branch or a memory (load , store , atomic)
instruction is pending.

Allowing some instructions to enter the pipeline specula-
tively does not affect the timing predictability of the core as
long as these speculated instructions do not modify the state
of the hardware (except for the pipeline contents). In that
regard, the RAS incurs a difficulty: it is updated in the early
stages of the pipeline, before knowing if the corresponding
function call itself is executed as part of a mispredicted
branch. Moreover, the effect of speculated instructions on
the instruction cache contents and inner state (e.g. blocks
ages) must be considered. As MINOTAuR lets instructions
enter the IF stage speculatively only when they result in
a hit in the instruction cache, its contents are not modified
during speculative execution. However, if the cache features
an aging mechanism (e.g. an LRU cache), its state may be
modified by a hit during the speculation.

In the next section, we will prove the timing predictabil-
ity of the MINOTAuR core, assuming two important restric-
tions: (i) that the RAS is disabled, and (ii) that the effect
of cache hits on the instruction cache state is transparent
to usual cache analysis [18] i.e. cache hits do not affect the
cache state in a way that is not modeled by the analysis
(e.g. direct-mapped or random caches such as the ones
implemented in Ariane). We will then describe and evaluate
general mechanisms that can be added to any RAS or cache
in order to lift these restrictions.

Additionally, as speculated store instructions cannot per-
form their write to memory (in stage ST, i.e. after stage CO)

7

S := {pre, PC, IF, ID, IS, ALU, MUL1, MUL2, DIV, LSU, LU, SU, CSR, CO, ST, post}
pre ⊏S PC ⊏S IF ⊏S ID ⊏S IS ⊏S {ALU, MUL1, LSU, CSR, DIV} ⊏S {MUL2, LU, SU} ⊏S CO ⊏S ST ⊏S post

cycle(c)(i) :=

{
(c.nstg(i), c.nlat(i)) : c.ready(i) ∧ c.free(c.nstg(i))
(c.stg(i), c.ncnt(i)) : otherwise

c.isnext(s, i) := c.stg(i) = s ∧ ∀j < i . c.stg(j) ⊐S s

c.ncnt(i) :=

{
c.cnt(i)− 1 : c.cnt(i) > 0
0 : otherwise

c.pending(i, op) := ∃j < i . opc(j) = op ∧ c(j) ⊏P (lstg(op), 0)
c.nlat(i) :=

memlatf (i) : c.nstg(i) = IF ∧ ¬ichit(i)
memlatd(i) : (c.nstg(i) = LU ∧ ¬dchit(i))

∨c.nstg(i) = ST
exlat(i) : c.nstg(i) = DIV
0 : otherwise

c.nstg(i) :=

{
post : c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i)

c.nstg′(i) : otherwise

c.nstg′(i) :=

PC : c.stg(i) = pre
IF : c.stg(i) = PC
ID : c.stg(i) = IF
IS : c.stg(i) = ID
LSU : c.stg(i) = IS ∧ opc(i) ∈ {load, store, atomic}
LU : c.stg(i) = LSU ∧ opc(i) = load
SU : c.stg(i) = LSU ∧ opc(i) ∈ {store, atomic}
MUL1 : c.stg(i) = IS ∧ opc(i) = mul
MUL2 : c.stg(i) = MUL1
DIV : c.stg(i) = IS ∧ opc(i) = div
CSR : c.stg(i) = IS ∧ opc(i) = csr
ALU : c.stg(i) = IS ∧ opc(i) /∈ {load, store, atomic,mul, div, csr}
CO : c.stg(i) ∈ {ALU, MUL2, DIV, CSR, LU, SU}
ST : c.stg(i) = CO ∧ opc(i) ∈ {store, atomic}
post : (c.stg(i) = CO ∧ opc(i) /∈ {store, atomic}) ∨ (c.stg(i) = ST)

lstg(op) :=

LU : op = load
ST : op = store
ST : op = atomic
IS : op = mul
DIV : op = div
CO : op = csr
ALU : op = branch

c.ready(i) := (c.stg(i) ̸= pre ∧ ¬c.pending(i, branch) ∧ pwrong(i))

∨ (c.cnt(i) = 0 ∧ c.isnext(c.stg(i), i))

∧(c.stg(i) = PC ⇒ (ichit(i)

∨(¬c.pending(i, branch) ∧ ¬c.pending(i, load) ∧ ¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

∧ (c.stg(i) = IS ⇒ (opc(i) /∈ {load, store, atomic} ⇒ ¬c.pending(i, csr))
∧ (opc(i) ∈ {mul, div} ⇒ ¬c.pending(i, div))
∧ (∀j < i.dep(i, j) ⇒ c.stg(j) ⊒S CO)))

∧ (c.stg(i) = LSU ⇒ (opc(i) ∈ {store, atomic} ∧ ¬c.pending(i, atomic))

∨ (opc(i) = load ∧ (¬c.pending(i, store) ∧ ¬c.pending(i, atomic))))

c.free(s) := s ∈ {ALU, MUL1, CSR, MUL2, CO, post}
∨ (s ∈ {IF, IS, LSU, SU} ∧ c.slot(s))

∨ (s ∈ {PC, ID, DIV, LU, ST} ∧ ((¬∃j . c.stg(j) = s) ∨ (∃j . c.stg(j) = s ∧ c.ready(j) ∧ c.free(c.nstg(j)))))

∨(∃i.c.stg(i) = s ∧ pwrong(i) ∧ ¬c.pending(i, branch))

c.slot(IF) := ((#{j|c.stg(j) = IF} < fq size) ∨ c.free(ID)) ∧ ∀j.c.stg(j) = IF ⇒ c.cnt(j) = 0
c.slot(IS) := #{j|IS ⊑S c.stg(j) ⊑S CO} < iq size ∨ (∃j′ . c.isnext(CO, j′) ∧ c.ready(j′) ∧ (opc(j′) ∈ {store, atomic} ⇒ c.free(ST)))
c.slot(SU) := #{j|opc(j) = store ∧ LSU ⊏S c.stg(j) ⊏S post} < sq size ∨ ∃j′ . c(j′) = (ST, 0))
c.slot(LSU) := #{j|c.stg(j) = LSU} < mq size

∨ (∃j′ . c.isnext(LSU, j′) ∧ ((opc(j′) = load ∧ c.free(LU)) ∨ (opc(j′) ∈ {store, atomic} ∧ c.free(SU))))

Fig. 3: Model of the MINOTAuR core.

before the corresponding branch instruction is resolved, we
do not need to consider the effect of stores in our proofs.

