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Abstract
We present a system that implements a framework
for cognitive planning1. The system allows us to
represent and reason about the beliefs, desires and
intentions of other agents using an NP-fragment of
a multiagent epistemic logic. The system has three
components: the belief revision, the planner and the
translator modules. They work in an integrated way
to firstly capture new information about the world,
secondly to perform the planning process extract-
ing operators from a set of actions that will lead to
achieving a goal and, finally, to verify satisfiability
of the formulas generated at each step of the pro-
cess. We illustrate how our system can be used to
implement an persuasive artificial agent interacting
with a human user.

1 Introduction
Automated planning is at the center of AI research with a va-
riety of applications ranging from control traffic and robotics
to logistics and services. Epistemic planning extends au-
tomated planning incorporating notions of knowledge and
beliefs [Bolander and Andersen, 2011; Löwe et al., 2011;
Kominis and Geffner, 2015; Muise et al., 2015; Cooper et
al., 2020]. Cognitive planning is a generalization of epis-
temic planning, where the goal to be achieved is not only a
belief state but a cognitive state of a target including not only
beliefs but also intentions. Moreover, we are particularly in-
terested in persuasive goals of the planning agent, aimed at
influencing another agent’s beliefs and intentions.

The increasing number of applications in social robotics,
social networks, virtual assistants together with sentiment
analysis techniques allow us to collect data related to humans’
beliefs and intentions. In [Akimoto, 2019] a framework for
modeling mental attitudes of an agent, based on her narra-
tives, is proposed. In addition, cognitive models can be used
to predict agents’ decision-making by taking psychological
factors like motivation and emotions into account [Prezen-
ski et al., 2017]. Nonetheless, few approaches exist which
leverage this information about humans’ cognitive states for
changing their attitudes and behaviors through persuasion.

1https://www.irit.fr/CoPains/software/

Our work aims to fill this gap by introducing a sys-
tem based on a simple framework detailed in [Fernandez et
al., 2021] in which we can represent an agent’s cognitive
state in a compact way, reason about it and planning a se-
quence of speech acts aimed at changing it. Our approach
is based on an epistemic logic introduced in [Lorini, 2018;
Lorini, 2020], which allows us to represent an agent’s ex-
plicit beliefs, as the information in the agent’s belief base,
and the agent’s implicit beliefs, as the information which is
deducible from the agent’s belief base. Given that the satis-
fiability problem for the full logic is PSPACE-hard, we focus
on an NP-fragment that makes the logic suitable for imple-
menting real-world applications.

The core components of the system are the belief revision,
the planner and the translator modules. The formulas rep-
resenting the rules and constraints of a specific problem are
loaded into the system. We encode these rules using the NP-
fragment presented in [Fernandez et al., 2021]. The system
takes this information as the initial state and some actions —
which are of type speech act — to build a plan that leads to the
goal. An important feature is that actions have preconditions
that impose constraints on their execution order. We illus-
trate the implementation of our system in a human-machine
interaction (HMI) scenario in which an artificial agent has to
persuade a human agent to practice a sport based on her pref-
erences.

2 A Language for Explicit and Implicit Belief
This section describes the basics of the Logic of Doxastic
Attitudes (LDA) introduced in [Lorini, 2018; Lorini, 2020].
It is a multiagent epistemic logic which supports reasoning
about explicit and implicit beliefs. Assume a countably infi-
nite set of atomic propositions Atm and a finite set of agents
Agt = {1, . . . , n}. We define the language in two steps.

We first define the language L0(Atm,Agt) by the follow-
ing grammar in Backus-Naur Form (BNF):

α ::= p | ¬α | α1 ∧ α2 | α1 ∨ α2 | △iα,

where p ranges over Atm and i ranges over Agt .
L0(Atm,Agt) is the language for representing agents’ ex-
plicit beliefs. The formula △iα is read “i explicitly believes
that α”. The language L(Atm,Agt) extends the language
L0(Atm,Agt) by modal operators of implicit belief and is
defined by the following grammar:

https://www.irit.fr/CoPains/software/
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Figure 1: Summary of reduction process

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □iφ | ♢iφ,

where α ranges over L0(Atm,Agt) and i ranges over
Agt . For notational convenience we write L0 instead of
L0(Atm,Agt) and L instead of L(Atm,Agt), when the con-
text is unambiguous. The formula □iφ is read “i implicitly
believes that φ” and ♢iφ is read “φ is compatible (or consis-
tent) with i’s explicit beliefs”. The other Boolean construc-
tions ⊤, ⊥, → and ↔ are defined in the standard way.

