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Abstract Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant

hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies

suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo

fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward

genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of

lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and

accumulation of emblematic fungal 16:1w5 FAs. Using isotopolog profiling we demonstrate that
13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid

transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific

lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled

by sugars but depends on lipid transfer from plant hosts.

DOI: 10.7554/eLife.29107.001

Introduction
Arbuscular mycorrhiza (AM) is a widespread symbiosis between most land plants and fungi of the

Glomeromycota (Smith and Read, 2008). The fungi provide mineral nutrients to the plant. These

nutrients are taken up from the soil and released inside root cortex cells at highly branched hyphal

structures, the arbuscules (Javot et al., 2007). For efficient soil exploration, arbuscular mycorrhiza

fungi (AMF) develop extended extraradical hyphal networks. Their growth requires a large amount

of energy and carbon building blocks, which are transported mostly as lipid droplets and glycogen

to the growing hyphal tips (Bago et al., 2002, 2003). AMF are obligate biotrophs, as they depend

on carbon supply by their host (Smith and Read, 2008). In the past, detailed 13C-labeled tracer-

based NMR studies demonstrated that hexose sugars are a major vehicle for carbon transfer from

plants to fungi (Shachar-Hill et al., 1995). In addition, a fungal hexose transporter, with high trans-

port activity for glucose is required for arbuscule development and quantitative root colonization as

shown by host induced gene silencing (Helber et al., 2011), indicating the importance of hexose

transfer for intra-radical fungal development.

AMF store carbon mainly in the form of lipids (Trépanier et al., 2005). The predominant storage

form is triacylglycerol (TAG) and the major proportion of FAs found in AMF is composed of 16:0

(palmitic acid), and of 16:1w5 (palmitvaccenic acid). The latter is specific to AM fungi and certain
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bacteria and is frequently used as marker for the detection of AM fungi in soil (Graham et al., 1995;

Bentivenga and Morton, 1996; Madan et al., 2002; Trépanier et al., 2005). Fungus-specific

16:1w5 FAs are not exclusive to glycerolipids but also incorporated into membrane phospholipids

(van Aarle and Olsson, 2003). Furthermore, 18:1w7 and 20:1q11 are considered specific for AMF

but do not occur in all AMF species (Madan et al., 2002; Stumpe et al., 2005).

It has long been assumed that AMF use sugars as precursors for lipid biosynthesis (Pfeffer et al.,

1999). However, de novo biosynthesis of fungal fatty acids (FAs) was only observed inside colonized

roots and not in extraradical mycelia or spores (Pfeffer et al., 1999; Trépanier et al., 2005). The

authors concluded that AM fungi can produce FAs only inside the host. The hypothesis that plants

directly provide lipids to the fungus could not be supported at that time (Trépanier et al., 2005),

due to experimental limitations and the lack of appropriate plant mutants. However, recently avail-

able whole genome sequences of AMF have revealed that genes encoding multi-domain cytosolic

FA synthase subunits, typically responsible for most of the de novo 16:0 FA synthesis in animals and

fungi, are absent from the genomes of the model fungi Rhizophagus irregularis, Gigaspora margarita

and Gigaspora rosea (Wewer et al., 2014; Ropars et al., 2016; Salvioli et al., 2016; Tang et al.,

2016). Hence, AMF appear to be unable to synthesize sufficient amounts of 16:0 FAs, but their

genomes do encode the enzymatic machinery for 16:0 FA elongation to higher chain length and for

FA desaturation (Trépanier et al., 2005; Wewer et al., 2014).

Development of fungal arbuscules is accompanied by activation of a cohort of lipid biosynthesis

genes in arbuscocytes (arbuscule-containing plant cells) (Gaude et al., 2012a, 2012b). Furthermore,

lipid producing plastids increase in numbers and together with other organelles such as the endo-

plasmic reticulum change their position and gather in the vicinity of the arbuscule (Lohse et al.,

2005; Ivanov and Harrison, 2014), symptomatic of high metabolic activity to satisfy the high

eLife digest Most land plants are able to form partnerships with certain fungi – known as

arbuscular mycorrhiza fungi – that live in the soil. These fungi supply the plant with mineral nutrients,

especially phosphate and nitrogen, in return for receiving carbon-based food from the plant. To

exchange nutrients, the fungi grow into the roots of the plant and form highly branched structures

known as arbuscules inside plant cells.

Due to the difficulties of studying this partnership, it has long been believed that plants only

provide sugars to the fungus. However, it has recently been discovered that these fungi lack

important genes required to make molecules known as fatty acids. Fatty acids are needed to make

larger fat molecules that, among other things, store energy for the organism and form the

membranes that surround each of its cells. Therefore, these results raise the possibility that the plant

may provide the fungus with some of the fatty acids the fungus needs to grow.

Keymer, Pimprikar et al. studied how arbuscules form in a plant known as Lotus japonicus, a close

relative of peas and beans. The experiments identified a set of mutant L. japonicus plants that had

problems forming arbuscules. These plants had mutations in several genes involved in fat production

that are only active in plant cells containing arbuscules.

Further experiments revealed that certain fat molecules that are found in fungi, but not plants,

were present at much lower levels in samples from mutant plants colonized with the fungus,

compared to samples from normal plants colonized with the fungus. This suggests that the fungi

colonizing the mutant plants may be starved of fat molecules. Using a technique called stable

isotope labelling it was possible to show that fatty acids made in normal plants can move into the

colonizing fungus.

The findings of Keymer, Pimprikar et al. provide evidence that the plant feeds the fungus not only

with sugars but also with fat molecules. The next challenge will be to find out exactly how the fat

molecules are transferred from the plant cell to the fungus. Many crop plants are able to form

partnerships with arbuscular mycorrhizal fungi. Therefore, a better understanding of the role of fat

molecules in these relationships may help to breed crop plants that, by providing more support to

their fungal partner, may grow better in the field.

DOI: 10.7554/eLife.29107.002
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demands of arbscocytes for metabolites including lipids. The importance of plant lipid biosynthesis

for arbuscule development has been demonstrated by Medicago truncatula mutants in AM-specific

paralogs of two lipid biosynthesis genes FatM and REDUCED ARBUSCULAR MYCORRHIZA2

(RAM2) (Wang et al., 2012; Bravo et al., 2017). FatM encodes an ACP-thioesterase, which termi-

nates fatty acid chain elongation in the plastid by cleaving the ACP off the acyl group releasing free

FAs and soluble ACP (Jones et al., 1995). RAM2 encodes a glycerol 3-phosphate acyl transferase

(GPAT) and is most similar to Arabidopsis GPAT6. In Arabidopsis, GPAT6 acetylates the sn-2 posi-

tion of glycerol-3-phosphate with an FA and cleaves the phosphate from lysophosphatidic acid,

thereby producing sn-2-monoacylglycerol (ßMAG, Yang et al., 2010). Mutations in both FatM and

RAM2 impair arbuscule branching (Wang et al., 2012; Bravo et al., 2017). In addition, arbuscule

branching requires a complex of two half ABC transporters STR and STR2 (Zhang et al., 2010;

Gutjahr et al., 2012). The substrate of STR/STR2 is unknown but other members of the ABCG trans-

porter family are implicated in lipid transport (Wittenburg and Carey, 2002; Wang et al., 2011;

Fabre et al., 2016; Hwang et al., 2016; Lee et al., 2016). Therefore, and due to its localization in

the peri-arbuscular membrane (Zhang et al., 2010) it was speculated that the STR/STR2 complex

may transport lipids towards arbuscules (Gutjahr et al., 2012; Bravo et al., 2017). Transcriptional

activation of RAM2 and STR is controlled by the GRAS transcription factor REDUCED ARBUSCULAR

MYCORRHIZA1 (RAM1) (Gobbato et al., 2012; Park et al., 2015; Pimprikar et al., 2016) and also

in ram1 mutants, arbuscule branching is impaired (Park et al., 2015; Xue et al., 2015;

Pimprikar et al., 2016). Thus, RAM1, FatM, RAM2 and STR/STR2 appear to form an AM-specific

operational unit for lipid biosynthesis and transport in arbuscocytes. Consistently, they were found

to be absent from genomes of plants that have lost the ability to form AM (Delaux et al., 2014;

Favre et al., 2014; Bravo et al., 2016).

Here, we analyzed two Lotus japonicus mutants identified in a forward genetic screen, which are

impaired in arbuscule branching (Groth et al., 2013). Positional cloning combined with genome

resequencing revealed mutations in a novel AM-specific b-keto-acyl ACP synthase I (KASI) gene and

in the L. japonicus ortholog of M. truncatula RAM2. KASI likely acts upstream of RAM2 in producing

16:0 FAs. The identity of the genes and the phenotypes led us to hypothesize that AMF may depend

on delivery of 16:0 FAs from the plant host. Using a combination of microscopic mutant characteriza-

tion, lipidomics and isotopolog profiling of 16:0 and 16:1w5 FAs in roots and extraradical fungal

mycelium, we provide strong evidence for requirement of both genes for AM-specific lipid biosyn-

thesis and cross-kingdom lipid transfer from plants to AMF.

Results

Two L. japonicus arbuscule-branching mutants are defective in lipid-
biosynthesis genes
We previously identified two L. japonicus mutants disorganized arbuscules (dis-1, SL0154-N) and

SL0181-N (red) deficient in arbuscule branching (Groth et al., 2013) (Figure 1A–B). Both mutants

also suffered from a reduction in root length colonization and blocked the formation of lipid-contain-

ing vesicles of the fungus Rhizophagus irregularis (Figure 1C–D). We identified the causative muta-

tions with a combination of classical mapping and next generation sequencing (see Materials and

methods). DIS encodes a b-keto-acyl ACP synthase I (KASI, Figure 1—figure supplements 1A–C

and 2). KASI enzymes catalyze successive condensation reactions during fatty acyl chain elongation

from C4:0-ACP to C16:0-ACP (Li-Beisson et al., 2010). SL0181-N carries one mutation (ram2-1) in

the L. japonicus orthologue of the previously identified Medicago truncatula REDUCED ARBUSCU-

LAR MYCORRHIZA2 (RAM2, Figure 1—figure supplements 3 and 4). Arabidopsis GPAT6 has been

shown to produce ß-MAG with a preference for 16:0 FAs (Yang et al., 2012). Therefore, we hypoth-

esized that DIS and RAM2 act in the same biosynthetic pathway.

We identified additional allelic dis mutants by TILLING (Figure 1—figure supplement 1E,

Supplementary file 1) (Perry et al., 2003) and a ram2 mutant caused by a LORE1 insertion in the

RAM2 gene (Figure 1—figure supplement 3B) (Małolepszy et al., 2016). Among the allelic dis

mutants we chose dis-4 for further investigation because it suffers from a glycine replacement at the

border of a conserved ß-sheet (Figure 1—figure supplement 2), which likely affects protein folding

(Perry et al., 2009). Both allelic mutants dis-4 and ram2-2 phenocopied dis-1 and ram2-1,
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respectively. Furthermore, transgenic complementation of both dis-1 and ram2-1 with the wild-type

versions of the mutated genes restored arbuscule-branching and wild-type-like levels of root length

colonization and vesicle formation (Figure 1A-B). Taken together this confirmed identification of

both causal mutations.
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Figure 1. DIS and RAM2 are required for arbuscule branching and vesicle formation. Arbuscule phenotype and complementation of dis (A) and ram2

(B) mutants. The fungus was stained with wheat-germ agglutinin (WGA)-AlexaFluor488. (C-D) Percent root length colonization of dis (C) and ram2 (D)

mutants as compared to wild-type. Different letters indicate significant differences among treatments (ANOVA; posthoc Tukey). (C): n = 13; p�0.1, F2,10
= 8.068 (total & int. hyphae); p�0.001 F2,10 = 124.5 (arbuscules); p�0.001, F2,10 = 299.1 (vesicles) (D): n = 15; p�0.1, F2,12 = 10.18 (total & int. hyphae);

p�0.001 F2,12 = 57.86 (arbuscules); p�0.001, F2,12 = 72.37 (vesicles). (A-D) Plants were inoculated with R. irregularis and harvested at 5 weeks post

inoculation (wpi).