4.2.3 Timing anomaly freedom proofs

We start by proving that caches cannot be modified by
speculated instructions.

Let c ∈ C be a pipeline state and i ∈ I be an instruction.
The state of the instruction or data cache might be modified
by i if and only if the following predicate is true:

c.cmod(i) := (c.stg(i) = IF ∧ ¬ichit(i))
∨ (c.stg(i) = LU ∧ ¬dchit(i))

Theorem 6 (Absence of cache state modification during
speculation). ∀i ∈ I,∀c ∈ C, c.pending(i, branch) ⇒
¬cycle(c).cmod(i)

Proof. Let i ∈ I and c ∈ C. By definition, cycle(c).cmod(i)
is equivalent to:

(cycle(c).stg(i) = IF ∧ ¬ichit(i)) (1)

∨(cycle(c).stg(i) = LU ∧ ¬dchit(i)) (2)

We will show that none of these terms hold.
Let us first assume that c.stg(i) ⊏S PC. Then trivially,
cycle(c).stg(i) ⊏S IF. Let us now consider c ∈ C such
that c.stg(i) = PC and c.pending(i, branch). Let us also
assume that ¬ichit(i) (otherwise (1) does not hold). Since
c.pending(i, branch) ∧ ¬ichit(i) ⇒ ¬c.ready(i), we deduce
that cycle(c).stg(i) = PC. We can recursively apply the
same argument to prove that for all states c′ such that
c′.pending(i, branch), cycle(c′).stg(i) ⊏S IF. From this we
conclude that (1) does not hold.

8

Now let us consider again i ∈ I and c ∈ C such that
c.pending(i, branch). By definition of pending, we know
that ∃jbr < i . opc(jbr) = branch ∧ c(jbr) ⊏P (ALU, 0).
Then, given the structure of the pipeline, we can deduce
that c.stg(i) ⊑S c.stg(jbr) ⊑S IS. If c.stg(jbr) ⊏S IS, then
trivially cycle(c).stg(i) ⊏S LSU and (2) does not hold. If
c.stg(jbr) = IS, then necessarily c.stg(i) ⊏S IS and once
again cycle(c).stg(i) ⊏S LSU, so (2) cannot hold.

Since this proof does not make any assumption on the
position of jbr in case of nested branch predictions, Theo-
rem 6 remains valid for any instruction i as long as there
exists an unresolved branch instruction that precedes i.

In this proof we showed that no memory access is
performed speculatively: it results that (i) no request to the
memory can be initiated by a speculated instruction and
thus no memory request started speculatively is pending
at the time when the corresponding branch is resolved, (ii)
speculated instructions are not subject to multi-core interfer-
ence and (iii) uncertain outcomes of the cache analyses can
be treated as part of the non-speculative execution.

We now prove that MINOTAuR fulfills Property 1. We
focus on the blue parts of the model since it is specific
to speculation. We prove that the rest of the model fulfills
Property 1 in the appendix.

Theorem 7 (Update enable in MINOTAuR). The MINO-
TAuR core satisfies Property 1.

Proof. Let ca, cb ∈ C be two pipeline states and i be an in-
struction such that ca(i) = cb(i)∧ (∀j < i, ca(j) ⊑P cb(j))).
We must prove that:{

ca.ready(i) ⇒ cb.ready(i)
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i))

We start with the ready case, focusing on the blue parts.
The rest of the proof that does not concern speculative
execution is given in the appendix. From ca(i) = cb(i), we
get ca.stg(i) ̸= pre ⇒ cb.stg(i) ̸= pre and ca.stg(i) = PC ⇒
cb.stg(i) = PC. Moreover, since ∀j < i, ca(j) ⊑P cb(j),
it follows that ¬ca.pending(i, op) ⇒ ¬cb.pending(i, op). Fi-
nally, pwrong(i) and ichit(i) only depend on the instruction
and not on the pipeline state. As a result, ca.ready(i) ⇒
cb.ready(i).

The same arguments apply to the blue case in free , then
ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i)).

Using Theorem 7, we conclude that the MINOTAuR core
satisfies Property 1, and using Theorem 6 that we do not
have to consider the hypothetical case of non-determinism
in the caches or memory latencies for speculated instruc-
tions.

Next, we prove that allowing speculation as specified
in the model does not introduce timing anomalies in the
core. To do this, we consider an instruction sequence I1 :=
i1, i2, ..., ibr, ibr+1, ..., in in which ibr is the only branch
instruction, and we make the assumption that the prediction
on this branch can be either correct or incorrect. I1 itself rep-
resents the execution when the prediction is correct. A sec-
ond sequence I2 := i1, i2, ..., ibr,m1,m2, ...,mk, ibr+1, ..., in
contains misspeculated instructions (mx) which may enter
the pipeline if the prediction is wrong. We denote cbr the
state of the pipeline when ibr enters the IF stage. It is

important to remark that all instructions i ≤ ibr are identical
in both sequences, and that the same is true for instructions
i ≥ ibr+1.

Let cw be the state of the pipeline just when ibr has been
resolved (cw(ibr) = (ALU, 0)) if it has been mispredicted (i.e.
the local worst case). Without loss of generality, we assume
that cw is obtained by applying the cycle function l > 0
times on cbr while following the I2 sequence. Additionally,
let cb be the state of the pipeline just when ibr has been re-
solved (cb(ibr) = (ALU, 0)) if it has been predicted correctly
(i.e. the best local case). Since all instructions j < ibr are the
same in I1 and I2 and the pipeline implements the progress
dependence property, cb is also obtained by applying the
cycle function l times on cbr, but this time following the I1
sequence. Since both sequences are identical up to ibr, these
two states correspond to the same number of applications
of cycle since the beginning of the execution. By considering
cw and cb, we can prove progress properties without having
to consider the speculated instructions: we compare cw and
cb only on the instructions that they have in common i.e. the
instructions of I1.