The language is interpreted with respect to a formal se-
mantics using belief bases whose details are given in [Lorini,
2018; Lorini, 2020]. Checking satisfiability of L formulas
relative to this semantics is a PSPACE-hard problem. For that
reason, in [Fernandez et al., 2021], we looked for an interest-
ing NP-fragment of L that we called LFrag:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □mα | ♢mα,

where α ranges over L0 and m is a special agent in Agt called
the ‘machine’. In LFrag, all agents have explicit beliefs but
only agent m has implicit beliefs, and moreover the latter are
restricted to L0 formulas of type α. Agent m is the artificial
planning agent. In order to represent agents’ belief dynam-
ics, language LFrag is extended by belief expansion operators.
Such an extension will allow us to represent the actions of the
planning agent in the cognitive planning problem. Specifi-
cally, we introduce the following language L+

Frag:

φ ::= α | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | □mα | ♢mα | [+iα]φ,

where α ranges over L0 and i ranges over Agt . The formula
[+iα]φ is read “φ holds after agent i has privately expanded
her belief base with α”. Event of type +iα are generically
called informative actions.

3 Cognitive Planning
The planning problem in the context of the logic L+

Frag is to
find a sequence of informative actions for agent m of type
+mα which guarantees that agent m will knowingly achieve
its goal. Let Actm = {+mα : α ∈ L0} be agent m’s
set of informative actions and let the elements of Actm be
noted ϵ, ϵ′, . . . Agent m’s informative actions have executabil-
ity preconditions that are specified by the following function:
P : Actm −→ LFrag. So, we can define the following opera-
tor of successful occurrence of an informative action:

⟨⟨ϵ⟩⟩φ def
= P(ϵ) ∧ [ϵ]φ

with ϵ ∈ Actm. The formula ⟨⟨ϵ⟩⟩φ has to be read “agent
m’s informative action ϵ can take place and φ holds after its
occurrence”.

Informative actions of type ‘speech act’ are of interest here.
In particular, we consider speech acts of type ‘to inform’,
where m is assumed to be the speaker and j ∈ Agt such that
j ̸= m is assumed to be the hearer. We define the speech act
“agent m informs agent j that α” as follows:

inform(m,j,α)
def
= +m △jα.

In [Fernandez et al., 2021] the planning problem is defined
as a tuple ⟨Σ,Op, αG⟩ where:

• Σ ⊂ L0 is a finite set of agent m’s available information,

• Op ⊂ Actm is a finite set of agent m’s operators,

• αG ∈ L0 is agent m’s goal.

The planning problem has a solution if the formula
¬
(
(
∧

α∈Σ □mα) → ⟨⟨ϵ1⟩⟩ . . . ⟨⟨ϵk⟩⟩□mαG

)
is unsatisfiable.

The translator module converts the L+
Frag-formula into its

equivalent formula in propositional logic following the se-
quence of reductions detailed in Figure 1. In a second
step, the translator interfaces with the SAT encoding tool
TouIST [Fernandez et al., 2020] to verify the validity of the
propositional formula. TouIST will encode the formula in its
DIMACS CNF format and send it to the MiniSAT solver for
checking satisfiability.

4 Example and Implementation: Artificial
Assistant

In order to probe the potential of our implemented system for
cognitive planning we test it in a HMI scenario detailed in
[Fernandez et al., 2021]. In this scenario agent m is the arti-
ficial assistant of the human agent h. Agent h has to choose
a sport to practice since her doctor recommended her to do a
regular physical activity to be in good health. Agent m’s aim
is to help agent h to make the right choice, given her actual
beliefs and desires. Agent m has to provide information about
the possible options (Opt) the user can choose and their prop-
erties (Var ). For each pair (Opt ,Var) we assing a valuation
Val . In this example, we suppose that Opt is composed of
the following eight elements: swimming (sw), running (ru),
horse riding (hr), tennis (te), soccer (so), yoga (yo), diving
(di) and squash (sq). Moreover, there are exactly six variables
in Var which are used to classify the available options: en-
vironment (env), location (loc), sociality (soc), cost (cost),
dangerousness (dan) and intensity (intens). The variable
assignments are showed in Table 1:

Opt
Var

env loc soc cost dan intens

sw water mixed single med low high

ru land outdoor single low med high

hr land outdoor single high high low

te land mixed mixed high med med

so land mixed team med med med

yo land mixed single med low low

di water mixed single high high low

sq land indoor mixed high med med

Table 1: Variable assignments. For every option o ∈ Opt and
variable x ∈ Var , we denote by vo,x the corresponding entry in the
table. For instance, we have vsw,env = water .