DOI: 10.7554/eLife.29107.003

The following figure supplements are available for figure 1:

Figure supplement 1. Identification of the dis mutation.

DOI: 10.7554/eLife.29107.004

Figure supplement 2. Protein sequence alignment of L. japonicus DIS with other KASI proteins.

DOI: 10.7554/eLife.29107.005

Figure supplement 3. Identification of mutation in the RAM2 gene.

DOI: 10.7554/eLife.29107.006

Figure supplement 4. Protein sequence alignment of L.

DOI: 10.7554/eLife.29107.007
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DIS and RAM2 expression in arbuscocytes is sufficient for arbuscule
development
Transcript levels of both DIS and RAM2 increased in colonized roots (Figure 3—figure supplement

1A). To analyze the spatial activity pattern of the DIS and RAM2 promoters during colonization we

fused 1.5 kb for DIS and 2.275 kb for RAM2 upstream of the translational start site to the uidA gene.

Consistent with a role of both genes in arbuscule development GUS activity was predominantly

detected in arbuscocytes (arbuscule-containing cells) in both wild-type and the corresponding

mutant roots (Figure 2—figure supplement 1A–B).

To correlate promoter activity with the precise stage of arbuscule development we used nuclear

localized YFP as a reporter. To visualize the fungus, the promoter:reporter cassette was co-trans-

formed with a second expression cassette containing secreted mCherry fused to the SbtM1 pro-

moter. This promoter drives expression in colonized cells, in cells neighboring apoplastically growing

hyphae and in cells forming pre-penetration apparatuus (PPAs, cytoplasmic aggregations that

assemble in cortex cells prior to arbuscule development) (Genre et al., 2008; Takeda et al., 2009,

2012). When expressed under the control of the SbtM1 promoter, secreted mCherry accumulates in

the apoplast surrounding fungal structures and PPAs, thereby revealing the silhouette of these struc-

tures (Figure 2A–B, Videos 1–2). Nuclear localized YFP fluorescence indicated activity of both pro-

moters in cells containing PPAs (c, Videos 1–2) and containing sparsely branched (d) or mature (e)

arbuscules. Furthermore, we rarely detected YFP fluorescence in non-colonized cells in direct neigh-

borhood of arbuscocytes, which were possibly preparing for PPA formation (a). However, YFP signal

was absent from cells containing collapsed arbuscules (f), indicating that the promoters were active

during arbuscule development and growth but inactive during arbuscule degeneration (Figure 2A–

B). RAM2 promoter activity was strictly correlated with arbuscocytes, while the DIS promoter

showed additional activity in cortical cells of non-colonized root segments (Figure 2A–B, Figure 2—

figure supplement 1C–D, Videos 3–6).

To examine, whether arbuscocyte-specific expression of DIS and RAM2 is sufficient for fungal

development we complemented the dis-1 and ram2-1 mutants with the corresponding wild-type

genes fused to the arbuscocyte-specific PT4 promoter (Volpe et al., 2013). This restored arbuscule-

branching, vesicle formation as well as root length colonization in the mutants (Figure 2C–F), show-

ing that arbuscocyte-specific expression of DIS and RAM2 suffices to support AM development.

Thus, expression of lipid biosynthesis genes in arbuscocytes is not only important for arbuscule

branching but also for vesicle formation and quantitative colonization.

The KASI family comprises three members in L. japonicus
Growth and development of dis and ram2 mutants are not visibly affected (Figure 3—figure supple-

ment 2), although they carry defects in important lipid biosynthesis genes. RAM2 is specific to AM-

competent plants (Wang et al., 2012; Delaux et al., 2014; Favre et al., 2014; Bravo et al., 2016)

and activated in an AM-dependent manner (Figure 2, Figure 3—figure supplement 1A)

(Gobbato et al., 2012, 2013). Plants contain an additional GPAT6 paralog, which likely fulfills the

housekeeping function (Figure 1—figure supplement 4, Yang et al., 2012; Delaux et al., 2015). To

understand whether the same applies to DIS we searched the L. japonicus genome for additional

KASI genes. We detected three paralogs KASI, DIS and DIS-LIKE (Figure 1—figure supplement

1D–E and Figure 1—figure supplement 2), of which only DIS was transcriptionally activated in AM

roots (Figure 3—figure supplement 1A). Phylogenetic analysis revealed a split of seed plant KASI

proteins into two different clades, called KASI and DIS (Figure 3). Members of the KASI clade, are

presumably involved in housekeeping functions as this clade contains the product of the KASI single

copy gene in Arabidopsis (Wu and Xue, 2010). Members of the DIS clade are found specifically in

AM-host dicotyledons and in a gymnosperm (Figure 3). As confirmed by synteny analysis (Figure 3—

figure supplement 3), DIS is absent from all eight analyzed non-host dicotyledon genomes, a phylo-

genetic pattern similar to other symbiosis genes (Delaux et al., 2014; Favre et al., 2014;

Bravo et al., 2016). The occurrence of DIS in Lupinus species, which lost AM competence but still

form root nodule symbiosis, may be a relic from the AM competent ancestor. An apparently, Lotus-

specific, and thus recent duplication of the DIS gene resulted in an 87% identical copy (DIS-LIKE)

located directly adjacent to DIS in a tail-to-tail orientation (Figure 1—figure supplements 1B–C,

2). DIS-LIKE was expressed at very low levels and not induced upon AM (Figure 3—figure
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Figure 2. Arbuscocyte-specific expression of DIS and RAM2 is sufficient for arbuscule branching. Promoter activity indicated by nuclear localized yellow

fluorescence in colonized transgenic L. japonicus wild-type roots transformed with constructs containing a 1.5 kb promoter fragment of DIS (A) or a

2.275 kb promoter fragment of RAM2 (B) fused to NLS-YFP. (A-B) Red fluorescence resulting from expression of pSbtM1:SP-mCherry labels the

apoplastic space surrounding pre-penetration apparatuus (PPAs) and fungal structures, thereby evidencing the silhouette of these structures. a

Figure 2 continued on next page
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supplement 1A). Nevertheless, because of its sequence similarity to DIS, we examined whether DIS-

LIKE is also required for arbuscule formation using the dis-like-5 mutant, which suffers from a glycine

replacement at position 180 at the border of a highly conserved b-sheet that likely affects protein

function (Perry et al., 2009) (Supplementary file 1, Figure 1—figure supplement 2). However, in

roots of dis-like-5 AM and arbuscule development was indistinguishable from wild type (Figure 3—

figure supplement 1B). Therefore, DIS-LIKE might have lost its major role in arbuscule development

after the duplication.

DIS functions like a canonical KASI in planta
We examined whether DIS can substitute the phylogenetically related housekeeping KASI. To this

end we transgenically complemented an Arabidopsis kasI mutant (Wu and Xue, 2010) with Lotus

DIS driven by the Arabidopsis KASI promoter. Arabidopsis kasI exhibits an altered FA profile and

reduced rosette growth (Wu and Xue, 2010). Complementation with DIS restored both wild-type-

like rosette growth and FA accumulation. The kasI phenotypes persisted when the dis-1 mutant

allele was transformed as a negative control (Figure 4C–E). In the reverse cross-species complemen-

tation AtKASI driven by the DIS promoter restored colonization, arbuscule branching and vesicle

Figure 2 continued

Colonized root, b non-colonized part of colonized root, c PPAs, (white arrow heads indicate the silhouette of fungal intraradical hyphae) d small

arbuscules, e fully developed arbuscules f collapsed arbuscules. Merged confocal and bright field images of whole mount roots are shown. (C-D)

Transgenic complementation of dis-1 (C) and ram2-1 (D) hairy roots with the respective wild-type gene driven by the PT4 promoter. The mutant gene

was used as negative control. White arrowheads indicate arbuscules. (E-F) Quantification of AM colonization in transgenic roots shown in (C-D).

Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 15; p�0.001) among genotypes for each fungal structure separately. Int.

hyphae, intraradical hyphae. (E): F2,12 = 26.53 (total), F2,12 = 46.97 (arbuscules), F2,12 = 27.42 (vesicles). (F) F2,12 = 341.5 (total), F2,12 = 146.3 (arbuscules),

F2,12 = 35.86 (vesicles).

DOI: 10.7554/eLife.29107.008

The following figure supplement is available for figure 2:

Figure supplement 1. DIS and RAM2 promoter activity in wild type and dis and ram2 mutants.

DOI: 10.7554/eLife.29107.009

Video 1. 3D animation of Figure 2Ac illustrating that

the silhouette of the fungal intraradical hyphae (red

fluorescent vertical line) aligns with the silhouette of

pre-penetration apparatuus (red fluorescent bag-like

structure). Yellow fluorescence in nuclei indicates

activation of pDIS:YFP.

DOI: 10.7554/eLife.29107.010

Video 2. 3D animation of Figure 2Bc illustrating that

the silhouette of the fungal intraradical hyphae (red

fluorescent vertical line) aligns with the silhouette of

pre-penetration apparatuus (red fluorescent bag-like

structure). Yellow fluorescence in nuclei indicates

activation of pRAM2:YFP.

DOI: 10.7554/eLife.29107.011
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formation in dis-1 roots (Figure 4A–B). Further-

more, DIS contains a KASI-typical plastid transit

peptide and - as predicted - localizes to plastids in Nicotiana benthamiana leaves and L. japonicus

roots (Figure 1—figure supplement 1F Figure 4F–G). Thus, the enzymatic function of DIS is equiva-

lent to the housekeeping KASI of Arabidopsis and the AM-specific function must result from its AM-

dependent expression pattern.

Video 3. Scan through confocal z-stack of Figure 2Aa

illustrating correlation of DIS promoter activity with

arbuscocytes.

DOI: 10.7554/eLife.29107.012

Video 4. Scan through confocal z-stack of Figure 2Ab

illustrating DIS promoter activity exclusively in the

cortex.

DOI: 10.7554/eLife.29107.013

Video 5. Scan through confocal z-stack of Figure 2Ba

illustrating correlation of RAM2 promoter activity with

arbuscocytes.

DOI: 10.7554/eLife.29107.014

Video 6. Scan through confocal z-stack of Figure 2Bb

illustrating absence of RAM2 promoter activity from

non-colonized cells.

DOI: 10.7554/eLife.29107.015
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Figure 3. Phylogenetic tree of KASI proteins in land plants. Protein sequences were aligned using MAFFT.