Theorem 8 (Progress at the end of speculation). Pipeline state
cw has less progress on I1 than cb : cw ⊑ cb. More precisely:

∀j ∈ I1,
{

j ≤ ibr ⇒ cw(j) = cb(j)
j > ibr ⇒ cw(j) ⊑P cb(j)

Proof. Instructions j ≤ ibr are all executed non speculatively
and belong to both sequences I1 and I2. Since the pipeline
satisfies Property 1, the progress of these instructions does
not depend on the following instructions. As a result, ∀j ≤
ibr, cw(j) = cb(j), since cw and cb correspond to the same
number of applications of cycle since the beginning of the
sequence.
By definition of state cw, all speculated instructions have
been flushed from the pipeline in this state. Thus in the
rest of the proof, we will only consider the non-speculated
instructions (i.e. we consider only I1).

Instructions j > ibr+1 have not yet entered the pipeline
in state cw: ∀j > ibr+1, cw.stg(j) = pre. Thus, regardless of
their progress in cb, we have cw(j) ⊑P cb(j).
Now, for ibr+1, we can write: cw.stg(ibr+1) ⊑S PC, because
cw is the pipeline state just after branch ibr has been re-
solved. If cw.stg(ibr+1) = pre, then cw(ibr+1) ⊑P cb(ibr+1)
is trivial. If cw.stg(ibr+1) = PC, then ∀j < ibr+1, PC ⊏S
cw.stg(j). Once again, by the progress dependence property,
we also have ∀j < ibr+1, PC ⊏S cb.stg(j), so no prior
instruction resides in PC in state cb. Since ibr+1 was able to
leave pre and enter PC in cw, ibr+1 must also have been able
to enter PC at least in cb if not in a prior state. We thus have
PC ⊑S cb.stg(ibr+1), and thus cw(ibr+1) ⊑P cb(ibr+1).

Theorem 6 guarantees that caches are not modified
during speculation, and we know that by design the dy-
namic branch prediction mechanisms are only updated
when branches are resolved, with the information of the
correct branch. This means that any modification of these
components that could impact the execution of subsequent
instructions (e.g. cache content modification) cannot happen
during speculation. Using Theorem 8, we can thus safely
apply function f of Theorem 2 to cb and cw and conclude
on the absence of timing anomalies in MINOTAuR. We now

9

proceed with the next theorem which bounds the timing
penalty for a branch misprediction in MINOTAuR.

Theorem 9 (Bound of the timing penalty resulting from a
branch misprediction). If a predicted branch takes p cycles to be
resolved, then the penalty for a misprediction of the branch is at
most p cycles.

Proof. We use the same notations as for Theorem 8. We
consider the state c′w obtained by applying cycle to state
cw until instruction ibr+1 reaches the same progress than in
cb i.e. until we reach c′w(ibr+1) = cb(ibr+1). Without loss
of generality, we consider that c′w is reached from cw by
applying cycle k > 0 times. We prove that (1) k ≤ p and
(2) the time penalty induced by a misprediction is bounded
by k.
(1) cb is obtained from cbr by applying cycle p times. Since
the progress of instructions in the pipeline does not depend
on subsequent instructions, and since the pipeline guaran-
tees a strict progress, we can derive that ∀j ≤ ibr, cbr(j) ⊑P
cw(j). We thus have the guarantee to reach c′w from cw in at
most p cycles: k ≤ p.
(2) (a) We start by proving that cb ⊑ c′w: ∀j ≤ ibr, cw(j) =
cb(j) and cw(j) ⊑P c′w(j), so cb(j) ⊑P c′w(j). By definition,
we also have c′w(ibr+1) = cb(ibr+1). We wish to show that
∀j . j > ibr+1, cb(j) ⊑P c′w(j). We can proceed by induction
on j. We just stated that all instructions j′ ≤ ibr+1 are at
least as advanced in c′w as in cb. It follows that the progress
of instruction j which just follows ibr+1 is less or equally
constrained in c′w than in cb: j cannot be blocked in c′w if it
is not blocked in cb and thus cb(j) ⊑P c′w(j). We can repeat
this argument for any j > ibr+1 to conclude that cb ⊑ c′w.
(b) By applying Theorem 2, we obtain that ∀i ∈
I1, f(c′w, i) ≤ f(cb, i), which means ∀i ∈ I1, f(cw, i) − k ≤
f(cb, i): we conclude that the penalty for mispredicting the
branch is at most k cycles.
From (1) and (2) we conclude that the penalty for mispre-
dicting the branch is bounded by p cycles.

4.3 Releasing the constraints on the RAS and caches

In Section 4.2.2, we made the assumption that the RAS
was disabled and that the caches did not implement aging
mechanisms. We now present hardware mechanisms that
allow lifting these restrictions while keeping MINOTAuR
timing predictable.

4.3.1 Speculation-aware cache state backups
A cache hit may modify the state of caches implementing
an aging-based replacement policy (such as LRU). This is
problematic as MINOTAuR does not stall speculated in-
structions that hit in the instruction cache. As a result, a
misspeculated instruction could modify the age of blocks in
the instruction cache. Then, when the corresponding branch
is resolved and the core starts executing on the correct path,
the blocks ages would be different from what they were
before the speculation began. This can have an impact on
the selection of the next evicted blocks, and ultimately on
the timing of the instruction sequence. Consequently, our
proofs no longer hold in this context.

To solve this issue, we designed a hardware mechanism
that makes a backup copy of the ages of the cache blocks
each time a branch prediction is made. When a branch
is resolved, the backup is restored if the prediction was
incorrect. Otherwise, the current state of the cache is com-
mitted and the backup invalidated. In order to support
nested branches, the backup mechanism is implemented
using a circular buffer of copies. We illustrate the behavior
of the backup mechanism in Figure 4. In this example, we
consider the cache state backup mechanism evolution while
a sequence of instructions is executed. We assume a 2-way
set associative cache featuring an aging-based replacement
policy. Since cache misses are blocked during speculative
execution, the backup mechanism only needs to save the
ages of the blocks (and not their contents). The circular
buffer implementing the backup mechanism in this example
can hold up to 3 copies of the cache state. In Figure 4 (a),
the core is currently executing an instruction speculatively.
The backup mechanism keeps a safe copy of the ages of the
blocks when the speculation started. This copy is identified
using a “backup” pointer. All modifications to the ages
done speculatively are accounted for in another copy desig-
nated by the “current” pointer. In the example, four blocks
have their age modified in the current copy, compared to
when the speculation started. If a new branch instruction
is executed before the previous one has been resolved, the
contents of the current copy is duplicated to another copy,
and the “current” pointer is incremented to point to that
new copy (Figure 4 (b)). Now, when the first branch is
resolved, if the prediction was correct, the “backup” pointer
is incremented to the next copy in the buffer (Figure 4 (c)). If
however the prediction was incorrect, the “backup” pointer
does not move, an the “current” pointer is set to the copy
pointed by the “backup” pointer.