Formulas representing the rules and constraints are loaded as
part of agent m’s belief base. For example, the implementa-
tion of the formula representing the fact that agent h explic-
itly believes that a sport cannot have two different values for



a given property is formalized as follows:∧
o∈Opt
x∈Var

v1,v2∈Valx:v1 ̸=v2

(
△hval(o, x 7→ v1) → △h¬val(o, x 7→ v2)

)

bigand
$o,$x,$v1,$v2 in $Opt,$Var,$Val($x),$Val($x)
when $v1 != $v2:
{h}val($o,ass($x,$v1))=>{h}not val($o,ass($x,$v2))

end

The set of actions are generated from table 1:

inform(m,h,val_so_ass_env_land)

The previous informative action is interpreted as the speech
act used by agent m to inform agent h that the valuation of
the property:environment for the option:soccer is land. In
order to help agent h to select an activity, agent m also needs
information about h’s set of actual desires. Information about
agent h’s desires is gathered by agent m during its interaction
with h. The interaction interface between agents h and m
is showed in figure 2. The belief revision module is called
after each agent h’s feedback and it restores consistency of
the agent m’s belief base, in case the incoming information is
inconsistent with agent m’s pre-existent beliefs.

Figure 2: Collecting agent h’s preferences

In the example, agent h would like to practice a land activ-
ity, with medium intensity, which is not exclusively indoor,
and which can be practiced both in single and team mode,
if its cost is high. The next rule for precondition states that
agent h must be informed by agent m about the dangerous-
ness level of a sport, before presenting other properties for an
option. For a ̸∈ Assigndan:

P
(
inform

(
m,h,val(o, a)

))
= □m

(
val(o, a)∧∧

v∈Valdan

(
val(o,dan 7→ v) → △hval(o,dan 7→ v)

))
In the next lines we illustrate how the precondition is as-

signed by the planner module together with its +mα operator
in order to specify the successful occurrence of an informa-
tive action:

[m]((val_te_ass_intens_med) and
(val_te_ass_danger_med =>

{h}val_te_ass_danger_med)) and
plus({h}val_te_ass_intens_med, ...

The planner reads the Initial State, the Actions and the Goal
files. The planning module generates plans with the elements
contained in the Action file. It starts with plans of length 1,
and enters in a loop. At each interaction the planner asks
the SAT solver to verify whether the plan allows to achieve
the Goal. If no plan of length k is found, the program will
increase the counter in one and look for a plan of length k+1.

plus({h}(val_te_ass_danger_med)
plus({h}(val_te_ass_intens_med)
plus({h}(val_te_ass_soc_mixed)
plus({h}(val_te_ass_loc_mixed)
plus({h}(val_te_ass_env_land)
plus({h}(ideal_h_te)

The order of speech acts is determined by the preconditions.
Specifically, the planner informs firstly about the dangerous-
ness level of the sport. Secondly, it provides explanation of
why the user’s desires are satisfied. Finally, it indicates the
ideal sport for the user, in this case tennis.

Figure 3: Plan showed by the chatbot to the human

The chatbot writes both the formal actions sequence and its
translation in natural language.

5 Conclusion
The implementation demonstrates that the NP-complete epis-
temic logic presented in [Fernandez et al., 2021] and the cog-
nitive planning problem formulated in this logic are suitable
for real-world applications in the domain of human-machine
interaction. In future work, we plan to extend the imple-
mented system by speech acts of type question to capture
both sides of interaction, from agent m to agent h (handled by
the actual implementation) and from agent h to agent m. We
also plan to combine our implementation of cognitive plan-
ning with machine learning and data mining techniques, as
presented in [Krzywicki et al., 2016], which are aimed at ex-
tracting information about the human user from real data.
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