Phylogenetic trees were generated by neighbor-joining implemented in MEGA5 (Tamura et al., 2011). Partial gap
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The AM-specific increase in 16:0 and 16:1v5 FA containing lipids is
abolished in the dis mutant
To characterize the role of DIS in determining the lipid composition of non-colonized and colonized

roots we quantified triacylglycerols (TAGs), diacylglycerols (DAGs), galactolipids and phospholipids

in wild-type and dis-1. The lipid profile of colonized roots contains both plant and fungal lipids, how-

ever using the fungal marker FA 16:1w5 and previous data on fungus-specific lipids (Wewer et al.,

2014), many fungal lipids can be clearly distinguished from plant lipids. The lipid profile of non-colo-

nized roots was not affected by the dis-1 mutation. However, the strong and significant increase of

16:0 and 16:1 (most probably fungus-specific 16:1w5) containing TAGs, which is characteristic for

colonization of wild-type roots (Wewer et al., 2014) was abolished in dis-1 (Figure 5A–D, Figure 5—

figure supplement 1B). Also, AM- and fungus-specific DAG and phospholipid molecular species

were enhanced in colonized wild-type roots but not in colonized dis-1 roots (Figure 5—figure sup-

plements 1A and 2). In contrast, galactolipids were not affected by root colonization or genotype

(Figure 5—figure supplement 3). In summary, DIS affects the glycerolipid and phospholipid profile

of colonized L. japonicus roots and does not interfere with lipid accumulation in the non-colonized

state. Most lipids affected by the DIS mutation are fungus-specific and therefore reflect the amount

of root colonization and of fungal lipid-containing vesicles. However, since the root lipid profile is

hardly affected, absence of FA elongation by DIS was the cause of reduced lipid accumulation and

root colonization.

RAM1, DIS, RAM2 and STR are required for accumulation of AM
signature lipids
Similar to dis and ram2 L. japonicus mutants in the ABCG half-transporter STR and the GRAS protein

RAM1 are affected in arbuscule branching (Kojima et al., 2014; Pimprikar et al., 2016; Xue et al.,

2015), quantitative root colonization and formation of lipid-containing fungal vesicles (Figure 5—fig-

ure supplement 4). Moreover, the AM-dependent transcriptional activation of DIS and KASIII, the

latter of which is a single copy gene in L. japonicus and produces precursors for DIS-activity by cata-

lyzing FA chain elongation from C2 to C4, was absent from ram1 mutants (Figure 6). In contrast,

induction of the single copy gene KASII, which elongates fatty acyl chains from C16 to C18 was not

hampered by RAM1 deficiency. Thus, RAM1 may play an important role in the regulation of lipid bio-

synthesis in arbuscocytes, since it also mediates expression of RAM2 and STR (Gobbato et al.,

2012; Park et al., 2015; Pimprikar et al., 2016; Luginbuehl et al., 2017).

We hypothesized that RAM1, DIS, RAM2 and STR form a specific operational unit for lipid biosyn-

thesis and transport in arbuscocytes. Therefore, we directly compared their impact on the AM-spe-

cific root lipid profile and measured galactolipids, phospholipids, TAGs and also total and free fatty

acids in colonized roots of ram1, dis, ram2, str mutants and wild-type in parallel. Consistent with our

previous observation in dis-1, galactolipid accumulation was similar in colonized roots of wild-type

and all mutants (Figure 5—figure supplement 3C–D). In contrast, total 16:0 FAs (FAMEs) as well as

16:1 and 18:1 (likely 18:1w7 FA of fungal origin) FAs were strongly reduced in all colonized mutants

compared to the corresponding wild-type. Free FAs showed a similar pattern except for 18:1 FAs

Figure 3 continued

deletion (95%) was used together with the JTT substitution model. Bootstrap values were calculated using 500

replicates. DIS likely originated before the angiosperm divergence (red star).

DOI: 10.7554/eLife.29107.016

The following source data and figure supplements are available for figure 3:

Source data 1. Accession numbers for protein sequences used in the phyologenic tree.

DOI: 10.7554/eLife.29107.017

Figure supplement 1. Transcript accumulation of KASI and RAM2 genes.

DOI: 10.7554/eLife.29107.018

Figure supplement 2. Shoot phenotypes of dis and ram2 mutants.

DOI: 10.7554/eLife.29107.019

Figure supplement 3. Genomic comparison of the DIS locus in host and non-host species.

DOI: 10.7554/eLife.29107.020
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Figure 4. DIS function is equivalent to a canonical KASI. (A) Microscopic AM phenotype of transgenic dis-1 mutant and wild-type hairy roots

transformed with either an empty vector (EV) or the Arabidopsis KASI gene fused to the L. japonicus DIS promoter. White arrowheads indicate

arbuscules. (B) Quantification of AM colonization in transgenic roots of dis-1 transformed with EV (open circles), dis-1 transformed with pDIS-AtKASI

(grey circles) and wild-type transformed with EV (black squares). int. hyphae, intraradical hyphae. Different letters indicate significant differences

(ANOVA; posthoc Tukey; n = 15; p�0.001) among genotypes for each fungal structure separately. F2,12 = 0.809 (total and intraradical hyphae), F2,12 =

43.65 (arbuscules), F2,12 = 0.0568 (vesicles). (C) Rosettes of Arabidopsis, kasI mutant, Col-0 wild-type plants and kasI mutant plants transformed either
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(Figure 5—figure supplement 5). Also for TAGs and phospholipids, AMF-specific molecular species

and 16:0 FA containing molecular species were strongly reduced in all mutants (Figure 5E–H, Fig-

ure 5—figure supplements 6–11). However, the two allelic ram2 mutants formed an exception.

They specifically over-accumulated 16:0-16:0 FA-containing phospholipids in particular 32:0 PA and

32:0-PC but also to a smaller extend 32:0-PE and 32:0-PI (Figure 5—figure supplements 6–10). A

similar pattern was observed for tri-16:0 TAGs (Figure 5F). This suggests that RAM2 acts down-

stream of DIS in a biosynthetic pathway and uses the 16:0 FAs synthesized by DIS in arbuscocytes as

substrates. In the absence of functional RAM2 the FA products of DIS, are probably redirected into

phospholipid biosynthesis and storage lipid biosynthesis via PA and PC (Li-Beisson et al., 2010)

leading to the observed higher accumulation of 16:0 FA containing lipid species in ram2 mutants.

This higher accumulation of specific lipids did not correlate with colonization levels in ram2 mutants

(Figure 5—figure supplement 4) confirming that reduced colonization levels are not the primary

cause for altered lipid profiles in the colonized mutant roots. Instead, defective AM-specific lipid bio-

synthesis in the mutants more likely impairs fungal development.

The abundance of 16:0 ß-monoacyl-glycerol is reduced in all mutants
The first step in TAG and phospholipid production after FA biosynthesis is the esterification of FAs

with glycerol by GPATs in the plastid or endoplasmic reticulum to produce a-MAGs (sn1/3-MAGs,

Li-Beisson et al., 2010). RAM2 is predicted to produce a different type of glycerolipid ß-MAG (sn2-

MAG) with a preference towards 16:0 and 18:1 FAs (Yang et al., 2010; Wang et al.,

2012; Yang et al., 2012). To examine the role of RAM2 in MAG biosynthesis, we quantified a-MAG

and ß-MAG species in colonized roots of wild-type and all mutants. The abundance of ß-MAGs was

generally lower than that of a-MAGs (Figure 7). The amount of most a-MAG species did not differ

among the genotypes. Only the fungus-specific 16:1 and 18:1w7 a-MAGs were reduced in all

mutants reflecting the lower fungal biomass (Figure 7A). Fungus-specific ß-MAGs with 16:1 and

18:1w7 acyl groups were not detected and most ß-MAG molecular species accumulated to similar

levels in all genotypes. Exclusively the levels of 16:0 ß-MAGs were significantly lower in all mutants

as compared to the corresponding wild-type roots (Figure 7B). This supports a role of RAM2 in 16:0

ß-MAG synthesis during AM and a role of DIS in providing 16:0 FA precursors for RAM2 activity. A

low accumulation, of 16:0 ß-MAGs in ram1 mutants is consistent with RAM1’s role in regulating the

FA and lipid biosynthesis genes (Figure 6) (Gobbato et al., 2012; Pimprikar et al., 2016). In str

16:0 ß-MAGs likely did not accumulate because of reduced RAM2 expression in str roots due to low

root length colonization and/or a regulatory feedback loop (Bravo et al., 2017).

DIS, RAM2 and STR are required for transfer of 13C label from plant to
fungus
In plants, ß-MAGs serve as precursors for cutin polymers at the surface of aerial organs (Yang et al.,

2012; Yeats et al., 2012). For their use in membrane or storage lipid biosynthesis they first need to

be isomerized to a-MAGs (Li-Beisson et al., 2010). The recruitment of a GPAT6 (RAM2) instead of a

a-MAG-producing GPAT for AM-specific lipid synthesis supports the idea that RAM2-products are

destined for something else than membrane biosynthesis of the host cell. Since AM fungal genomes

lack genes encoding cytosolic FA synthase subunits (Wewer et al., 2014; Ropars et al., 2016;

Figure 4 continued

with the native AtKASI gene, the dis-1 mutant or the DIS wild-type gene driven by the Arabidopsis KASI promoter at 31 days post planting. (D) Rosette

fresh weight of kasI mutant, Col-0 wild-type plants, one transgenic pAtKASI:AtKASI complementation line (Wu and Xue, 2010) and two independent

transgenic lines each of kasI mutant plants transformed either with the dis-1 mutant or the DIS wild-type gene driven by the Arabidopsis KASI promoter

at 31 days post planting. Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 70; p�0.001; F6,63 = 34.06) among genotypes. (E)

Q-TOF MS/MS analysis of absolute amount of digalactosyldiacylglycerols (DGDG) containing acyl chains of 16:x + 18:x(34:x DGDG) or di18:x(36:x

DGDG) derived from total leaf lipids of the different Arabidopsis lines. Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 32;

(p�0.05, F 6,25 = 14.48 (36:6)). (F) Subcellular localization of DIS in transiently transformed Nicotiana benthamiana leaves. Free RFP localizes to the

nucleus and cytoplasm (upper panel). RFP fused to DIS co-localizes with the Arabidopsis light harvesting complex protein AtLHCB1.3-GFP in

chloroplasts (lower panel). (G) Subcellular localization in plastids of DIS-YFP expressed under the control of the L. japonicus Ubiquitin promoter in R.

irregularis colonized (upper panel) and non-colonized (lower panel) L. japonicus root cortex cells. BF, bright field; IH, intercellular hypha; A, arbuscule.