When the buffer that holds the copies is full (as the result
of too many nested branches), new branch instructions are
blocked before they can enter the IF stage to prevent any
unsaved modification to the cache state. When a pending
branch is resolved, the buffer recovers at least one slot, and
branch instructions are allowed to enter the IF stage again.

The backup mechanism is designed to work with any
cache that implements an aging-based replacement policy
(e.g. pseudo-LRU, Most Recently Used). We implemented
and tested it on a LRU cache, because this policy is par-
ticularly fitted for static WCET analysis. The results of our
evaluation are given in Section 5.2.

4.3.2 RAS backup mechanism
A return address stack (RAS) is a branch prediction mech-
anism used to predict the return address at the end of
a function call: when a return instruction (e.g. jr ra in
RISC-V) is executed at the end of function, the RAS predicts
the address of the next instruction to execute. In a simple
RAS, as found in the Ariane processor, the address of the
next instruction is pushed onto the stack when a function
call (e.g. jal, jalr in RISC-V) enters the fetch stage. The
return address is popped from the RAS when a return
instruction is fetched, and the next PC is set to this address.

Problems can come from the speculative execution of
branches. Recall that the RAS is updated when function call
or return instructions enter the first stages of the pipeline.

10

Age: 0 Age: 1
Age: 0 Age: 1
Age: 1 Age: 0

.

Age: 0 Age: 1
Age: 1 Age: 0
Age: 0 Age: 1

.

backup current

(a) During speculative execution

Age: 0 Age: 1
Age: 0 Age: 1
Age: 1 Age: 0

.

Age: 0 Age: 1
Age: 1 Age: 0
Age: 0 Age: 1

.

Age: 0 Age: 1
Age: 1 Age: 0
Age: 0 Age: 1

.

copy

backup currentcurrent

(b) New branch prediction

Age: 0 Age: 1
Age: 1 Age: 0
Age: 0 Age: 1

.

Age: 0 Age: 1
Age: 1 Age: 0
Age: 0 Age: 1

.

backup currentbackup

(c) Branch validation

Fig. 4: Cache state backup mechanism.

fct1 fct1

currentbackup

(a) During speculative execution

fct1

fct2

fct1

fct2

fct1

current

copy

currentbackup

(b) Call to function fct2

fct2

fct1

fct2

fct1

currentbackupbackup

(c) Branch validation

Fig. 5: RAS state backup mechanism: function call.

fct2

fct1

fct2

fct1

currentbackup

(a) During speculative execution

fct2

fct1 fct1 fct1

current

copy

currentbackup

(b) Return from function fct2

fct1 fct1

currentbackupbackup

(c) Branch validation

Fig. 6: RAS state backup mechanism: return from function.

If these instructions are misspeculated (i.e. they should not
be executed), the RAS gets updated with incorrect informa-
tion. The first problematic situation happens when a return
instruction is misspeculated: in this case, the return address
at the top of the RAS is popped. When the corresponding
branch is resolved this popped entry is not restored on the
stack: the RAS has lost information. When the correct branch
is executed and the return instruction enters the frontend,
the top of the stack does not contain the corresponding
return address. The second problematic situation happens
when a function call is misspeculated. In this case, the
corresponding return address is pushed to the stack. When
the speculation ends and the correct branch starts executing,
this entry remains in the stack: the RAS contains a return
address that corresponds to no function call.

To avoid these situations, we implement a backup mech-
anism similar to the one we described for the LRU caches,
but with additional subtleties. Function calls and returns are
implemented as branch instructions and may be speculated
in the case of indirect calls (e.g. function pointers). In both
the cache and the RAS backups, the “current” pointer is
incremented each time a prediction is made, including when
function calls and function returns are fetched. However,
when an indirect function call is made, the contents of the
RAS are updated when the corresponding branch instruc-
tion is fetched. If an incorrect prediction is made for the
branch target, the branch instruction is not fetched again

when the control is set to the correct address, and the RAS
is not updated at this point. As a consequence, our backup
mechanism updates the RAS with the return address of a
function call before the “current” pointer is incremented,
and the RAS is copied to a new backup slot. This way the
return address is present in two backup copies. Whether
the prediction is correct or not, the RAS is in the correct
state when the corresponding return instruction enters the
pipeline. One important point here is that regardless of the
target of the branch for a function call, the return address
is the same, so we can safely push it on the RAS. This
is illustrated in Figure 5. To remain coherent, our backup
mechanism handles return instructions in the same way.
When a return instruction enters the pipeline, the top ele-
ment from the “current” copy of the RAS is popped. Then,
since the return instruction is a branch, the “current” pointer
is incremented and the contents of the RAS are copied. This
is illustrated in Figure 6.

5 EXPERIMENTAL EVALUATION

5.1 Methodology

All our extensions have been implemented in the Sys-
temVerilog model of the Ariane+ core and our processor
has been synthesized with Xilinx Vivado 2021.13, targeting

3. https://www.xilinx.com/products/design-tools/vivado.html

https://www.xilinx.com/products/design-tools/vivado.html

11

a Xilinx Zynq XC7Z020-1CLG400 on a Digilent Zybo Z7-20
board, with the PerformanceOptimized directive set4,
running at a frequency of 25 MHz. All the results reported
in the paper come from real measurements. The memory
has a latency of 11 cycles.