DOI: 10.7554/eLife.29107.021

Keymer et al. eLife 2017;6:e29107. DOI: 10.7554/eLife.29107 12 of 33

Research article Plant Biology

http://dx.doi.org/10.7554/eLife.29107.021
http://dx.doi.org/10.7554/eLife.29107


A B

E

WTGifu

str

WT MG20

ram2-2

ram2-1

dis-4

dis-1

ram1-3

ram1-4

tr
i 
1
6
:0

 T
A

G
 [
n
m

o
l/
m

g
 F

W
]

0

0.5

1.0

1.5

2.0

2.5

3.0

/100

a

a

b b bbbbb

W
T G

ifu

di
s-

1

ra
m

1-
3

ra
m

1-
4

di
s-

4

ra
m

2-
1

ra
m

2-
2

W
T M

G
20 st

r
0

0.1

0.2

0.3

0.5

0.6

0.7

0.8

0.9

1.0

tr
i 
1
6
:0

 T
A

G
 [
m

o
l%

]

W
T G

ifu

di
s-

1

ra
m

1-
3

ra
m

1-
4

di
s-

4

ra
m

2-
1

ra
m

2-
2

W
T M

G
20 st

r

b
b

a

a a a a

a

a

0

2

4

6

8

10

12

14

16

W
T G

ifu

di
s-

1

ra
m

1-
3

ra
m

1-
4

di
s-

4

ra
m

2-
1

ra
m

2-
2

W
T-

M
G
20 st

r

T
A

G
 [

n
m

o
l/
m

g
 F

W
]

a

a

b b b b b b b

0

2

4

6

8

10

12

14

T
A

G
 [

n
m

o
l/
m

g
 F

W
]

a aa tr
i 
1

6
:0

 T
A

G
 [

n
m

o
l/
m

g
 F

W
]

WT dis-1WTdis-1

control AM

b

WT dis-1WTdis-1

control AM

F

a a

a

a
a

a

a a
a

b
b

b

0

0.01

0.02

0.03

0.04

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
4.5

tr
i 
1

6
:x

 T
A

G
 [

n
m

o
l/
m

g
 F

W
]

WT Gifu, control

WT Gifu, AM

dis-1, AM

dis-1, control

16:1-16:1-16:1 16:0-16:1-16:1 16:0-16:0-16:1

C

a

a a
c

a a

b

b

b

b

b
b

b

b

b
b

b bb
b

b
b

b
b

b b b

0

0.01

0.02

0.03

0.04

0.05

15

35

55

75

tr
i 
1

6
:x

 T
A

G
 [

n
m

o
l/
m

g
 F

W
]

/10 16:1-16:1-16:1 16:0-16:1-16:1 16:0-16:0-16:1

0

0.1

0.2

0.3

0.4

0.7

0.6

6

8

10

12

T
A

G
 [
n
m

o
l/
m

g
 F

W
]

D

G

48:x
50:x

52:x
54:x

16:x-16:x-16:x

16:x-16:x-18:x

16:x-18:x-18:x

18:x-18:x-18:x

0

0.1

0.2

0.3

0.4

0.5

0.6
9
11
13
15

T
A

G
 [
n
m

o
l/
m

g
 F

W
]

48:x

16:x-16:x-16:x
50:x

16:x-16:x-18:x
52:x

16:x-18:x-18:x
54:x

18:x-18:x-18:x

H

a
a

a

b

a a a

b

n.s.

b

a

a

a

a
a

bbbbbbb bbbbbbb

a
a

a a

bbbbbbb

ab
abd

bd
ac

c

dd
bd

bd

a aa

b

0

1

2

3

4

5

6

7

/1000

Figure 5. Lack of characteristic accumulation of triacylglycerols in AM-defective mutants. (A-D) Quantitative accumulation of (A) total triacylglycerols, (B)

tri16:0-triacylglycerol (C) tri16:x-triacylglycerols and (D) of triacylglycerols harbouring 16:x and 18:x FA-chains in non-colonized and R. irregularis

colonized wild-type and dis-1 roots. Different letters indicate significant differences (ANOVA; posthoc Tukey) (A): n = 18; p�0.001; F3,14 = 68.16. (B):

n = 18; p�0.001; F3,14 = 68.48. (C): n = 19; p�0.01, F3,15 = 7.851 (16:1-16:1-16:1); p�0.001, F3,15 = 14.52 (16:0-16:1-16:1); p�0.001, F3,15 = 39.22 (16:0-16:0-

16:1). (D): n = 19; p�0.001, F3,15 = 12.15 (48:x), F3,15 = 15.56 (50:x); p�0.01, F3,15 = 22.93 (54:x). (E-G) Quantitative accumulation of (E) total

triacylglycerols, (F) tri16:0-triacylglycerols, (G) tri16:x-triacylglycerols and (H) of triacylglycerols harbouring 16:x and 18:x FA-chains in colonized roots of

L. japonicus wild-type Gifu, wild-type MG-20 and arbuscule-defective mutants. Different letters indicate significant differences (ANOVA; posthoc Tukey).
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Tang et al., 2016) we hypothesized that 16:0 ß-MAGs synthesized by DIS- and RAM2 are predomi-

nantly delivered to the fungus. To test this hypothesis, we examined lipid transfer by FA isotopolog

profiling. Isotopologs are molecules that differ only in their isotopic composition. For isotopolog

profiling an organism is fed with a heavy isotope labelled precursor metabolite. Subsequently the

labelled isotopolog composition of metabolic products is analyzed. The resulting characteristic isoto-

polog pattern yields information about metabolic pathways and fluxes (Ahmed et al., 2014).

We could not detect fungus-specific 16:1w5 ß-MAGs in colonized roots (Figure 7B). Therefore,

we reasoned that either a downstream metabolite of ß-MAG is transported to the fungus, or alterna-

tively, ß-MAG is rapidly metabolized in the fungus prior to desaturation of the 16:0 acyl residue.

Since the transported FA groups can be used by the fungus for synthesizing a number of different

lipids, we focused on total 16:0 FA methyl esters (FAMEs, subsequently called FAs for simplicity) and

16:1w1 FAMEs as markers for lipid transfer. We fed L. japonicus wild-type, dis-1, ram2-1 and str with

[U-13C6]glucose and then measured the isotopolog composition of 16:0 FAs and 16:1w5 FAs in L.

japonicus roots and in associated extraradical fungal mycelium with spores. To generate sufficient

hyphal material for our measurements the fungus was pre-grown on split Petri dishes in presence of

a carrot hairy root system as nurse plant (Figure 8—figure supplement 1). Once the fungal myce-

lium had covered the plate, L. japonicus seedlings were added to the plate on the side opposing the

carrot root. During the whole experiment, the fungus was simultaneously supported by the carrot

hairy root and the L. japonicus seedling. Once the L. japonicus roots had been colonized, labelled

glucose was added to the side containing L. japonicus. After an additional week, FAs were esterified

and extracted from colonized L. japonicus roots and from the associated extraradical mycelium and

the total amount of 13C labelled 16:0 and 16:1w5 FAs as well as their isotopolog composition was

determined. In L. japonicus wild-type 13C-labeled 16:0 and 16:1w5 FAs were detected in colonized

Figure 5 continued

(E): n = 40; p�0.001; F8,31 = 38.42. (F) Left: absolute tri16:0 TAG content: n = 40; p�0.001; F8,31 = 19.05. Right: tri16:0 TAG proportion among all TAGs,

n = 40; p�0.001; F8,31 = 14.21. (G): p�0.001; n = 41, F8,32 = 86.16 (16:1-16:1-16:1); n = 39, F8,30 = 24.16 (16:0-16:1-16:1); n = 40, F8,31 = 17.67 (16:0-16:0-

16:1). (H): n = 40; p�0.001, F8,31 = 39.26 (48:x), F8,31 = 28.93 (50:x); p�0.01, F8,31 = 19.78 (52:x); p�0.05, F8,31 = 13.77 (54:x). (A-H) Bars represent

means ±standard deviation (SD) of 3–5 biological replicates.

DOI: 10.7554/eLife.29107.022

The following source data and figure supplements are available for figure 5:

Source data 1. Raw data for lipid profiles in Figure 5 and Figure 5—figure supplements 1–3 and 5–11.

DOI: 10.7554/eLife.29107.023

Figure supplement 1. Diacylglycerol (DAG) and triacylglycerol (TAG) profiles of L. japonicus WT and dis-1 control and AM roots.

DOI: 10.7554/eLife.29107.024

Figure supplement 2. Profiles of phospholipids in non-colonized and colonized L. japonicus WT Gifu and dis-1 roots.

DOI: 10.7554/eLife.29107.025

Figure supplement 3. MGDG and DGDG profiles do not differ among L. japonicus wild-type and mutant roots.

DOI: 10.7554/eLife.29107.026

Figure supplement 4. All arbuscule-deficient mutants show reduced root length colonization.

DOI: 10.7554/eLife.29107.027

Figure supplement 5. Total fatty acid and free fatty acid profiles of colonized L. japonicus WT and AM-defective mutant roots.

DOI: 10.7554/eLife.29107.028

Figure supplement 6. Triacylglycerol (TAG) profiles of colonized L. japonicus WT and AM-defective mutant roots.

DOI: 10.7554/eLife.29107.029

Figure supplement 7. Phosphatidic acid (PA) profiles in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.030

Figure supplement 8. Profile of phosphatidylcholines (PC) in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.031

Figure supplement 9. Phosphatidylethanolamine (PE) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.032

Figure supplement 10. Phosphatidylinositol (PI) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.033

Figure supplement 11. Phosphatidylserine (PS) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.034
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roots as well as in the extraradical fungal mycelium (Figure 8A–B, Figure 8—figure supplement

2A–B), indicating that 13C-labelled organic compounds were transferred from the root to the fungus.

No labelled FAs were detected in the fungal mycelium when the fungus was supplied with [U-13C6]

glucose in absence of a plant host (Figure 8A–B, Figure 8—figure supplements 2A–B,3), indicating

that the fungus itself could not metabolize labelled glucose to synthesize FAs. The three mutants

incorporated 13C into 16:0 FAs at similar amounts as the wild-type but hardly any 13C was trans-

ferred to the fungus (Figure 8A–B, Figure 8—figure supplement 2A–B).

Host plants determine the isotopolog pattern of fungal FAs
Remarkably, the isotopolog profile of 16:0 FAs was close to identical between colonized L. japonicus

roots and the connected extraradical mycelium, for 11 independent samples of wild-type Gifu

(Figure 8C–D, Figure 8—figure supplement 4) and for 5 independent samples of wild-type MG20

(Figure 8—figure supplement 2C–D). Moreover, the isotopolog profile of fungus-specific 16:1w5

FAs mirrored the profile of 16:0 FAs (Figure 8C, Figure 8—figure supplements 2,4). Pattern con-

servation between root and associated extraradical mycelium occurred independently of pattern var-

iation among individual samples. Since the fungus does not incorporate 13C into the analyzed FAs in

the absence of the plant (Figure 8A–B, Figure 8—figure supplement 2A–B) this conserved pattern

demonstrates transfer of 16:0 FA-containing lipids from the host plant to the fungus because the

plant determines the isotopolog pattern of fungal 16:0 and 16:1w5 FAs. The 16:0 FA isotopolog pat-

tern of colonized dis-1, ram2 and str mutant roots resembled the wild-type profile, indicating intact

uptake and metabolism of labelled glucose. However, the 16:0 FA isotopolog pattern of the
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extraradical mycelium associated with mutant roots and the fungal 16:1w5 FA profile inside and out-

side the roots differed strongly from the 16:0 FA profile of the mutant host roots (Figure 8C, Fig-

ure 8—figure supplements 2C,4), consistent with very low FA transfer from the mutant plants to

the fungus. The losses in isotopolog profile conservation between plant and fungal FAs in the

mutants likely result from dilution of labelled FAs by unlabeled FAs from the carrot hairy root

(Figure 8D, Figure 8—figure supplements 1 and 2D) and/or from biases due to quantification of

FAs at the detection limit.

To confirm that the plant determines the fungal FA isotopolog pattern we switched plant system

and profiled isotopologs after labelling carrot root organ culture (ROC) in the absence of L.
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Figure 7. sn-1 monoacylglycerol (a-MAG) and sn-2 monoacylglycerol (b-MAG) profiles of colonized L. japonicus wild-type and AM-defective mutant

roots. (A) Total amounts of a-MAG molecular species in the different genotypes. (B) Total amounts of b-MAG molecular species in the different
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Figure 8. Isotopolog profiling indicates lipid transfer from plant to fungus. (A–B) Overall excess (o.e.) 13C over air concentration in 16:0 FAs (A) and in
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control roots); n = 33 (16:0 root AM); n = 39 (16:0 extraradical mycelium); n = 33 (16:1w5 root AM); n = 39 (16:1w5 extraradical mycelium), ***p<0.001,

Figure 8 continued on next page

Keymer et al. eLife 2017;6:e29107. DOI: 10.7554/eLife.29107 17 of 33

Research article Plant Biology

http://dx.doi.org/10.7554/eLife.29107


japonicus seedlings (Figure 8D, Figure 8—figure supplement 1). In these root organ cultures, sugar

uptake from the medium does not compete with photosynthesis, as in whole seedlings. Additionally,

the carrot roots explore a larger surface of the Petri dish, increasing access to substances in the

nutrient medium. Consequently, and likely because of increased uptake of labelled glucose from the

medium, the isotopolog pattern of carrot ROCs differed from Lotus and was shifted towards more

highly labeled 16:0 FA isotopologs. This fingerprint was again recapitulated in the extraradical fungal

mycelium as well as in fungus-specific 16:1w5 FAs inside and outside the root for 10 independent

samples (Figure 8C, Figure 8—figure supplement 4). These data provide strong support for direct

transfer of a 16:0 FA containing lipid from plants to AMF (Figure 9).

Discussion
Here we identified DIS and RAM2, two AM-specific paralogs of the lipid biosynthesis genes KASI

and GPAT6 using forward genetics in Lotus japonicus. The dis and ram2 mutants enabled us to dem-

onstrate lipid transfer from plants to AMF using isotopolog profiling.

During AM symbiosis, an array of lipid biosynthesis genes is induced in arbuscocytes

(Gaude et al., 2012a, 2012b), indicating a large demand for lipids in these cells. Indeed, two genes

encoding lipid biosynthesis enzymes, the thioesterase FatM and the GPAT6 RAM2, have previously

been shown to be required for arbuscule branching in M. truncatula (Wang et al., 2012;

Bravo et al., 2017; Jiang et al., 2017). Both enzymes have a substrate preference for 16:0 FAs

(Salas and Ohlrogge, 2002; Yang et al., 2012; Bravo et al., 2017) and, consistent with this, we and

others observed that colonized ram2 mutant roots over-accumulate 16:0 FA containing phospholi-

pids and TAGs (Figure 7, [Bravo et al., 2017]), indicating re-channeling of superfluous 16:0 FAs in

the absence of RAM2 function and placing RAM2 downstream of FatM (Figure 9).

Our discovery of DIS, a novel and AM-specific KASI gene, now provides evidence for the enzyme

which synthesizes these 16:0 FAs in arbuscocytes. The arbuscule phenotype, as well as the lipid pro-

file of colonized dis mutants is very similar to fatm and ram2 mutants except for the accumulation of

16:0 FA-containing lipids in ram2 (Figure 1, Figure 5 and all figure supplements), consistent with

the predicted function. Together, this strongly suggests that DIS, FatM and RAM2 act in the same

lipid biosynthesis pathway, which is specifically and cell-autonomously induced when a resting root

cortex cell differentiates into an arbuscocyte (Figure 2A–B, Figure 9, [Bravo et al., 2017]). Interest-

ingly, DIS was exclusively found in genomes of AM-competent dicotyledons and a gymnosperm (Fig-

ure 3). This implies that DIS has been lost at the split of the mono- from dicotyledons. Despite the

Figure 8 continued

**p<0.01, *p<0.05). (C) Relative fraction of 13C isotopologs for 16:0 FAs of three replicates of carrot, L. japonicus WT Gifu, dis-1, ram2-1 in control roots

(upper panel) and AM roots and each of the associated R. irregularis extraradical mycelia with spores (middle panel) and 16:1w5 FAs in AM roots and

extraradical mycelia with spores (lower panel). Individual bars and double bars indicate individual samples. Values from roots are indicated by ‘R’ and

from fungal extraradical mycelia with spores by ‘M’. For carrot and L. japonicus WT the 13C labelling pattern of 16:0 and 16:1w5 FAs in the plant is

recapitulated in the fungal extraradical mycelium. Extraradical mycelium associated with dis-1 and ram2-1 does not mirror these patterns. Compare

bars for AM roots and extraradical mycelium side by side. Black numbers indicate 13C o. e. for individual samples. Colors indicate 13C-isotopologs

carrying one, two, three, etc. 13C-atoms (M + 1, M + 2, M + 3, etc.). (D) Schematic and simplified illustration of carbon flow and 12C vs.13C-carbon

contribution to plant lipid metabolism and transport to the fungus in the two-compartment cultivation setup used for isotope labelling. Carbohydrate

metabolism and transport is omitted for simplicity. ERM, extraradical mycelium.

DOI: 10.7554/eLife.29107.037

The following source data and figure supplements are available for figure 8:

Source data 1. Raw data for isotopolog profiles in Figure 8 and Figure 8—figure supplements 2,4.

DOI: 10.7554/eLife.29107.038

Figure supplement 1. Two-compartment cultivation setup used for labelling experiments.

DOI: 10.7554/eLife.29107.039

Figure supplement 2. Isotopolog profiles of wild-type MG20 and str.

DOI: 10.7554/eLife.29107.040

Figure supplement 3. Proportion of 16:0 and 16:1w5 FA containing only non-labelled 12C in plant and fungal tissue.

DOI: 10.7554/eLife.29107.041

Figure supplement 4. Isotopolog profiles of additional samples.

DOI: 10.7554/eLife.29107.042
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Figure 9. Schematic representation of plant fatty acid and lipid biosynthesis in a non-colonized root cell and a root cell colonized by an arbuscule. In

non-colonized cells FAs are synthesized in the plastid, bound via esterification to glycerol to produce LPA in the ER, where further lipid synthesis and

modification take place. Upon arbuscule formation AM-specific FA and lipid biosynthesis genes encoding DIS, FatM and RAM2 are activated to

synthesize specifically high amounts of 16:0 FAs and 16:0-ß-MAGs or further modified lipids (this work and Bravo et al., 2017). These are transported

Figure 9 continued on next page

Keymer et al. eLife 2017;6:e29107. DOI: 10.7554/eLife.29107 19 of 33

Research article Plant Biology

http://dx.doi.org/10.7554/eLife.29107


phylogenetic divergence, DIS and the single copy housekeeping KASI gene of Arabidopsis are inter-

changeable (Figure 5). Therefore, the specificity of DIS to function in AM symbiosis is probably

encoded in its promoter (Figure 2). In monocotyledons, the promoter of the housekeeping KASI

gene may have acquired additional regulatory elements, sufficient for arbuscocyte-specific activa-

tion, thus making DIS dispensable.

We provide several pieces of complementary evidence that lipids synthesized by DIS and RAM2

in the arbuscocyte are transferred from plants to AMF and are required for fungal development. We

fed host plants with [U-13C6]glucose and subsequently determined the isotopolog profile of freshly

synthetized 16:0 and 16:1w5 FAs in roots and associated fungal extraradical mycelia (Figure 8). This

showed that: (1) AMF were unable to incorporate 13C into FAs when fed with [U-13C6]glucose in

absence of the host plant. (2) When associated with a wild-type host, the fungal extraradical myce-

lium accumulated 13C labelled 16:0 FAs and the isotopolog profile of these 16:0 FAs was almost

identical with the host profile. (3) The 16:0 FA isotopolog fingerprint differed strongly between two

different wild-type plant systems (Lotus seedling and carrot hairy root) but for each of them the fun-

gal mycelium recapitulated the isotopolog profile. Therefore clearly, the plant dominates the profile

of the fungus, because it is impossible that the fungus by itself generates the same FA isotopolog

pattern as the plant – especially in the absence of cytosolic FA synthase. Therefore, this result pro-

vides compelling evidence for interkingdom transfer of 16:0 FAs from plants to AMF. (4) In agree-

ment, the isotopolog profile of fungus-specific 16:1 w5 FAs inside and outside the root also

resembled the plant 16:0 FA profile. (5) Colonized dis and ram2 mutant roots resembled the 16:0

FA isotopolog profile of L. japonicus wild-type roots. However, the 16:0 FA profile of the fungal

extraradical mycelium and the 16:1w5 FA profile inside the roots showed a very different pattern,

consistent with very low transport of labelled FAs to the fungus when associated with the mutants.

(6) DIS and RAM2 are specifically required for the synthesis of 16:0 ß-MAG (Figure 7) and the pre-

dominant FA chain length found in AM fungi is precisely 16. (7) dis and ram2 roots do not allow the

formation of lipid-containing fungal vesicles and accumulate very low levels of fungal signature lipids

(Figure 5 and figure supplements). Together this strongly supports the idea that DIS and RAM2 are

required to provide lipids for transfer to the fungus. Consequently, in the mutants, the fungus is

deprived of lipids.

The L. japonicus mutants were originally identified due to their defective arbuscule branching

(Groth et al., 2013). The promoters of DIS and RAM2 are active in arbusocytes and already during

PPA formation, the earliest visible stage of arbuscocyte development. Together with the stunted

arbuscule phenotype of dis, ram2 and fatm mutants (Figure 1 [Bravo et al., 2017]) this suggests

that plant lipids are needed for arbuscule growth, probably to provide material for the extensive

plasma-membrane of the highly branched fungal structure. It also indicates that the arbuscule dic-

tates development of the AMF as a whole, since lipid uptake at the arbuscule is required for vesicle

formation, full exploration of the root and development of extraradical mycelia and spores. Defec-

tive arbuscule development was also observed for the different and phylogenetically distantly

related AMF Gigaspora rosea (Groth et al., 2013), which similar to R. irregularis lacks genes encod-

ing cytosolic FA synthase from their genomes (Wewer et al., 2014; Tang et al., 2016). Hence the

dependence on plant lipids delivered at the arbuscule is likely a common phenomenon among AMF

and a hallmark of AMF obligate biotrophy.

Despite the obvious central importance of lipid uptake by the arbuscule, the fungus can initially

colonize the mutant roots with a low amount of intraradical hyphae and stunted arbuscules (Figure 1,

Figure 5—figure supplement 4). The construction of membranes for this initial colonization may be

supported by the large amounts of lipids stored in AMF spores. This would be consistent with the

frequent observation that in wild-type roots, at initial stages of root colonization, AMF form

Figure 9 continued

from the plant cell to the fungus. The PAM-localized ABCG transporter STR/STR2 is a hypothetical candidate for lipid transport across the PAM.

Desaturation of 16:0 FAs by fungal enzymes (Wewer et al., 2014) leads to accumulation of lipids containing specific 16:1w5 FAs. Mal-CoA, Malonyl-

Coenzyme A; FA, fatty acid; KAS, b-keto-acyl ACP synthase; GPAT, Glycerol-3-phosphate acyl transferase; PAM, periarbuscular membrane; LPA,

lysophosphatic acid; MAG, monoacylglycerol; DAG, diacylglycerol; TAG, triacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE,

phosphatidylethanolamine; PS, phosphatidylserine; CDP-DAG, cytidine diphosphate diacylglycerol; PG, phosphatidylglycerol; PI, phosphatidylinositol.