We have used the kernel and sequential sets of
programs of the TACLe benchmark suite5 [5] as well as
CoreMark6 as benchmarks, all compiled with gcc 10.2.07

and optimization flag -O2 (-O3 for CoreMark).
We started by comparing Ariane+ to a baseline version

of MINOTAuR, in which the RAS is disabled and the caches
have a random replacement policy. The detailed results are
provided in Table 1. We report the arithmetic mean of the
overheads. Since the number of cycles taken to execute the
benchmarks varies from a few hundreds to a few hundred
millions, we also computed a global overhead (correspond-
ing to the overhead between the total cycles of Ariane+

and MINOTAuR) and the difference between the geometric
means of the number of cycles in Ariane+ and MINOTAuR
over the TACLe benchmarks.

Then, we enabled the RAS and replaced the random
instruction cache by an LRU cache to evaluate the cost
and benefit of our backup mechanisms. We then performed
measurements while varying two parameters: the size of the
RAS, and the depth of the backup mechanisms (the number
of copies they can hold). We compared these measurements
to the ones obtained with the version of MINOTAuR with-
out RAS and with random caches. The results are reported
in Table 2. In this table we provide the resource usage on
the FPGA, the CoreMark score, the total number of cycles
to run the TACLe benchmark suite, the average overhead,
the global overhead and the standard deviation of each
overhead.

The source code for all cores and experiments presented
in this paper is available in [7].

5.2 Results

The first observation is that we did not measure any in-
version in the MINOTAuR core, which was expected due
to the gating mechanism that we have implemented. Since
we carefully selected the restrictions that were absolutely
required to prove timing predictability and relaxed the other
ones, the performance loss compared to the Ariane+ core is
noticeably low: 1.81% on average, with a global overhead
of 0.69% and a difference between the geometric means of
1.65% only. Small benchmarks tend to have higher over-
heads than large ones. We believe this is due to the warming
of the caches and the initial filling of the pipeline: the
temporal impact of cache misses and of an empty pipeline
is proportionally higher when the application consist on
only a few hundred instructions. The cost of timing pre-
dictability in terms of performance in MINOTAuR is thus

4. Except for 16 backups/RAS-16, which would not fit on our FPGA
with this configuration. Synthesis for this model was made with the
default parameters.

5. We had to exclude mpeg2 which did not compile, and susan
which failed to execute, both due to memory exhaustion on Ariane,
Ariane+, and MINOTAuR.

6. www.coremark.org
7. https://github.com/riscv-collab/riscv-gnu-toolchain/tree/

ed53ae7

TABLE 1: Results of the TACLe benchmark suite ran on
Ariane+ and on the base MINOTAuR.

Ariane+ MINOTAuR

Benchmark Inversions Cycles Overhead

binarysearch 0 1,294 7.73%
bitcount 2 19,951 3.42%
bitonic 0 10,086 2.97%
bsort 0 60,087 0.11%
complex updates 0 22,342 -1.14%
cosf 0 335,880 1.74%
countnegative 0 18,553 0.27%
cubic 1 13,135,490 2.20%
deg2rad 0 175,341 0.24%
fac 1 354 18.36%
fft 1 2,208,391 -0.68%
filterbank 0 48,117,007 1.79%
fir2dim 0 37,951 -2.06%
iir 0 6,343 5.09%
insertsort 0 1,374 20.31%
isqrt 0 525,191 0.02%
jfdctint 1 4,355 8.50%
lms 0 2,701,524 -3.29%
ludcmp 1 56,755 -2.67%
matrix1 0 11,839 1.04%
md5 0 7,690,282 -1.65%
minver 1 25,579 -1.11%
pm 0 121,648,002 1.10%
prime 1 618 21.04%
quicksort 0 4,497,647 1.43%
rad2deg 0 173,388 0.83%
recursion 1 2,669 11.46%
sha 1 932,360 -0.49%
st 0 1,973,611 0.06%

adpcm dec 1 130,724 0.78%
adpcm enc 1 132,760 0.65%
ammunition 1 287,442,316 0.64%
anagram 1 1,607,615 1.36%
audiobeam 0 4,070,266 1.41%
cjpeg transupp 0 1,992,167 0.03%
cjpeg wrbmp 0 77,943 0.43%
dijkstra 0 35,829,927 0.00%
epic 0 39,898,823 -0.20%
fmref 1 7,403,288 0.17%
g723 enc 0 564,614 -0.93%
gsm dec 1 1,321,184 0.03%
gsm enc 1 3,856,357 -0.03%
h264 dec 0 236,189 0.23%
huff dec 1 116,986 0.97%
huff enc 0 485,721 0.58%
ndes 0 59,279 1.45%
petrinet 1 1,305 -17.78%
rijndael dec 1 4,893,874 -0.54%
rijndael enc 0 4,660,858 0.08%
statemate 0 40,906 4.68%

Arithmetic mean 1.81%
Geometric mean 1.65%
Global overhead 0.69%

negligible. We even remark that some benchmarks run faster
on MINOTAuR than on Ariane+: by preventing speculative
fetches of instructions from the main memory, we prevent
the pollution of the instruction cache during speculative
executions that will eventually be discarded, thus reducing
the number of instruction cache blocks that need to be re-
fetched after a wrongly speculated branch.

Let us now focus on the results of Table 2. We first
evaluated the efficiency of our backup mechanisms. To do
so, we set the size of the RAS to 16 (thus allowing fast
returns for up to 16 nested function calls), and varied

www.coremark.org
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7
https://github.com/riscv-collab/riscv-gnu-toolchain/tree/ed53ae7

12

TABLE 2: Resource usage, CoreMark score and average overhead for Ariane+ and multiple MINOTAuR variants.