DOI: 10.7554/eLife.29107.043
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arbuscules immediately after reaching the inner cortex and before colonizing longer distances, possi-

bly as a strategy to accquire lipids quickly after the reserves in the spore have been depleted. Alter-

natively, it is possible that plant housekeeping enzymes provide lipids to intraradical hyphae before

arbuscule formation. Activity of the housekeeping KASI may also be responsible for slightly higher

colonization levels observed for dis in some experiments as compared to other mutants.

It has recently been reported that photosynthetic wild-type nurse plants can restore arbuscule-

branching in Medicago ram2 and str mutants (Jiang et al., 2017; Luginbuehl et al., 2017), suggest-

ing that lipids can be supplied to arbuscules via the extraradical hyphal network and intraradical

hyphae through this route support arbuscule fine-branching. Based on four observations, we favor

an alternative szenario, in which lipids need to be provided cell-autonomously by the arbuscocyte to

support arbuscule fine-branching. However, we cannot exclude that our observations differ from the

reported observations due to growth conditions or plant species. (1) Presence of nurse carrot hairy

roots did not restore arbuscule branching in dis, ram2 and str (Figure 8—figure supplement 1C–F).

(2) dis and ram2 were found in a forward genetics screen based on their stunted arbuscule pheno-

type. In this screen, the fungal inoculum was provided via chive nurse plants (Groth et al., 2013). (3)

Map-based cloning of Lotus dis, ram2 and str (Kojima et al., 2014) was performed with segregating

mutant populations grown in the same pot, in which the wild-type and heterozygeous siblings acted

as nurse plants on the homozygeous mutants. In this system, the stunted arbuscule phenotype was

easily observable. (4) Arbuscule branching in a rice str mutant was not restored by wild type nurse

plants (Gutjahr et al., 2012).

It still remains to be shown, which types of lipids are transported from the plant arbuscocyte to

the fungal arbuscule and how. RAM2 is the most downstream acting enzyme in arbuscocyte-specific

lipid biosynthesis known to date (Figure 9). It is predicted to synthesize ß-MAG and we and others

have shown that 16:0 ß-MAGs are indeed reduced in colonized roots of dis, fatm and ram2 mutants,

providing evidence that this is likely the case (Figure 7, [Bravo et al., 2017]). Although, we cannot

exclude that a downstream metabolite of 16:0 ß-MAG is transported to the fungus, 16:0 ß-MAG as

transport vehicle for 16:0 FAs to the fungus is a good candidate because conceptually this molecule

may bear certain advantages. It has been shown in Arabidopsis that ß-MAGs are not used for plant

storage or membrane lipid biosynthesis but rather as pre-cursors for cuticle formation (Li et al.,

2007). The production of ß-MAGs could therefore, be a way, to withdraw FAs from the plants own

metabolism to make them available to the fungus. In addition, ß-MAGs are small and amphiphilic

and could diffuse across the short distance of the hydrophilic apoplastic space between plant and

fungal membrane. At the newly growing arbuscule branches the distance between the plant and fun-

gal membrane is indeed very small and has been measured to be 80–100 nm on TEM images of

high-pressure freeze-substituted samples (Bonfante, 2001). However, we could not detect fungus-

specific 16:1w5 ß-MAGs in colonized roots. This could mean that the fungus metabolizes them

before desaturation of the 16:0 FAs to synthesize membrane and storage lipids. Alternatively, ß-

MAGs may not be taken up by the fungus. ß-MAGs are known to isomerize to a-MAGs in acid or

basic conditions (Iqbal and Hussain, 2009). It is therefore, possible that they isomerize in the acidic

periarbuscular space (Guttenberger, 2000) before being taken up by the arbuscule.

How are MAGs transported across the peri-arbuscular membrane? Good candidates for MAG

transporters are the ABCG half transporters STR and STR2. Similar ABCG transporters have been

implicated genetically in cuticle formation, which also requires ß-MAGs (Pighin et al., 2004;

Panikashvili et al., 2011; Yeats et al., 2012). The half ABCG transporters STR and STR2 are both

independently required for arbuscule branching and they need to interact to form a full transporter

(Zhang et al., 2010). We found that colonized roots of a L. japonicus str mutant, did not allow the

formation of fungal vesicles and had the same lipid profile as dis and ram2 (Figure 5 and figure sup-

plements). Furthermore, our 13C labelling experiment demonstrated that str mutants do not transfer

lipids to the fungus (Figure 8—figure supplement 2). Although these are encouraging indications,

strong evidence for the role of STR in lipid transport across the periarbuscular membrane is still lack-

ing and the substrate of STR remains to be determined. Therefore, currently, it cannot be excluded

that mutation of str has an indirect effect on lipid transport and alternative mechanisms for example

lipid translocation via vesicle fission and fusion are possible. Nevertheless, also in AMF, several ABC

transporter genes are expressed in planta (Tisserant et al., 2012; Tang et al., 2016). They are not

characterized, but if lipid transport via ABC transporters instead of other mechanisms would play a

role, some of them could be involved in uptake of lipids into the fungal cytoplasm.
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We found that mutants in the GRAS gene RAM1 are impaired in AM-specific lipid accumulation

in colonized roots and in AM-mediated activation of DIS and the single copy gene KASIII (Figure 6),

in addition to FatM, RAM2 and STR (Wang et al., 2012; Park et al., 2015; Pimprikar et al., 2016;

Luginbuehl et al., 2017). This suggests that plants have evolved an AM-specific regulatory module

for lipid production in arbuscocytes and delivery to the fungus. It remains to be shown, whether

RAM1 regulates lipid biosynthesis genes directly and how this occurs mechanistically.

Our finding that plants transfer lipids to AMF completely changes the previous view that the fun-

gus receives only sugars from the plant (Pfeffer et al., 1999; Trépanier et al., 2005). It will now be

interesting to determine the relative contributions of sugar and lipid transfer to AMF, and whether

this may be a determinant of variation in root length colonization and extraradical mycelium forma-

tion depending on the plant-fungal genotype combination (Sawers et al., 2017). An interesting

question refers to why AMF have lost the genes encoding cytosolic FA synthase to depend on the

lipid biosynthesis machinery of the host. FA biosynthesis consumes more energy than biosynthesis of

carbohydrates and organic carbon provided by the plant needs to be transported in fungal hyphae

over long distances from the inside of the root to the extremities of the extraradical mycelium.

Therefore, it is conceivable that supply of plant lipids to the fungus plus fungal lipid transport is

more energy efficient for the symbiosis as a whole than fungal carbohydrate transport plus fungal

lipid biosynthesis. Hence, inter-organismic lipid transfer followed by loss of fungal FA biosynthesis

genes may have been selected for during evolution because it likely optimized the symbiosis for

most rapid proliferation of extraradical mycelium, thus ensuring efficient mineral nutrient acquisition

from the soil for supporting the plant host. Lipid transfer across kingdoms has also been observed in

human parasites or symbiotic bacteria of insects (Caffaro and Boothroyd, 2011; Elwell et al., 2011;

Herren et al., 2014). It will be interesting to learn whether this is a more widespread phenomenon

among biotrophic inter-organismic interactions.

Materials and methods

Plant growth and inoculation with AM fungi
Lotus japonicus ecotype Gifu wild-type, ram1-3, ram1-4, dis-1, dis-4, dis-like-5, ram2-1, ram2-2 and

ecotype MG-20 wild-type and str mutant (kindly provided by Tomoko Kojima (NARO, Tochigi,

Japan) seeds were scarified and surface sterilized with 1% NaClO. Imbibed seeds were germinated

on 0.8% Bacto Agar (Difco) at 24˚C for 10–14 days. Seedlings were cultivated in pots containing

sand/vermiculite (2/1 vol.) as substrate. For colonization with Rhizophagus irregularis roots were

inoculated with 500 spores (SYMPLANTA, Munich, Germany or Agronutrition, Toulouse, France) per

plant. Plants were harvested 5 weeks post inoculation (wpi); except for dis-1 complementation in

Figure 1A, which was harvested at 4 wpi. Arabidopsis thaliana seeds of Col-0 wild-type, kasI mutant

in the Col-0 background and the transgenically complemented kasI mutant were surface sterilized

with 70% EtOH +0.05% Tween 20% and 100% EtOH, germinated on MS-Medium for 48 hr at 4˚C in

the dark followed by 5–6 days at 22˚C (8 hr light/dark).

Identification of DIS by map-based cloning and next generation
sequencing
The L. japonicus dis mutant (line SL0154, [Groth et al., 2013]) resulting from an EMS mutagenesis

program (Perry et al., 2003, 2009) was backcrossed to ecotype Gifu wild-type and outcrossed to

the polymorphic mapping parent ecotype MG-20. The dis locus segregated as a recessive mono-

genic trait and was previously found to be linked to marker TM2249 on chromosome 4 (Groth et al.,

2013). We confirmed the monogenic segregation as 26 of 110 individuals originating from the cross

to MG-20 (c2: P(3:1)=0.74) and 32 of 119 individuals originating from the cross to Gifu (c2: P(3:1)

=0.63) exhibited the mutant phenotype. To identify SL0154-specific mutations linked to the dis

locus, we employed a genome re-sequencing strategy. Nuclear DNA of Gifu wild-type and the

SL0154 mutant was subjected to paired end sequencing (2 � 100 bp) of a 300–500 bp insert library,

on an Illumina Hi-Seq 2000 instrument resulting in between 16.7 and 19.5 Gigabases per sample,

equivalent to roughly 35–41 fold coverage assuming a genome size of 470 Megabases. Reads were

mapped to the reference genome of MG-20 v2.5 (Sato et al., 2008) and single nucleotide polymor-

phisms identified using CLC genomics workbench (CLC bio, Aarhus, Denmark). SL0154-specific
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SNPs were identified by subtracting Gifu/MG-20 from SL0154/MG-20 polymorphisms. 19 potentially

EMS induced (11x G->A, 8x C->T) SNPs called consistently in all mapped reads from SL0514 but not

in Gifu were identified between the markers TM0046/TM1545, the initial dis target region (Fig-

ure 1—figure supplement 1A. In a screen for recombination events flanking the dis locus, 63

mutants out of 254 total F2 individuals of a cross MG-20 x SL0154 were genotyped with markers

flanking the dis locus (Figure 1—figure supplement 1B). Interrogating recombinant individuals with

additional markers in the region narrowed down the target interval between TM2249 and BM2170

(2 cM according to markers; ca. 650 kb). In this interval, 3 SL0154-specific SNPs with typical EMS sig-

nature (G to A transition) remained, of which one was predicted to be located in exon 3 of

CM0004.1640.r2 (reference position 40381558 in L. japonicus genome version 2.5; http://www.

kazusa.or.jp/lotus/), a gene annotated as ketoacyl-(acyl carrier protein) synthase. This co-segregation

together with phenotyping of one additional mutant allele obtained through TILLING

(Supplementary file 1, [Perry et al., 2003, 2009]) as well as transgenic complementation

(Figure 1A)) confirmed the identification of the mutation causing the dis phenotype of the SL0514

line. The two remaining mutations in the target region were located in a predicted intron of chr4.

CM0004.1570.r2.a, a cyclin-like F-box protein (reference position: 40356684) and in a predicted

intergenic region (reference position: 40364479). Untranslated regions of DIS and DIS-LIKE were

determined using the Ambion FirstChoice RLM RACE kit according to manufacturer‘s instructions

(http://www.ambion.de/). DIS sequence information can be found under the NCBI accession number

KX880396.

Identification of RAM2 by map-based cloning and Sanger sequencing
The L. japonicus Gifu mutant reduced and degenerate arbuscules (red, line SL0181-N) resulting from

an EMS mutagenesis (Perry et al., 2003, 2009) was outcrossed to the ecotype MG-20 and previ-

ously reported to segregate for two mutations, one on chromosome 1 and one on chromosome 6

(Groth et al., 2013). They were separated by segregation and the mutation on chromosome 1 was

previously found in the GRAS transcription factor gene REDUCED ARBUSCULAR MYCORRHIZA 1

(RAM1) (Pimprikar et al., 2016). A plant from the F2 population, which showed wild-type phenotype

but was heterozygous for the candidate interval on chromosome 6 and homozygous Gifu for the

candidate interval on chromosome 1 was selfed for producing an F3. The F3 generation segregated

for only one mutation as 38 out of 132 individuals exhibited the mutant phenotype (c2: P(3:1)=0.68).

A plant from the F3 population, which displayed wild-type phenotype but was heterozygous for the

candidate interval on chromosome 6 was selfed for producing an F4. The F4 generation also segre-

gated for only one mutation as 17 out of 87 individuals exhibited the mutant phenotype (c2: P(3:1)

=0.76). To identify the mutation on chromosome 6 linked to the previously identified interval

(Groth et al., 2013), we employed additional markers for fine mapping in F3 segregating and F4

mutant populations. This positioned the causative mutation between TM0082 and TM0302 (Fig-

ure 1—figure supplement 3A). Due to a suppression of recombination in this interval we could not

get closer to the mutation and also next generation sequencing (see [Pimprikar et al., 2016] for the

methodology) failed to identify a causative mutation. The Medicago truncatula ram2 mutant displays

stunted arbuscules similar to our mutant (Wang et al., 2012). L. japonicus RAM2 had not been

linked to any chromosome but was placed on chromosome 0, which prevented identification of a

RAM2 mutation in the target interval on chromosome 6. Therefore, we sequenced the RAM2 gene

by Sanger sequencing. Indeed, mutants with stunted arbuscule phenotype in the F3 and F4 genera-

tion carried an EMS mutation at base 1663 from G to A leading to amino acid change from Glycine

to Glutamic acid, which co-segregated with the mutant phenotype (Figure 1—figure supplement

3B-C). An additional allelic mutant ram2-2 (Figure 1—figure supplement 3B) caused by a LORE1

retrotransposon insertion (Małolepszy et al., 2016) and transgenic complementation with the wild-

type RAM2 gene confirmed that the causative mutation affects RAM2 (Figure 1B). Untranslated

regions of RAM2 were determined using the Ambion FirstChoice(R) RLM RACE kit according to

manufacturer’s instructions (http://www.ambion.de/). A 1345 bp long sequence upstream of ATG

was available from the http://www.kazusa.or.jp/lotus/blast.html. To enable cloning a 2275 bp pro-

moter fragment upstream of ATG of RAM2 the remaining upstream sequence of 1047 bp was deter-

mined by primer walking on TAC Lj T46c08. L. japonicus RAM2 sequence information can be found

under the NCBI accession number KX823334 and the promoter sequence under the number

KX823335.
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Plasmid generation
Genes and promoter regions were amplified using Phusion PCR according to standard protocols

and using primers indicated in Supplementary file 2. Plasmids were constructed as indicated in

Supplementary file 3. For localization of DIS in L. japonicus hairy roots the LIII tricolor plasmid

(Binder et al., 2014) was used. The plasmid containing 35S:RFP for localization of free RFP in Nicoti-

ana benthamiana leaves was taken from Yano et al. (2008).

Induction of transgenic hairy roots in L. japonicus
Hypocotyls of L. japonicus were transformed with plasmids shown in Supplementary file 3 for hairy

root induction using transgenic Agrobacterium rhizogenes AR1193 as described (Takeda et al.,

2009).

Floral dipping and rosette growth assay of Arabidopsis thaliana
Five plants per pot were sown. One week before transformation the primary bolt was cut off to

induce growth of secondary floral bolts. 5 ml LB culture of A. tumefaciens transformed with a binary

vector was incubated at 28˚C, 300 rpm over night. 500 ml of the preculture was added to 250 ml LB

medium with appropriate antibiotics. This culture was incubated again at 28˚C, 300 rpm over night

until an OD600 of 1.5 was reached. Plants were watered and covered by plastic bags the day before

the dipping to ensure high humidity. The cells were harvested by centrifugation (10 min, 5000 rpm)

and resuspended in infiltration medium (0.5 x MS medium, 5% sucrose). The resuspended cell cul-

ture was transferred to a box and Silwet L-77 was added (75 ml to 250 ml medium). The floral bolts

of the plants were dipped into the medium for 5 s and put back into plastic bags and left in horizon-

tal position for one night. After that, plants were turned upright, bags were opened and mature sili-

ques were harvested. For rosette growth assays T3 plants were used. 31 days post sowing the

rosettes were photographed and then cut and dried in an oven at 65˚C for the determination of

rosette dry weight.

Spatial analysis of promoter activity
For promoter:GUS analysis L. japonicus hairy roots transformed with plasmids containing the DIS

and RAM2 promoter fused to the uidA gene and colonized by R. irregularis were subjected to GUS

staining as described (Takeda et al., 2009). To correlate DIS and RAM2 promoter activity precisely

with the stage of arbuscule development two expression cassettes were combined in the same

golden gate plasmid for simultaneous visualization of arbuscule stages and promoter activity. The

fungal silhouette including all stages of arbuscule development and pre-penetration apparatuus

were made visible by expressing secretion peptide coupled mCherry under the control of the SbtM1

promoter region comprising 704 bp upstream of the SbtM1 gene (Takeda et al., 2009). Promoter

activity was visualized using a YFP reporter fused to a nuclear localization signal (NLS).

Transient transformation of N. benthamiana leaves
N. benthamiana leaves were transiently transformed by infiltration of transgenic A. tumefaciens

AGL1 as described (Yano et al., 2008).

Real time qRT-PCR
For analysis of transcript levels, plant tissues were rapidly shock frozen in liquid nitrogen. RNA was

extracted using the Spectrum Plant Total RNA Kit (www.sigmaaldrich.com). The RNA was treated

with Invitrogen DNAse I amp. grade (www.invitrogen.com) and tested for purity by PCR. cDNA syn-

thesis was performed with 500 ng RNA using the Superscript III kit (www.invitrogen.com). qRT-PCR

was performed with GoTaq G2 DNA polymerase (Promega), 5 x colorless GoTaq Buffer (Promega)

and SYBR Green I (Invitrogen S7563, 10.000x concentrated, 500 ml) - diluted to 100x in DMSO. Pri-

mers (Supplementary file 2) were designed with primer3 (58). The qPCR reaction was run on an iCy-

cler (Biorad, www.bio-rad.com/) according to manufacturer’s instructions. Thermal cycler conditions

were: 95˚C 2 min, 45 cycles of 95˚C 30 s, 60˚C/62˚C 30 s and 72˚C 20 s followed by dissociation

curve analysis. Expression levels were calculated according to the DDCt method (Rozen and Skalet-

sky, 2000). For each genotype and treatment three to four biological replicates were tested and

each sample was represented by two to three technical replicates.
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Sequence alignement and phylogeny
L. japonicus KASI, DIS, DIS-LIKE, RAM2, Lj1g3v2301880.1 (GPAT6) protein sequences were retrieved

from Lotus genome V2.5 and V3.0 respectively (http://www.kazusa.or.jp/lotus/) and A. thaliana KASI,

E. coli KASI, E. coli KASII, M. truncatula RAM2 and Medtr7g067380 (GPAT6) were obtained from

NCBI (http://www.ncbi.nlm.nih.gov). The sequences from L. japonicus were confirmed with a

genome generated by next generation sequencing in house. Protein alignment for DIS was per-

formed by CLC Main Workbench (CLC bio, Aarhus, Denmark). The Target Peptide was predicted

using TargetP 1.0 Server (www.cbs.dtu.dk/services/TargetP-1.0/). RAM2 Protein alignment was per-

formed by MEGA7 using ClustalW. The percentage identity matrix was obtained by Clustal Omega

(http://www.ebi.ac.uk/Tools/msa/clustalo/).

To collect sequences for phylogeny construction corresponding to potential DIS orthologs, Lotus

DIS and KASI (outgroup) protein sequences were searched in genome and transcriptome datasets

using BLASTp and tBLASTn respectively. The list of species and the databases used are indicated in

Figure 3—source data 1. Hits with an e-value >10�50 were selected for the phylogenetic analysis.

Collected sequences were aligned using MAFFT (http://mafft.cbrc.jp/alignment/server/) and the

alignment manually checked with Bioedit. Phylogenetic trees were generated by Neighbor-joining

implemented in MEGA5 (Tamura et al., 2011). Partial gap deletion (95%) was used together with

the JTT substitution model. Bootstrap values were calculated using 500 replicates.

Synteny analysis
A ~200 kb sized region in the L. japonicus genome containing the DIS locus (CM00041640.r2.a) was

compared to the syntenic region in A. thaliana (Col-0) using CoGe Gevo (https://genomevolution.

org/CoGe/GEvo.pl - (Lyons et al., 2008) as described in Delaux et al. (2014). Loci encompassing

DIS orthologs from Medicago truncatula, Populus trichocarpa, Carica papaya, Phaseolus vulgaris and

Solanum lycopersicum were added as controls.

AM staining and quantification
Rhizophagus irregularis in colonized L. japonicus roots was stained with acid ink (Vierheilig et al.,

1998). Root length colonization was quantified using a modified gridline intersect method

(McGonigle et al., 1990). For confocal laser scanning microscopy (CLSM) fungal structures were

stained with 1 mg WGA Alexa Fluor 488 (Molecular Probes, http://www.lifetechnologies.com/) (Pan-

chuk-Voloshina et al., 1999).

Microscopy
For quantification of AM colonization in L. japonicus roots a light microscope (Leica) with a 20x mag-

nification was used. For observation of GUS-staining in L. japonicus hairy roots an inverted micro-

scope (Leica DMI6000 B) was used with 10x and 20x magnification. Transformed roots were

screened by stereomicroscope (Leica MZ16 FA) using an mCherry fluorescent transformation marker

or the pSbtM1:mCherry marker for fungal colonization (for Figure 2A and B). Confocal microscopy

(Leica SP5) for WGA-AlexaFluor488 detection using 20x and 63x magnification was performed as

described (Groth et al., 2010). Transgenic roots showing mCherry fluorescence signal due to SbtM1

promoter activity linked with fungal colonization were cut into pieces immediately after harvesting.