Core LUTs Max freq. CoreMark score Total cycles Arith. mean Geo. mean Global overhead Deviation

Ariane+ 17,106 34.93 MHz 110.36 599,217,366
MINOTAuR 17,176 32.97 MHz 110.58 603,373,808
2 backups/RAS-16 21,782 30.40 MHz 108.78 607,374,373 0.39% 0.37% 0.66% 0.021
4 backups/RAS-16 23,952 30.46 MHz 110.90 591,280,403 -1.28% -1.29% -2.00% 0.014
8 backups/RAS-16 26,550 29.36 MHz 110.90 590,971,752 -1.32% -1.33% -2.06% 0.014
16 backups/RAS-2 19,439 33.83 MHz 110.89 591,998,705 -1.22% -1.33% -1.89% 0.014
16 backups/RAS-4 22,012 31.62 MHz 110.90 590,988,103 -1.31% -1.23% -2.05% 0.014
16 backups/RAS-8 26,175 31.46 MHz 110.90 590,971,431 -1.36% -1.32% -2.06% 0.015
16 backups/RAS-16 – – 110.90 590,971,205 -1.32% -1.37% -2.06% 0.014

the size of the RAS and LRU backups. We first see that
using 2-slot buffers for the backup mechanism yield slightly
worse results (0.39% overhead on average) than the baseline
MINOTAuR that has no RAS and random caches. This is
due to the fact that the LRU instruction cache backup mech-
anism blocks all instructions (including the ones resulting
in a hit) as soon as there are at least 2 pending branch
instructions in the pipeline, while the random cache of the
baseline MINOTAuR does not. The versions in which the
number of backup slots is 4 or more all perform better than
the baseline MINOTAuR. The versions with 8-slot and 16-
slot backup perform equivalently.

Then, we evaluated the impact of the RAS size on the
performance of the core. Enabling the RAS with a size of
more than 2 yields better results than having no RAS, at
the expense of resources on the FPGA. The only model
we tested that had worse performance than the baseline
MINOTAuR was the 2-slots buffers for backups and 16
entries in the RAS. Since all other variants we tested perform
better, including those with a smaller stack, we can conclude
that the RAS is not the cause of this result.

Overall, the average gains induced by the RAS and
LRU caches are around 2% which is not a significant im-
provement. However the use of an LRU cache instead of
a random one has a huge impact on the precision of the
static analyses and in turn on the precision of the WCET. In
the light of these results, it seems that a reasonable trade-
off between performance, predictability, LUT consumption
and maximum achievable frequency is the version with 16
levels of backup and a RAS of size 2, which yields a 13%
increase in the LUT usage, but also a lower number of
execution cycles than the baseline MINOTAuR. We display
the maximum achieved frequency for each design in the ta-
ble, as an indication. However, the frequencies do not seem
correlated to the complexity of the designs. This indicates
that the observed reductions in maximum frequency are not
due to a lengthening of the critical path, but rather to the
small size of our FPGA that prevents mapping and routing
optimizations by the synthesis compiler. Finally, based on
these benchmarks, it seems that the cost of the RAS (in terms
of LUT usage) is difficult to justify. This is due to the fact that
TACLe benchmarks do not contain enough nested function
calls to gain much advantage from it.

6 CONCLUSION

In this paper we presented MINOTAuR, a timing pre-
dictable core based on the open source Ariane RISC-V core.
We applied the principles of the SIC processor [10] and

went further by allowing speculative execution with LRU
caches. We showed that we could still formally prove timing
predictability. The performance cost of these extensions
compared to our baseline (non predictable) processor is
around 1% on average, showing that timing predictability
is compatible with performance-oriented mechanisms such
as dynamic branch prediction, parallel functional units and
caches with an aging-based replacement policy, and that
timing predictable cores can achieve high performance. We
provide the SystemVerilog source code of MINOTAuR and
all intermediate designs presented in the paper in [7].

Limitations and future work

In this work we assumed a write-through data cache with
a store buffer. We wish to generalize our results to any
cache write policy, in more complex out-of-order pipelines.
In this sense, further work is needed to assess the impact
on the core predictability of using write-back caches that
could speculatively fetch blocks for data writes. In the same
fashion, our model of the store buffer and of its concurrency
with the Load Unit is specific to MINOTAuR. More parallel
implementations may break timing predictability, so we
need to work on defining the minimal set of rules that
guarantees the predictability of this mechanism, in the same
way as we did for speculation.

In the close future, we plan to improve our backup mech-
anism to avoid unnecessary copies during unconditional
jumps, function calls and returns, in order to reduce the size
of MINOTAuR and improve its performance. We also plan
to add a MMU to MINOTAuR while retaining predictability,
run a real-time operating system that will allow us to
evaluate our core on complete real-time applications, and
perform static WCET analysis on the core.

We also envision the design and proof of a predictable
superscalar out-of-order core. This work is much more
ambitious and requires the extension of the formal modeling
framework and a relaxation of the notion of monotonicity in
order to accommodate out-of-order execution patterns that
remain predictable.

7 APPENDIX

7.1 Remainder of proof of Theorem 7 for MINOTAuR

Let us consider two pipeline states ca, cb ∈ C and an
instruction i ∈ I such that ca(i) = cb(i). Let us assume that
all previous instructions j < i are such that ca(j) ⊑P cb(j).
We first prove the following statements:

13

(a) ca.cnt(i) = 0 ⇒ cb.cnt(i) = 0
This follows from ca(i) = cb(i).

(b) ca.nstg(i) = cb.nstg(i)
This follows from ca(i) = cb(i).

(c) ca.isnext(i, ca.stg(i)) ⇒ cb.isnext(i, cb.stg(i))

• ca(i) = cb(i) ⇒ ca.stg(i) = cb.stg(i)
• Given that ∀j < i, ca(j) ⊑P cb(j), we get s ⊏S

ca.stg(j) ⇒ s ⊏S cb.stg(j).
(d) ¬ca.pending(i, op) ⇒ ¬cb.pending(i, op)

From ca(j) ⊑P cb(j), we get:
• ¬∃j < i . (opc(j) = op ∧ ca.stg(j) ⊏S post) ⇒

¬∃j < i . (opc(j) = op ∧ cb.stg(j) ⊏S post)
• if ∃j < i . (opc(j) = op ∧ ca.stg(j) ⊏S post), then

¬ca.pending(i, op) ⇒ (lstg(op), 0) ⊑P ca(j) ⇒
(lstg(op), 0) ⊑P cb(j)

(e) if ca.isnext(i, ca.stg(i)),∀s . ca.nstg(i) ⊑S s,
#{j < i|ca.nstg(i) ⊑S ca.stg(j) ⊑ s}
≥ #{j < i|cb.nstg(i) ⊑S cb.stg(j) ⊑ s}
• From ca.cnt(i) = 0 and ca.isnext(i, ca.stg(i)), we

get: ∀j < i, ca.nstg(i) ⊑S ca.stg(j).
• Since ∀j < i, ca(j) ⊑P cb(j), the number of instruc-

tions j between stages ca.nstg(i) and s must be lower
in cb than in ca.