The living root pieces were placed on a glass slide with a drop of water, covered by a cover slip and

immediately subjected to imaging. Sequential scanning for the YFP and RFP signal was carried out

simultaneously with bright field image acquisition. YFP was excited with the argon ion laser 514 nm

and the emitted fluorescence was detected from 525 to 575 nm; RFP was excited with the Diode-

Pumped Solid State laser at 561 nm and the emitted fluorescence was detected from 580 to 623

nm. Images were acquired using LAS AF software. Several z-optical sections were made per area of

interest and assembled to a z-stack using Fiji. The z-stack movies and 3D projections were produced

using the 3D viewer function in Fiji (Schindelin et al., 2012).

Extraction and purification of phospho- and glycoglycerolipids and
triacylglycerols
Approximately 50–100 mg of root or leaf material was harvested, weighed and immediately frozen

in liquid nitrogen to avoid lipid degradation. The frozen samples were ground to a fine powder
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before extraction with organic solvents. Total lipids were extracted as described previously

(Wewer et al., 2011, 2014). Briefly, 1 mL chloroform/methanol/formic acid (1:1:0.1, v/v/v) was

added and the sample was shaken vigorously. At this point the internal standards for TAG and fatty

acid analysis were added. Phase separation was achieved after addition of 0.5 mL 1M KCl/0.2 M

H3PO4 and subsequent centrifugation at 4000 rpm for 5 min. The lipid-containing chloroform phase

was transferred to a fresh glass tube and the sample was re-extracted twice with chloroform. The

combined chloroform phases were dried under a stream of air and lipids were re-dissolved in 1 mL

chloroform to yield the total lipid extract.

For phospho- and glycerolipid analysis 20 ml of the total lipid extract were mixed with 20 ml of the

internal standard mix and 160 ml of methanol/chloroform/300 mM ammonium acetate (665:300:35,

v/v/v) (Welti et al., 2002). For triacylglycerol analysis 500 ml of the total lipid extract were purified

by solid phase extraction on Strata silica columns (1 ml bed volume; Phenomenex) as described

(Wewer et al., 2011). TAGs were eluted from the silica material with chloroform, dried under a

stream of air and re-dissolved in 1 mL methanol/chloroform/300 mM ammonium acetate

(665:300:35, v/v/v).

Extraction and purification of free fatty acids and monoacylglycerol
(MAG)
Total lipids were extracted into chloroform and dried as described above. 15–0 FA and a mixture of

15–0 a-MAG and b-MAG were added as internal standard before the extraction. Dried extracts

were resuspended in 1 ml n-hexane and applied to silica columns for solid-phase extraction with a

n-hexane:diethylether gradient. Free fatty acids were eluted with a mixture of 92:8 (v/v) n-hexane:

diethylether as described bevore (Gasulla et al., 2013) and pure diethylether were used for elution

of MAG.

Analysis of total fatty acids and free fatty acids by GC-FID
For measurement of total fatty acids, 100 ml of the total lipid extract were used. For measurement of

free fatty acids, the SPE-fraction containing free fatty acids was used. Fatty acid methyl esters

(FAMEs) were generated from acyl groups of total lipids and free fatty acids by addition of 1 mL 1N

methanolic HCL (Sigma) to dried extracts and incubation at 80˚C for 30 min (Browse et al., 1986).

Subsequently, FAMEs were extracted by addition of 1 mL n-hexane and 1 mL of 0.9% (w/v) NaCl

and analyzed on a gas chromatograph with flame-ionization detector (GC-FID, Agilent 7890A

PlusGC). FAMEs were separated on an SP 2380 fused silica GC column (Supelco, 30 mx 0.53 mm,

0.20 mm film) as described (Wewer et al., 2013), with a temperature -gradient starting at 100˚C,
increased to 160˚C with 25˚C/min, then to 220˚C with10˚C/min and reduced to 100˚C with 25 ˚C/
min. FAMEs were quantified in relation to the internal standard pentadecanoic acid (15:0).

For MAG measurement, dried diethylether fractions were resuspended in 4:1 (v/v %) pyridine:N-

Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), incubated at 80˚C for 30 min, dried and re-sus-

pended in hexane prior to application on an Agilent 7890A Plus gas chromatography-mass spec-

trometer. MAGs were quantified by extracted ion monitoring, using [M+ - 103] for a-MAGs and [M+

- 161] for b-MAGs as previously reported for 16:0 MAG (Destaillats et al., 2010) and 24:0 MAG

(Li et al., 2007).

Quantification of glycerolipids by Q-TOF MS/MS
Phosphoglycerolipids (PC, PE, PG, PI, PS), glycoglycerolipids (MGDG, DGDG, SQDG) and triacylgly-

cerol (TAG) were analyzed in positive mode by direct infusion nanospray Q-TOF MS/MS on an Agi-

lent 6530 Q-TOF instrument as described previously (Lippold et al., 2012; Gasulla et al., 2013). A

continuous flow of 1 ml/min methanol/chloroform/300 mM ammonium acetate (665:300:35, v/v/v)

(Welti et al., 2002) was achieved using a nanospray infusion ion source (HPLC/chip MS 1200 with

infusion chip). Data are displayed as X:Y, where X gives the number of C atoms of the fatty acid

chain and Y the amount of desaturated carbo-carbon bonds inside that fatty acid chain.

Internal standards
Internal standards for phospho- and glycoglycerolipid analysis were prepared as described previ-

ously (Gasulla et al., 2013; Wewer et al., 2014). The following standards were dissolved in 20 ml of
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chloroform/methanol (2:1, v/v): 0.2 nmol of each di14:0-PC, di20:0-PC, di14:0-PE, di20:0-PE, di14:0

PG, di20:0 PG, di14:0 PA and di20:0 PA; 0.03 nmol of di14:0-PS and di20:0-PS; 0.3 nmol of 34:0-PI;

0.15 nmol of 34:0-MGDG, 0.10 nmol of 36:0-MGDG; 0.2 nmol of 34:0-DGDG, 0.39 nmol of 36:0

DGDG and 0.4 nmol of 34:0 SQDG. 1 nmol each of tridecanoin (tri-10:0) and triundecenoin (tri-11:1),

and 2 nmol each of triarachidin (tri-20:0) and trierucin (tri22:1) were used as internal standards for

TAG quantification (Lippold et al., 2012). For quantification of total fatty acids and free fatty acids 5

mg of pentadecanoic acid (FA 15:0) was added to the samples (Wewer et al., 2013).

Cultivation and 13C-Labeling of L. japonicus and Daucus carota hairy
roots
The method for cultivation and stable isotope labelling of Lotus japonicus and Daucus carota hairy

roots as well as for isotopolog profiling are described in more detail at Bio-protocol (Keymer et al.,

2018). To determine lipid transfer from L. japonicus to the fungus we used the carrot root organ cul-

ture system (Bécard et al., 1988) to obtain sufficient amounts of fungal material for isotopolog pro-

filing. (On petri dishes this was not possible with L. japonicus and in particular the lipid mutants

alone). One compartment (carrot compartment) of the 2- compartmented petri dish system

(Trépanier et al., 2005) was filled with MSR-medium (3% gelrite) containing 10% sucrose to support

the shoot-less carrot root, and the other compartment (Lotus compartment) was filled with MSR-

medium (3% gelrite) without sucrose. Ri T-DNA transformed Daucus carota hairy roots were placed

in the carrot compartment. 1 week later, roots were inoculated with R. irregularis. Petri dishes were

incubated at constant darkness and 30˚C. Within 5 weeks R. irregularis colonized the carrot roots

and its extraradical mycelium spread over both compartments of the petri dish and formed spores.

At this stage two 2 week old L. japonicus seedlings (WT, dis-1, ram2-1) were placed into the Lotus

compartment (Figure 8—figure supplement 1).

The plates were incubated at 24˚C (16 hr light/8 hr dark). To keep the fungus and root in the dark

the petri dishes were covered with black paper. 3 weeks after Lotus seedlings were placed into the

petri dish [U-13C6]glucose (100 mg diluted in 2 ml MSR-medium) (Sigma-Aldrich) was added to the

Lotus compartment. Therefore, only Lotus roots but not the carrot roots took up label. For transfer

experiments with carrot roots no Lotus plant was placed into the Lotus compartment and the

[U-13C6]glucose was added to the carrot compartment. 1 week after addition of [U-13C6]glucose the

roots were harvested. The extraradical mycelium was extracted from the agar using citrate buffer pH

6 and subsequent filtration, after which it was immediately shock-frozen in liquid nitrogen.

Isotopolog profiling of 13C-labelled 16:0 and 16:1v5 fatty acids
Root and fungal samples were freeze dried and subsequently derivatised with 500 ml MeOH contain-

ing 3 M HCl (Sigma-Aldrich) at 80˚C for 20 hr. MeOH/HCL was removed under a gentle stream of

nitrogen and the methyl esters of the fatty acids were solved in 100 ml dry hexane.

Gas chromatography mass spectrometry was performed on a GC-QP 2010 plus (Shimadzu, Duis-

burg, Germany) equipped with a fused silica capillary column (equity TM-5; 30 m by 0.25 mm,0.25-m

m film thickness; Supelco, Bellafonte, PA). The mass detector worked in electron ionization (EI)

mode at 70 eV. An aliquot of the solution was injected in split mode (1:5) at an injector and interface

temperature of 260˚C. The column was held at 170˚C for 3 min and then developed with a tempera-

ture gradient of 2 ˚C/min to a temperature of 192˚C followed by a temperature gradient of 30˚C/
min to a final temperature of 300˚C. Samples were analyzed in SIM mode (m/z values 267 to 288) at

least three times. Retention times for fatty acids 16:1w5 (unlabeled m/z 268) and 16:0 (unlabeled m/

z 270) are 12.87 min and 13.20 min, respectively. Data were collected with LabSolution software (Shi-

madzu, Duisburg, Germany). The overall 13C enrichment and the isotopolog compositions were cal-

culated according to (Lee et al., 1991) and (Ahmed et al., 2014). The software package is open

source and can be downloaded by the following link: http://www.tr34.uni-wuerzburg.de/software_

developments/isotopo/.

Four independent labeling experiments were performed. Overall excess (o.e.) is an average value

of 13C atoms incorporated into 16:0/16:1w5 fatty acids.
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Data availability
Lunularia cruciata: For this species, the raw RNAseq reads have been previously deposited to NCBI

under the accession number SRR1027885. It is annotated with Rhizophagus irregularis (10% of

sequences) as the transcriptome was partly prepared from Lunularia plant tissue colonized by the

fungus Rhizophagus irregularis. The corresponding Lunularia transcriptomic assembly is available at

www.polebio.lrsv.ups-tlse.fr/Luc_v1/

Statistics
All statistical analyses (Source code 1) were performed and all boxplots were generated in R (www.

r-project.org).
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Villaécija-Aguilar for contributing a golden gate module.

Additional information

Funding

Funder Grant reference number Author

Deutsche Forschungsge-
meinschaft

SFB924 B03 Function of the
GRAS protein RAM1 in
arbuscule development

Caroline Gutjahr

Deutsche Forschungsge-
meinschaft

Emmy Noether program
GU1423/1-1

Caroline Gutjahr

Deutsche Forschungsge-
meinschaft

PA493/7-1 Plant genes
required for arbuscular
mycorrhiza symbiosis

Martin Parniske

Deutsche Forschungsge-
meinschaft

SFB924 B03 Genetic
dissection of arbuscular
mycorrhiza development

Martin Parniske

Deutsche Forschungsge-
meinschaft

SPP1212 Peter Dörmann
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