(f) if ca.isnext(i, IF), ca.slot(IF) ⇒ cb.slot(IF)
This follows from (e), from ca.free(ID) ⇒ ca.free(ID)
(that will be shown below) and from the fact that ∀j <
i, ca(i) ⊑P cb(j).

(g) if ca.isnext(i, IS), ca.slot(IS) ⇒ cb.slot(IS)

• From statement (e), we get that #{j|IS ⊑S
ca.stg(j) ⊑S CO} < iq size ⇒ #{j|IS ⊑S
cb.stg(j) ⊑S CO} < iq size.

• Otherwise, ca.slot(IS) implies that the iqueue is full,
that is #{j|IS ⊑S ca.stg(j) ⊑S CO} < iq size.
Then #{j|IS ⊑S cb.stg(j) ⊑S CO is either equal
to or lower than iq size. If it is equal, that means
that IS contains the same instructions in ca as in
cb. If ∃j′ < i . ca.isnext(j

′, CO), we must have
cb.isnext(j

′, CO) because ca(j
′) ⊑P cb(j

′). Other-
wise, we have #{j|IS ⊑S cb.stg(j) ⊑S CO < iq size.

• Based on these observations and on ca.free(ST) ⇒
cb.free(ST) (shown below), we prove the statement.

(h) if ca.isnext(i, ID), ca.slot(LSU) ⇒ cb.slot(LSU)

• From statement (e), we get that #{j|ca.stg(j) =
LSU} < mq size ⇒ #{j|cb.stg(j) = LSU} <
mq size

• Otherwise, ca.slot(LSU) implies that the mqueue
is full, that is #{j|ca.stg(j) = LSU} = mq size.
Then #{j|cb.stg(j) = LSU} is either equal to or
lower than mq size. If it is equal, that means that
stages LSU contains the same instructions in cb as
in ca. If ∃j′ < i . ca.isnext(j

′, LSU), we must have
cb.isnext(j

′, LSU) because ca(j
′) ⊑P cb(j

′). Other-
wise, we have #{j|cb.stg(j) = LSU} < mq size.

• Based on these observations and on ca.free(LU) ⇒
cb.free(LU) and ca.free(SU) ⇒ cb.free(SU) (shown
below), we prove the statement.

(i) ca.slot(SU) ⇒ cb.slot(SU)

• From statement (e), we get that #{j|opc(j) =
store ∧ LSU ⊑S ca.stg(j) ⊑S post} < sq size ⇒

#{j|opc(j) = store ∧ LSU ⊑S cb.stg(j) ⊑S post} <
sq size.

• Otherwise, ca.slot(SU) implies that the iqueue is full,
that is #{j|opc(j) = store ∧ LSU ⊑S ca.stg(j) ⊑S
post} <= sqsize. Then #{j|opc(j) = store∧LSU ⊑S
cb.stg(j) ⊑S post} is either equal to or lower than
sq size. If it is equal, that means that stages LSU, SU,
CO and ST contain together the same store instruc-
tions in ca as in cb. If ∃j′ < i . ca(j

′) = (ST, 0), this
instruction has either the same state in cb or it has left
the queue. In both cases, this ensures that a slot will
be available in the squeue next cycle.

(j) (j < i.dep(i, j) ∧ ca.stg(j) ⊒S CO) ⇒ cb.stg(j) ⊒S CO
This follows from the fact that ∀j < i.ca(j) ⊑P cb(j)

We get ca.ready(i) ⇒ cb.ready(i) from statements (a), (c),
(d) and (j).
If s ∈ {PC, ID, IS, DIV, LU, SU, ST} ∧ ¬∃j.ca.stg(j) = s
then, since ∀j < i, ca.stg(j) ⊑P cb.stg(j), we get
¬∃j . cb.stg(j) = s and thus cb.free(s). Otherwise, if
∃j . ca.stg(j) = s ∧ ca.ready(j) ∧ ca.free(ca.nstg(j))), this
instruction is either in the same configuration in cb, or it has
more progress in cb than ca and thus ¬∃i . cb.stg(i) = s,
which leads to cb.free(s).
From this observation and from statements (f), (g), (h) and
(i), we get ca.free(ca.nstg(i)) ⇒ cb.free(cb.nstg(i)).

7.2 Proof of Theorem 5 for MINOTAuR

Let c be the state that splits upon the cache uncertainty of
instruction i, leading to the hit-case successor state cb and
miss-case successor cw. Let mlat be the latency of an access
to the memory after a cache miss.

• We first consider a data cache miss. As long as store
and atomic instructions are pending, i is stalled in the
LSU stage in the pipeline states following cw. Let T de-
note the number of cycles until pending store/atomic
instructions finish their execution. The number of these
pending instructions is upper bounded by the size
of the squeue . Then T ≤ sq size ∗ mlat. After T
cycles, the load that was stalled can advance to the LU
stage. After mlat additional cycles, it reaches progress
c′w(i) = (LU, 0) which is equal to cb(i). We must now
show that cb ⊑ c′w. It follows from:
– instructions j < i are not affected by the uncertainty

on instruction i and thus progressed at least as much
in c′w than in cb.

– by the definition of ready and free, instructions k >
i that progressed in cb could also progress at least
during the cycle transition leading to c′w.

The claims follows from cb ⊑ c′w and Theorem 2.
The maximum penalty of a cache miss is given by
p = (sq size+ 1) ∗mlat.

• We now consider an instruction cache miss. Instruc-
tion i is stalled in the PC stage as long as a mem-
ory instruction is pending. There can be as many as
iq size+2+mq size+ sq size such pending instruc-
tions. After T = (iq size+2+mq size+sq size)∗mlat
cycles at most, the instruction cache miss can be served
with an additional mlat-cycle latency. The remainder of
the proof is analogous to the data cache case.

14

REFERENCES

[1] M. Asavoae, B. Ben Hedia, and M. Jan. Formal executable models
for automatic detection of timing anomalies. In 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[2] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jon-
sson, P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. von
Hanxleden, R. Wilhelm, and W. Yi. Building timing predictable
embedded systems. ACM Transactions on Embedded Computing
Systems, 2014.

[3] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager.
Time-critical computing on a single-chip massively parallel pro-
cessor. In Design, Automation and Test in Europe (DATE), 2014.

[4] J. Eisinger, I. Polian, B. Becker, S. Thesing, R. Wilhelm, and
A. Metzner. Automatic identification of timing anomalies for
cycle-accurate worst-case execution time analysis. In IEEE Design
and Diagnostics of Electronic Circuits and systems, pages 13–18, 2006.

[5] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,
C. Rochange, M. Schoeberl, R. B. Sorensen, P. Wägemann, and
S. Wegener. TACLeBench: A benchmark collection to support
worst-case execution time research. In 16th International Workshop
on Worst-Case Execution Time Analysis, 2016.

[6] G. Gebhard. Timing anomalies reloaded. In 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[7] A. Gruin, T. Carle, H. Cassé, and C. Rochange. Gitlab repository
for MINOTAuR sources and experiments. https://gitlab.irit.fr/
minotaur/MINOTAuR.

[8] A. Gruin, T. Carle, H. Cassé, and C. Rochange. Speculative
execution and timing predictability in an open source RISC-V core.
In IEEE Real-Time Systems Symposium (RTSS), pages 393–404, 2021.

[9] S. Hahn, M. Jacobs, and J. Reineke. Enabling compositionality for
multicore timing analysis. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, 2016.

[10] S. Hahn and J. Reineke. Design and analysis of SIC: A provably
timing-predictable pipelined processor core. In IEEE Real-Time
Systems Symposium (RTSS), 2018.

[11] S. Hahn and J. Reineke. Design and analysis of SIC: A provably
timing-predictable pipelined processor core. Real Time Systems,
2020.

[12] S. Hahn, J. Reineke, and R. Wilhelm. Toward compact abstractions
for processor pipelines. In Correct System Design, pages 205–220.
Springer, 2015.

[13] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in
execution time analysis: definition and challenges. ACM SIGBED
Review, 12(1):28–36, 2015.

[14] Sebastian Hahn. On Static Execution-time Analysis: Compositionality,
Pipeline Abstraction, and Predictable Hardware. PhD thesis, Univer-
sität des Saarlandes, 2018.

[15] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A
PRET microarchitecture implementation with repeatable timing
and competitive performance. In 30th IEEE International Conference
on Computer Design (ICCD), 2012.

[16] I. Liu, J. Reineke, and E. A. Lee. A PRET architecture support-
ing concurrent programs with composable timing properties. In
Asilomar Conference on Signals, Systems and Computers, 2010.

[17] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically
scheduled microprocessors. In IEEE Real-Time Systems Symposium,
1999.

[18] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi. A survey on
static cache analysis for real-time systems. Leibniz Transactions on
Embedded Systems, 3(1), 2016.

[19] T. Mitra. Time-predictable computing by design: Looking back,
looking forward. In Annual Design Automation Conference, 2019.

[20] T. Mitra, J. Teich, and L. Thiele. Time-critical systems design: A
survey. IEEE Design and Test, 35(2), 2018.

[21] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A Definition and Classification of Timing Anoma-
lies. In 6th International Workshop on Worst-Case Execution Time
Analysis (WCET’06), 2006.

[22] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li,
D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø,
and A. Tocchi. T-CREST: time-predictable multi-core architecture
for embedded systems. Journal of Systems Architecture, 2015.

[23] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, and C. W.
Probst. Towards a Time-predictable Dual-Issue Microprocessor:
The Patmos Approach. In Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, 2011.

[24] ThalesGroup. CVA6-softcore-contest. https://github.com/
ThalesGroup/cva6-softcore-contest/tree/0abb1a6.

[25] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of
timing anomalies in superscalar processors. In Fifth International
Conference on Quality Software, 2005.

[26] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher Fletcher, and Josep Torrellas. Invisispec: Making
speculative execution invisible in the cache hierarchy. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 428–441. IEEE, 2018.

[27] F. Zaruba and L. Benini. The cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-GHz 64-Bit
RISC-V core in 22-nm FDSOI technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2019.

Alban Gruin is a PhD student at IRIT-Université
Toulouse 3. His research focus is on computer
engineering, and particularly on the design of
timing predictable computer architectures.

Thomas Carle is a lecturer at IRIT-Université
Toulouse 3. His research focus is on the timing
predictability of embedded real-time systems,
especially in parallel processors (multi/many-
cores, GPUs), through the use of compilation,
static analysis and static scheduling techniques.

Christine Rochange is a professor at IRIT-
Université Toulouse 3. Her research interests
are on static WCET analysis, more specifically
on the modeling of processor and GPU architec-
ture.

Hugues Cassé is an associate-professor at
IRIT-Université Toulouse 3 where he teaches
machine architecture, compilation and embed-
ded systems. His main research interest con-
cerns static program analysis and worst-case
execution time calculation.

Pascal Sainrat is a professor at IRIT-Université
Toulouse 3 and the university vice-president for
information technology. His research interest is
on computer and more specifically processor
architecture for critical systems.

https://gitlab.irit.fr/minotaur/MINOTAuR
https://gitlab.irit.fr/minotaur/MINOTAuR
https://github.com/ThalesGroup/cva6-softcore-contest/tree/0abb1a6
https://github.com/ThalesGroup/cva6-softcore-contest/tree/0abb1a6

	Introduction
	Related work
	Timing predictability
	Timing predictable processor architectures
	A formal framework to prove timing predictability
	Hardware state buffering mechanisms

	A baseline RISC-V core
	The original Ariane architecture
	Memory bus conflicts in the Ariane⁺ core

	MINOTAuR: a timing predictable core
	Enforcing timing predictability
	Formal model and proofs
	Definitions
	Timing predictable speculative execution
	Timing anomaly freedom proofs

	Releasing the constraints on the RAS and caches
	Speculation-aware cache state backups
	RAS backup mechanism

	Experimental evaluation
	Methodology
	Results

	Conclusion
	Appendix
	Remainder of proof of Theorem 7 for MINOTAuR
	Proof of Theorem 5 for MINOTAuR

	References
	Biographies
	Alban Gruin
	Thomas Carle
	Christine Rochange
	Hugues Cassé
	Pascal Sainrat

